
139

DOI https://doi.org/10.36059/978-966-397-104-9/139-161

CRYPTOSYSTEMS AND INFORMATION SECURITY
IN INTRANET

Muliava O. M.

1. Evaluation of the reliability of cryptosystems

A group of well-known cryptographic experts, created under the

auspices of the Business Software Alliance (an industry organization that

prevents software misuse), has come to the conclusion that the required

key length should now be at least 75 bits with a further increase over the

next 20 up to 90 bits.

Let's check this statement.

The problem of finding keys in a symmetric cryptosystem by sorting

through all the possible keys belongs to a class of problems that allow

parallelization. Applying Distributed Computing to Organize the Search of

Such Keys
1
.

The exponential growth dynamics of computing systems' performance

over time (10 times in 5 years) has an even more significant impact on the

overall performance of the system.

Thus, progress in this area is possible due to:

1) use of advances in scientific and technological progress and the

use of technological innovations to increase the productivity of an

individual device;

2) increasing the number of such devices in the system. From a

physical point of view, that type of transistor, which is the basis of the

modern integrated circuit, can be reduced by about 10 times, to a size of

0.03 microns. At this limit, the process of switching on/off the microscopic

switches will be practically impossible. Thus, the maximum speed will be

1016 operations/second, and the limit of growth will come in about 2030.

There are no other ways to increase the computing power.

Thus, from the point of view of information security by cryptographic

methods, the analysis of potential capabilities of the distributed computing

method is of great interest for both crypto-analysts and developers of

1
 Немет Э., Снайдер Г., Сибасс С., Хейн Г.Р. UNIX: руководство системного администратора.

Пер. с англ. Киев: BHV, 1996. 270 с.

140

cryptographic systems. So let's try to analyze the limit values of two of

these trends.

From the list that appeared in the summer of 1999, it follows that

supercomputers are distributed as follows:

with a power of about FLOPS 3 approx.;

with a power of about FLOPS 54 approx.;

with a power of about FLOPS 428 approx.;

with a power of about FLOPS 251 approx.;

The first place in the world in the number of supercomputers is

occupied by the USA 254 (51%), followed by Japan 87 (17.5%), Germany

45 (9%), Great Britain 24 (4.8%), France 18 (3.6%)), Korea 8 (1.6%),

Canada 7 (1.4%), Sweden, Switzerland and Norway 6 each (1.2%). Russia

is mentioned only once in this list: the 156th place is the LDC Ultra 10000

computer (peak performance 16600 MFLOPS), manufactured by SUN and

installed in the National Reserve Bank of Russia.

Interesting detail: there are no foreign computers in the US.

Americans only work on domestic machines and also supply them to the

whole world.

Power attack on cryptosystems is futile. However, the disadvantages

of the algorithms can significantly reduce the number of search options.

141

Use as meaningful words as a key allows you to use dictionary attack.

Therefore, further development of cryptography will occur in the field of

cryptanalysis.

2. Why are cryptos not reliable?

In modern software, crypto algorithms are widely used not only for

data encryption tasks but also for authentication and integrity checking. To

date, there are well-known and proven crypto-algorithms (with symmetric

and asymmetric keys), whose cryptocurrency is either proved

mathematically or based on the need to solve a mathematically difficult

problem (factorization, discrete logarithm, etc.).

The most famous of them are DES, GOST, RSA. Thus, they can not

be disclosed other than a complete search or solution of the specified

problem.

On the other hand, in the computer world, information about errors or

"holes" in a particular program (including using crypto algorithms) or that

it has been cracked is constantly being displayed. This creates a distrust of

both specific programs and the ability to protect anything by cryptographic

methods not only from special services, but also from simple hackers
2
.

Therefore, knowledge of the history of attacks and "holes" in

cryptosystems, as well as understanding the reasons for their occurrence, is

one of the necessary conditions for the development of secure systems. A

promising area of research in this area is the analysis of successfully

conducted attacks or revealed vulnerabilities in cryptosystems in order to

generalize, classify and identify the causes and patterns of their appearance

and existence.

By, by analogy with the taxonomy of the causes of OS security

breach, let us distinguish the following reasons for the unreliability of

cryptographic programs:

 inability to use stable crypto algorithms;

 errors in the implementation of crypto algorithms;

 improper use of crypto algorithms:

 human factor.

Note that the following causes cover only two types of potential

threats: disclosure and integrity, leaving aside the threat of denial of

2
 Гайкович В., Першин А. Безопасность электронных банковских систем. Москва: Единая Европа,

1994. 264 с.

142

service, which is increasingly important as distributed cryptosystems

develop.

Inability to use persistent crypto algorithms

This group of reasons is most common because of the following

factors.

The speed of stable crypto-algorithms is low

This is a major factor complicating the use of good algorithms, for

example, in "total" encryption or "on-the-fly" encryption systems. In

particular, Norton DiskReet, although it has a DES implementation, may

not re-encrypt the entire disk when it is changed by the user, since this will

take a very long time. Similarly, on-the-fly Stacker compression software

from Stac Electronics has the option of closing off the offset data.

However, it has no physical ability to encrypt its file with this password, it

is usually several hundred megabytes in size, so it is limited by a very

weak algorithm and stores the hash function against the password along

with the protected data.

Export restrictions

This is due to the export of crypto algorithms or the need to buy a

patent or rights. In particular, the export of crypto algorithms with key

lengths greater than 40 bits is prohibited from the US. Obviously, such

crypto-stability cannot be considered reliable with modern computing

power and even on a personal computer. Putting the speed of the search at

50,000 passwords/sec, we get a search time of an average of about 4

months.

Well-known examples of programs that are subject to export

restrictions are recent browsers of the Internet, including Netscape

Navigator from Netscape Communications and Microsoft's Internet

Explorer. They provide encryption with a 128-bit key for users in the US

and a 40-bit key for everyone else. Also in this group is the latest version

of the ARJ 2.60 archiver. known for its weak archive encryption algorithm.

known for its weak archive encryption algorithm.

Users in the US can now use the GOST crypto-algorithm. The comism

of the situation is that, although this algorithm is Russian, even Russians

under US law can still not use it in the ARJ program.

Using your own crypto algorithms

Ignorance or unwillingness to use known algorithms is a paradox,

especially in Freeware and Shareware applications, such as archivers.

143

As already mentioned, the ARJ archiver (up to version 2.60 inclusive)

uses (by default) a very weak encryption algorithm – simple gamming.

It would seem that in this case its use is permissible, since the archived text

should be completely redundant and statistical methods of cryptanalysis

are not suitable here. However, upon closer examination, it appeared that

some non-random information is present in the archived text (and this is

true for any archiver) – for example, the Huffman table and some other

official information. Therefore, knowing exactly or predicting with some

probability the values of these service variables, it is equally possible to

determine the corresponding password characters.

Further, the use of weak algorithms often leads to the success of a

plaintext attack. In the case of an ARJ archiver, if an attacker knows at

least one file from an encrypted archive, it can easily determine the

password of the archive and extract from it all other files

(ARJ cryptocurrency with open text – 2
0
!). Even if there is no encrypted

file, it is still simple gamification allows you to reach a speed of

350,000 passwords/sec on a Pentium machine.

The same is true for popular Microsoft Office applications – you only

need to know the 16 bytes of a .doc or .xls file to determine your password,

and then just browse through 24 options. Microsoft Office 97 made

significant improvements to the encryption algorithms, leaving only the

possibility of a complete search, but ... not everywhere – MS Access 97

uses a primitive algorithm, and not the data itself, but the password itself

with a fixed constant XOR operation!

Novell Netware's Novell networking system (version 3.x and 4.x) also

has its own hashing algorithm. At the input, the hash function receives a

32-byte value obtained in the original user password by either compressing

a password longer than 32 characters by XOR operation, or multiplying a

password less than 32 characters, and outputting a 16-byte hash value

(Hash 16). It (for Novell Netware 3.x) is stored in the database bindery as a

property of "PASSWORD".

One of the key features of a hash function is that it must not allow

easy collision building (such as the crypt() function used in UNIX, which

is DES-based). This property is broken in the hash function used in Novell

Netware.

The hash algorithm under consideration has remained in version 4 of

Novell Netware.

144

Microsoft, in turn, also has major shortcomings in its mainstream hash

algorithm, which is applicable to all its operating systems, starting with

Windows 3.11, when authenticated on local (NetBIOS) and global (CIFS

and http) networks, called LM (Lan Manager) – X3in. (However,

Microsoft refers to the fact that it has remained since OS / 2 and that it was

developed by IBM).

It is calculated as follows: the password is converted to a 14-character

string by either cutting off long passwords or supplementing short

passwords with null elements.

All lowercase characters are replaced with uppercase characters.

Numbers and special characters remain unchanged.

The 14-byte string is split into two seven-byte halves.

Using each half of the string as a DES key, it encrypts a fixed

constant, yielding two 8-byte strings at the output.

These lines merge to create a 16-bit hash value.

Obviously, attacks on the LM hash are easily successful for the

following reasons:

Converting all characters to uppercase limits the already small number

of possible combinations for each (26 +10 + 32 = 68).

Two seven-byte "half" passwords are hashed independently. Thus, the

two halves can be sorted independently, and passwords longer than seven

characters are no stronger than passwords with a length of seven

characters.

There is no salt element, as in crypt() – two users with the same

password will always have the same hash value.

Thus, you can pre-compile a dictionary of hashed passwords and

search for an unknown password in it.

Wrong implementation of crypto algorithms

Although crypto-resistant or certified algorithms are used in this case,

this group of reasons leads to a security breach of cryptosystems due to

their incorrect implementation.

Decrease in cryptocurrency during key generation

This is because of the many examples where the crypto system either

cuts the user's password or generates data with fewer bits than the

password itself. Examples:

In many (older) versions of UNIX, the user password is truncated to

8 bytes before the hash. Interestingly, for example, Linux 2.0, requiring

145

users to enter passwords containing necessarily letters and numbers, does

not verify that the 8-character password start also consists of letters and

numbers. Therefore, by asking, for example, a sufficiently strong password

'passwordIsgoodlÇ', one would be very surprised to learn that a hacker has

logged in under his name with a simple password 'password'.

Novell Netware allows users to have passwords up to 128 bytes,

which gives (including Latin letters without case, numbers and special

characters) 68
128

 ~ 2
779

 combinations. But first, the hash function (see

above). It only receives a 32-byte value at the input, which limits the

effective length of the password to the same value. Moreover, secondly,

the output hash value is only 128 bits long, which corresponds to 2
128

combinations. This further reduces the effective length to =21 символа
3
, ie

6 times compared to the original length.

The situation with the RAR 1.5 * archiver is quite similar – choosing a

password of more than 10 characters does not increase the time it takes to

open it.

If the length of the "top" password in this case is determined by the

implementation of cryptographic algorithms, then the restriction on the

length of the "bottom" is already associated with the concept of unit of

information or entropy. In the considered example from Novell Netware, to

create a hash value with an entropy of 128 bits, the password length must

be at least 22 characters. The fact that many cryptosystems do not limit the

minimum length of the password, which in turn leads to the success of

attacks not by keys and passwords.

Lack of checking for weak keys

Some crypto-algorithms (such as DES, IDEA), when encrypting with

specific keys, may not provide the right level of cryptocurrency. Such keys

are called weak. DES is known for 4 weak and 12 semi-weak. (Semi-weak)

keys. Although the probability of getting into them is ~2 *10
-16

, for serious

cryptographic systems it can not be neglected.

The power of many IDEA weak keys is 2
51

 (however, because of the

total number of keys 2
128

, the likelihood of getting into it is 333 times less

than in DES).

Insufficient security against MS

MS (malicious software) are computer viruses, Trojan horses,

software bookmarks, etc. applications that can intercept the private key or

the unencrypted data themselves, and simply replace the algorithm with

146

non-encrypted ones. If the programmer has not provided sufficient security

against the MS, they are easily capable of negatively affecting the security

of the cryptosystem. This is especially true for operating systems that do

not have built-in security or access control features, such as MS DOS or

Windows 95:

Password Interception

An example is the oldest method of password stealing, known since

the days of major computers, when the phantom program emulates the OS

invitation, offering to enter a user name and password, memorize it in

some file and stop working with the message 'Invalid password'. For

MS DOS and Windows there are many bookmarks for reading and saving

passwords that are typed on the keyboard (by intercepting the

corresponding interrupt), for example, when using Diskreet V. 6.0.

Crypto algorithm replacement

An example of this is the bookmark masked under the Turbo Krypton-

type accelerator application. This tab replaces the GOST 28147-89

encryption algorithm implemented by the Kgurton-C board (demo version)

with another, simple and easily decrypted algorithm.

Trojan horse in email

A recent example is the June 1998 attempt to infiltrate a Trojan horse

via email. The letter contained a pornographic image and an EXEC file

FREECD.EXE, which, while the user was having fun with the letter,

decrypted the passwords to the provider (Dial-Up) and sent them to

ispp@usa.net.

Time limit for key processing

This is a relatively new aspect of the lack of correct implementation of

crypto algorithms discussed in the article. There it is shown that many

cryptosystems process different input data differently quickly. This is due

to both hardware (different cycles per operation, CPU cache, etc.) and

software reasons (especially when optimizing the program over time).

Time may depend on both the encryption key and (de) encrypted data.

Therefore, the attacker, having detailed information about the

implementation of the crypto algorithm, having encrypted data and being

able to somehow measure the processing time of this data (for example,

analyzing the time of sending packets with data), can try to pick up a secret

key. The paper describes in detail the tactics of attacks on systems that

implement algorithms RSA, Diffie-Hellman and DSS. moreover, the key

147

can be obtained by specifying bit by bit, and the number of required

measurements of time is directly proportional to the length of the key.

Although it has not been possible to bring these studies to a concrete

result (calculate the secret key), this example shows that the programming

of critical systems (including cryptosystems) should be particularly careful

and may need to use special security methods. programming and

specialized development tools (especially compilers).

Errors in software implementation

Clearly, as long as programs are written by people, this factor will

always be the case. A good example is Novell Netware 3.12, where,

despite a well-thought-out authentication system that, according to Novell,

"an unencrypted password is never transmitted over the network",

SYSCON v. 3.76 was found to have an error where openly falls into one of

the network packets.

This is not the case with either earlier or later versions of this

program, which makes it possible to speak about a purely programming

error. This error occurs only if the supervisor changes the password to

someone (including himself). Apparently, somehow the keyboard buffer

falls into the network packet.

The presence of hatches

The reasons for the presence of hatches in cryptosystems are

obvious: the developer wants to have control over the information

processed in his system and leaves for himself the ability to decrypt it

without knowing the user's key. It is also possible that they are used for

debugging and for some reason are not removed from the final product.

Naturally, this sooner or later becomes known to a large number of

individuals and the value of such a cryptosystem becomes almost zero.

The most famous examples here are the AWARD BIOS (up to

version 4.51PG) with its universal password "A WARD SW" and

Borland International's Paradox DBMS, also has "SuperPassword",

"jIGGAe" and "pbbrrh".

Along with the availability of hatches in the implementation

(obviously, in this case, they use explicitly unstable algorithms or store the

key together with the data) are adjacent algorithms that allow a third party

to read an encrypted message, as is done in a high-profile CLIPPER

project, where the third party acts, always fond of stuffing his nose in the

secret of his citizens.

148

Disadvantages of the Random Data Generator (RDG)

A good, mathematically proven and correctly implemented RDG is as

important for the cryptosystem as a good, mathematically stable and

correct crypto-algorithm, otherwise its disadvantages can affect the overall

crypto-stability of the system. In this case, pseudorandom number sensors,

typically characterized by a period, scatter, and the need for its seed

initiation, are usually used to model the RDG on the computer. The use of

PDG for cryptosystems is not generally considered a good solution, so

good cryptosystems use physical PDG (special charge) for this purpose, or

at least produce a number to initialize PDG using physical values

(for example, user key press time).

The short period and the bad scatter are related to the mathematical

disadvantages of the RDG and appear if for some reason your own RDG is

selected. In other words, choosing your own PDG is as dangerous as

choosing your own crypto algorithm.

In the case of a small period (when the pseudorandom values

produced by the sensor are less than the possible key values), the attacker

can shorten the search time for the key by searching not pseudorandom

keys but generating keys from them.

If the sensor is badly scattered, the attacker can also reduce the

average search time if the search starts with the most likely pseudorandom

numbers.

The most common mistake that can be found in the case of a good

PDG is its incorrect initialization. In this case, the number used for

initialization has either less number of bits of information than the sensor

itself, or is calculated from non-random numbers and can be predicted with

varying degrees of probability.

This was the case with Netscape Navigator version 1.1. It initializes

the PDG using the current time in seconds (sec) and microseconds (usee),

as well as process IDs (pid and ppid). As researchers J. Goldberg and D.

Vagner have found out, at such scheme as a maximum 47 significant bits

of information (though this sensor was used for 40- or 128 (!) – bit keys)

were obtained. But, if the attacker had the ability to intercept packets

transmitted over the network and had access (account) to the computer

where the program is running, then it did not cause any problems with a

high degree of probability to learn sec, pid and ppid. If condition (2) was

not satisfied, the attacker could still try to set the time via network time

149

daemons, the pid could be obtained through the SMTP daemon (usually

included in the Message-ID field), a ppid or not very different from the

pid, or generally equal to 1.

The researchers wrote the unssl program. which, looking through the

microseconds, found a secret 40-bit key in an average of a minute.

Incorrect application of crypto algorithms

This group of reasons leads to the unreliable crypto-stability and

correctly implemented algorithms.

Short key length

Its the most obvious reason. The question is: how can stable crypto

algorithms have a small key length? Probably due to two factors: some

algorithms can work with variable key lengths, providing different

cryptocurrency – and it is the developer's job to choose the required length

based on the desired cryptocurrency and efficiency. Sometimes, other

circumstances, such as export restrictions, impose this desire.

Some algorithms were developed a long time ago when the length of

the key used in them was considered more than sufficient to meet the

required level of protection.

With a sharp leap in computing performance, the RSA algorithm was

first encountered, for which it is necessary to solve the factorization

problem. In March 1994, was completed, which lasted for 8 months

factorization of the number of 129 digits. To this end, 600 volunteers and

1600 email-connected machines were involved. Machine time was

equivalent to approximately 5000 MIPS leagues.

The progress in solving the factorization problem is largely due not

only to the growth of computing power, but also to the emergence of new

efficient algorithms recently. (The factoring of the next number out of 130

digits took only 500 MIPS years). To date, it's basically a matter of

factoring 512-bit numbers. If you mention that such numbers have recently

been used in PGP. it can be argued that this is the fastest growing field of

cryptography and number theory.

On January 29, 1997, RSA Labs announced a competition to open a

symmetric RC5 algorithm. The 40-bit key was revealed 3.5 hours after the

start of the contest! (This didn't even require connecting computers over

the Internet – enough of a local network of 250 machines at Berkeley

University). After 313 hours, a 48-bit key was opened.

150

Thus, it became obvious to everyone that the length of the key, which

would satisfy the export restrictions, could not provide even the minimum

reliability.

In parallel with the unveiling of the RC5, a pillar of American

cryptography, a DES algorithm with a 56-bit key, was also challenged.

And it fell on June 17, 1997, 140 days after the start of the contest (with

about 25% of all possible keys tested and about 450 MIPS spent).

It was a remarkable achievement, which meant the actual death of

DES as an encryption standard. Indeed, when in the beginning of 1998

the next DES Key Competition came to fruition in just 39 days, the

National Institute of Standards (NIST) announced a competition to

approve the new Advanced Encryption Standard (AES). The AES must

be a fully open symmetric algorithm with a 128, 192, 256 bit key and a

128 bit encryption unit.

Invalid algorithm class selection

This is also a very common reason why a developer chooses a good,

but completely inappropriate, algorithm. Most often it is to encrypt instead

of hashing or to choose a symmetric algorithm instead of an algorithm with

public keys.

For example, it is almost all programs that restrict access to the

computer password when it is turned on or loaded, for example, AMI

BIOS, which stores instead of the password hash its encrypted version,

which, of course, is easily decrypted.

In all network authentication procedures, it is natural to use

asymmetric cryptography, which will not allow you to pick up the key,

even with full traffic capture. However, such algorithms (from network

OS) so far only implement Novell Netware 4.x, others are satisfied

(at best!) Standard query-response scheme, in which you can perform a

fairly fast search for intercepted values of 'query' and 'feedback'.

Re-imposition of cipher gamma

Already a classic example is the encryption vulnerability in

Windows 3.x and the first versions of Windows 95. In this case, Microsoft

programmers, well-known for their security knowledge, used the

RC4 algorithm (which is nothing like gamma encryption), without

changing the gamut, several times to different data – network resources

stored in .pwl files.

151

It turned out that one of the datasets of the .pwl file was more than

specific text – a 20-character username (uppercase) and a set of pointers to

resources. Thus, guessing the user (which in most cases also matches the

file name), you can calculate at least 20 bytes of gamma. Since the gamma

does not change when encrypting other resources (this is the main mistake

of using RC4 in this case), the first 20 bytes of all resources that include

the length of each can be calculated. By calculating the length, you can

find the value of pointers and thus add a few tens of bytes to the guessed

gamut. This algorithm is implemented in the known program elide.

Storing the key along with the data

This reason leads to the fact that data encrypted using a crypto-stable

and correctly implemented algorithm can be easily decrypted. This is due

to the specifics of the solved problem, in which it is impossible to enter the

key from the outside and it is stored somewhere inside in almost

unencrypted form. In other words, the encryption algorithm on the key, and

the key (with the help of some secondary key) will be the most vulnerable

here. But since (which again obviously follows from the specifics of the

task) this secondary key cannot be stored from the outside, the master data

will sooner or later be decrypted without the use of methods, iteration.

A typical example here would be all WWW-, ftp-, e-mail clients. The

fact is that for basic (most common) authentication in these protocols, the

password must be transmitted to the server in an open form. Therefore,

client programs are forced to encrypt (not hashed) the password, and with a

fixed key, so as not to bother the user with constant questions. It follows

that somewhere inside any browser, mail or ftp client (be it Netscape

Communicator, Eudora, Outlook, FAR, etc.), all your passwords are stored

in a virtually open form, and that deciphering them is no problem. (Most

often, by the way, the password in such programs is not even encrypted,

and is encoded with a base-64 algorithm).

The human factor

In any critical system, human operator errors are by far the most

expensive and widespread. In the case of cryptosystems, unprofessional

actions of the user negate the most stable crypto-algorithm and its most

correct implementation and application. First of all, it is related to the

choice of passwords. Obviously, short or comprehending passwords are

easily remembered by the person, but they are much easier to open. Using

long and meaningless passwords is definitely better in terms of crypto-

152

persistence, but a person usually can't memorize and write them on a piece

of paper, which then either gets lost or falls into the hands of the attacker.

In recent years, much attention has been paid to resolving this

contradiction, but recommendations for choosing good passwords are

beyond the scope of this article.

In addition to the fact that inexperienced users usually choose either

short or meaningful passwords, there are two methods of their disclosure:

full-blown attack and dictionary attack.

Due to the sharp increase in computing power, full-on-attack attacks

are much more likely to succeed than before (see also 'Small Key Length').

If crypt(), which is responsible for password hashing, was implemented for

UNIX for almost 1 second on a PDP class machine, the speed of its

calculation was increased 15,000 times in twenty years (!). Therefore, if

earlier hackers (and developers who limited the length of the password to 8

characters) and could not imagine a complete search, today such an attack

will on average lead to success in 80 days. Below is the password speed for

different cryptosystems.

Full-speed search on a Pentium / 166 computer

However, back to a few years ago, when computing power was not

enough to completely reset all passwords. However, hackers have come up

with a clever method based on the fact that as a password a person selects

an existing word or any information about himself or his acquaintances

(name, date of birth, etc.). Well, since there are no more than

100,000 words in any language, it will take quite a bit of time to search

153

them, and 40 to 80% of your existing passwords can be guessed using a

simple scheme called "dictionary attack." up to 80% of these passwords

can be guessed using a dictionary of only 1000 words!). Even the Morris

virus (1988!).

Used this way, especially since UNIX often has a dictionary file on

hand, often used by proofreaders. As for "own" passwords, the /etc/passwd

file can give a lot of information about the user: his input name, first name,

home folder.

The Morris virus has successfully used the following assumptions:

 the input username is taken as the password;

 password is a double repeat of the username;

 same but read from right to left;

 first or last name of the user;

 same but lowercase.

Today, users already understand that it is impossible to choose such

passwords, but as long as a person is working with a computer, computer

security experts will not wait to use such simple and happy souls of

passwords as 34jXs5U @ bTa! 6.

Therefore, even the experienced user cheats and selects such

passwords as hopel, userl997, pAsSwOrD, toor, roottoor, password,

gfhjkm, asxz. It can be seen that they are usually based on a meaningful

word and some simple rule of its transformation: to add a number, to add a

year, to translate a letter in another register, to spell the word opposite, to

spell the word in Latin, to type Russian a word on a keyboard with a Latin

layout, to password with a number of keys located on the keyboard, etc.

Therefore, one should not be surprised if such a "tricky" password will

be revealed by hackers – they are not more stupid than the users

themselves, and have already inserted into their programs the rules that can

be converted words.

In the most advanced programs (John The Ripper Password Cracking

Library) these rules can be programmed and set using a special language

by the hacker.

Here is an example of the effectiveness of such a search strategy.

Many security books suggest choosing a meaningful password for two

meaningful words separated by a character, such as "good.password". We

calculate how long, on average, such passwords will be cracked if such a

rule is included in a cracker program (let the dictionary of 10,000 words,

154

punctuation marks can be 10 digits and 32 punctuation marks and special

characters, Pentium class machine with a speed of 15000 crypt / sec): =

140,000 seconds or less than 1.5 days!

3. Information security in Intranet

3.1 Developing network security policies

Security policy is defined as a set of documented management

decisions aimed at protecting information and its associated resources
3
.

In developing and implementing it in life, it is advisable to be guided

by the following principles:

 inability to pass protective equipment;

 strengthening the weakest link;

 inability to transition to a dangerous state;

 minimizing privileges;

 division of responsibilities;

 separation of defense;

 variety of protective equipment;

 simplicity and controllability of the information system;

 providing general support for security measures.

Let's explain the meaning of the above principles. If an attacker has a

disgruntled user with the ability to bypass security, he will, of course, do

so. With respect to firewalls, this principle means that all information

flows to and from the protected network must pass through the firewall.

There should be no "secret" modem or test line inputs that bypass the

firewall.

The reliability of any defense is determined by the weakest link. The

attacker does not fight against strength, he prefers an easy victory over

weakness. Often, the weakest link is not the computer or the program, but

the person, and then the problem of information security becomes non-

technical.

The principle of inability to move into a dangerous state means that in

all circumstances, including freelance, the protective agent either performs

its functions completely or completely blocks access. Figuratively

speaking, if the strength of the drawbar mechanism breaks down, the

bridge must remain elevated, obstructing the passage of the enemy.

3
 URL: http://www.ksu.vntu.edu.ua/files/akit/bakalavr/14_4.pdf

http://www.ksu.vntu.edu.ua/files/akit/bakalavr/14_4.pdf

155

The principle of minimizing privileges requires that users and

administrators be granted only the access rights they need to perform their

duties.

The principle of division of responsibilities implies such a division of

roles and responsibilities, in which one person can not initiate a process

critical to the organization. This is especially important to prevent

malicious or unqualified system administrator actions.

The principle of separation of the defense dictates not to rely on one

defensive line, no matter how reliable it may seem. Physical security

means must be followed by software and hardware, access control and, as

the last line, logging and auditing. An echelon of defense is capable of at

least deterring an attacker, and the presence of a line such as logging and

auditing makes it difficult to make a criminal act imperceptible.

The principle of the diversity of protective equipment recommends the

organization of different defensive lines in character, so that the potential

attacker would require mastering a variety and, if possible, incompatible

skills (such as the ability to overcome high fencing and knowledge of the

weaknesses of several operating systems).

A very important principle is the simplicity and manageability of the

information system as a whole and security in particular. Only for a simple

safeguard can it be formally or informally proven correct. Only in a simple

and manageable system can you check the consistency of the configuration

of the various components and perform centralized administration.

In this regard, it is important to note the integrating role of the Web

service, hiding the diversity of objects and providing a single, visual

interface. Accordingly, if objects of some kind (say database tables) are

accessible through the Web, you must block direct access to them,

otherwise the system will be complicated.

The last principle – general support for security measures – is non-

technical. If users and / or system administrators consider information

security to be superfluous or even hostile, the security mode is deliberately

failed. From the outset, a set of measures aimed at ensuring the loyalty of

staff, continuous training, theoretical and, most importantly, practical,

should be envisaged.

Risk analysis is the most important step in developing a security

policy. In assessing the risks to which the Internet system is exposed, the

following circumstances should be considered:

156

 New threats to old services that result from the ability to passively

or actively listen to the network. Passive listening means reading the

network traffic, while active listening means changing it (theft, duplicate

modification of transmitted data). For example, authentication of a remote

client using a reusable password cannot be considered reliable in a network

environment, regardless of the length of the password;

 New (network) services and associated threats.

As a rule, Internet systems should adhere to the principle of "all that is

not allowed, forbidden", since "unnecessary" network service can provide

a channel of penetration into the corporate system. In principle, the same

view expresses the statement "all incomprehensibly dangerous."

3.2 Software environment security

The idea of networks with so-called active agents, where not only

passive but active data (ie programs) are transmitted between computers, is

certainly not new. Initially, the goal was to reduce network traffic by

performing the bulk of the processing where the data is located

(approximating programs to the data). In practice, this meant moving

applications to servers. A classic example of implementing this approach is

the stored procedures in the DBMS
4
.

For Web servers, programs that support the Common Gateway

Interface (CGI) are analogous to stored procedures.

CGI procedures are hosted on servers and are commonly used to

dynamically generate HTML documents. Organization security policies

and procedures should determine who is allowed to connect to the CGI

server. Rigid control is necessary here, as executing the wrong program by

the server can lead to any serious consequences. A reasonable measure of a

technical nature is to minimize the privileges of the user on whose behalf

the Web server is running.

In Intranet technology, if you care about the quality and expressive

power of the user interface, there is a need to move applications from Web

servers to client computers – to create animations, perform semantic

controls when entering data, etc. In general, active agents are an integral

part of the Internet technology.

4
 URL: https://issuu.com/alex.voronkin/docs/

https://issuu.com/alex.voronkin/docs/

157

In whatever direction programs are moved over the network, these

actions are of great danger because a program obtained from an unreliable

source may contain unintentionally made malicious intentionally generated

malicious code.

This program potentially threatens all major aspects of information

security:

 accessibility (the program can absorb all available resources);

 integrity (the program can delete corrupted data);

 privacy (the application can read the data and transmit it over the

network).

The problem of unreliable programs was recognized for a long time,

but apparently only within the programming system.

Java is the first to offer a holistic concept for its solution.

Java offers three defensive lines:

 reliability of language;

 control upon receipt of programs;

 control when executing programs.

However, there is another, very important way to ensure information

security – the unprecedented openness of the Java system. The source code

of the Java compiler and interpreter is available for verification, so it is

likely that honest experts, not malicious users, will be the first to detect

errors and shortcomings.

In conceptual terms, the greatest difficulty is the controlled execution

of programs downloaded over the network. First of all, it is necessary to

determine what actions are considered acceptable for such programs.

Considering that Java is a language for writing client parts of applications,

one of the basic requirements for which is mobility, the downloaded

program can only serve the user interface and to communicate with the

server. The program cannot handle the files at least because there may not

be any files on the Java terminal. More meaningful actions must be

performed on the server side or performed by programs local to the client

system.

An interesting approach is offered by Sun Microsystems specialists to

ensure the safe execution of batch files. It's about Safe-Tcl (Tool Comman

Language). Sun has proposed a so-called cellular command file

interpretation model. There is a master interpreter to whom all language

capabilities are available.

158

If you need to execute a questionable batch file while the application

is running, a subordinate command interpreter is created that has limited

functionality (for example, files and network capabilities can be removed

from it).

As a result, potentially dangerous programs find themselves trapped in

cells that protect user systems from hostile action. To perform actions that

are considered privileged, the slave interpreter may request the principal.

Obviously, here is an analogy with the separation of operating system

address space and user processes and the use of recent system calls. This

model has been standard for the OS for about 30 years.

3.3 Authentication in Open Networks

Methods used in open networks to validate and validate entities must

be robust to passive and active network listening.

Their essence is as follows.

 The subject demonstrates knowledge of the secret key, with the

key either not being transmitted over the network or transmitted in

encrypted form.

 The subject demonstrates mastery of the software or hardware for

generating one-time passwords by means of a request-response mode. It is

easy to see that the intruder and subsequent playback of a one-time

password to answer the request does not give the attacker.

3.4 The concept of data transmission in open networks

One of the most important tasks is protecting the flow of corporate

data transmitted over open networks. Open channels can be securely

protected by only one method – cryptographic.

Of course it is natural to put on the firewall the task of encrypting and

decrypting corporate traffic on the way to and from the external network.

In order for such encryption/decryption to be possible, an initial allocation

of keys must take place. Modern cryptographic technologies offer a

number of methods for this purpose.

After the firewalls have encrypted the closure of corporate data

streams, the territorial location of the network segments is detected only at

different rates of exchange with different segments. The rest of the network

looks like a whole, and subscribers do not need to bring any additional

security.

159

Simplicity and homogeneity of architecture

The most important aspect of information security is the

manageability of the system. Manageability is both the maintenance of

high system availability through early detection and troubleshooting, the

ability to change hardware and software configurations according to

changed or needs, and notification of attempts to breach information

security almost in real time, and reducing the number of administration

errors, and many, much more.

Simplicity and homogeneity of architecture

The most important aspect of information security is the

manageability of the system. Manageability is both the maintenance of

high system availability through early detection and troubleshooting, the

ability to change hardware and software configurations according to

changed or needs, and notification of attempts to breach information

security almost in real time, and reducing the number of administration

errors, and many, much more.

Internet technology, at the expense of simplicity and homogeneity

of architecture, makes the cost of administering a client workplace

virtually nil.

It is also important that the replacement and re-commissioning of the

client computer can be accomplished very quickly, since these are "clients

without status", they have nothing that requires a long-term recovery or

configuration.

At the junction of the client and server parts of the Internet-system is a

Web-server. This allows for a single mechanism for registering users and

granting them access rights, followed by centralized administration.

Interaction with numerous heterogeneous services is hidden not only from

users, but also to a great extent from the system administrator.

The task of providing information security on the Internet is simpler

than in the case of arbitrary distributed systems built in the client / server

architecture. The reason is the homogeneity and simplicity of the Internet

architecture.

If application developers are able to take full advantage of this

advantage, then at the software and technical level, they will be quite a

few inexpensive and easy to learn products. However, a thoughtful

security policy and a comprehensive set of procedural measures should be

added to this.

160

Some recommendations

A comprehensive approach to information security is needed.

Information security should be considered as an integral part of the

overall security of the bank – and as an important and integral part of it.

The development of the concept of information security should necessarily

involve the management of the bank's security. This concept should not

only encompass information technology-related measures (crypto-

protection, user rights management software, their identification and

authentication, firewalls to protect network I / O, etc.), but also

administrative and technical, including rigid procedures for controlling

physical access to the automated banking system, as well as means of

synchronization and communication between the banking security module

and the security system.

It is necessary for the security management staff to participate in the

selection-acquisition-development phase of the automated banking system.

This participation should not be limited to verification by the supplier. The

security management must monitor the availability of appropriate means of

differentiating access to information on the system being purchased.

CONCLUSION

Note that encryption and decryption are required in society not by

themselves, but only because they can bring profit or avoid losses, so it is

always necessary to know what is the value of one character encrypted and

decrypt information and what is the cost?

Are the organizations involved in intercepting or decrypting

information profitable, or are they deliberately unprofitable?

The most interesting comparative analysis of data to scientifically

justify the share of information security costs. It should also be borne in

mind that a significant number of attacks are carried out internally by staff

from institutions, which are much more difficult to defend against.

In particular, the problem of key storage is currently the most acute

and, if using public keys solves the problem of key distribution and user

authentication, then a more efficient way of storing keys than memorizing

not found, and the use of memorable passwords allows you to apply

dictionary attack.

In addition, the use of reliable cryptographic methods does not

guarantee protection against software attacks.

161

Therefore, when creating computer cryptosystems, it is necessary to

provide security at the operating system level, which is more difficult than

creating a cryptosystem itself.

SUMMARY

There are 4 main groups of reasons for the unreliability of cryptographic

systems: the use of unstable algorithms, the incorrect implementation or

application of crypto algorithms, as well as the human factor.

This shows a clear parallel between them and the reasons for the

breach of security of computer systems.

For the reasons described, there have been or are security concerns in

all classes of software using crypto algorithms, be they operating systems;

cryptocurrencies; clients and servers that support them; office applications;

user-friendly encryption utilities; popular archives.

In order to intelligently implement your own cryptosystem, it is

necessary not only to become acquainted with the errors of the Others and to

understand the reasons for their occurrence, but also, perhaps, to apply special

protective techniques of programming and specialized development tools.

REFERENCES

1. Немет Э., Снайдер Г., Сибасс С., Хейн Г.Р. UNIX: руковод-

ство системного администратора. Пер. с англ. Киев: BHV, 1996. 270 с.

2. Гайкович В., Першин А. Безопасность электронных банков-

ских систем. Москва: Единая Европа, 1994. 264 с.

3. URL: http://www.ksu.vntu.edu.ua/files/akit/bakalavr/14_4.pdf

4. URL: https://issuu.com/alex.voronkin/docs/

Information about the author:

Muliava O. M.

Candidate of Physical and Mathematical Sciences, Associate

Professor, Deputy Dean of the National University of Food Technology

