

V.I. VERNADSKY TAURIDA NATIONAL UNIVERSITY

SOFTWARE PRODUCTION

AND GAME MODELING METHODS

Collective monograph

Lviv-Toruń
Liha-Pres
2019

Reviewers:

Dr inż. Michał Sójka, Dean of the Faculty of Mechanical Engineering of Cuiavian University

in Wloclawek (Republic of Poland);

Dr Zbigniew Brenda, Director of Logistics and Technology Institute of Cuiavian University

in Wloclawek (Republic of Poland);

Prof. dr hab. Ryszard Strzelecki, Politechnika Gdańska / Gdansk University of Technology

(Republic of Poland).

Software production and game modeling methods : collective monograph /

V. B. Kyselov, V. I. Domnich, M. H. Medvediev, O. M. Muliava. – Lviv-Toruń :

Liha-Pres, 2019. – 180 s.

ISBN 978-966-397-107-0

Liha-Pres is an international publishing house which belongs to the category „C”

according to the classification of Research School for Socio-Economic and Natural

Sciences of the Environment (SENSE) [isn: 3943, 1705, 1704, 1703, 1702, 1701;

prefixMetCode: 978966397]. Official website – www.sense.nl.

The issues of creation of software production that meets modern requirements and

standards, indicators and methods of assessment of its quality level and its life cycle are

considered. Separately, the game methods of mathematical modeling, analysis, and forecasting

of decisions in the economy and business for support and decision-making are considered.

ISBN 978-966-397-107-0 © Liha-Pres, 2019

3

CONTENTS

INTRODUCTION .. 4

SOFTWARE TOOLS

Kyselov V. B.. 5

SOFTWARE AND METHODOLOGICAL COMPLEX
OF SYSTEMS

Kyselov V. B.. 36

SCIENTIFIC AND TECHNICAL LEVEL
OF SOFTWARE TOOLS

Domnich V. I. .. 66

RESOLUTION METHODS AND APPLIED PROBLEMS
OF GAME THEORY

Medvediev M. H. .. 95

MODELING OF ECONOMIC SYSTEMS.
GAME APPROACH

Medvediev M. H. .. 124

MATRIX GAMES AND STATISTIC CRITERIA

Muliava O. M. .. 153

4

INTRODUCTION

The use of high-tech technology and software environments has made

it possible to accumulate a database, create a knowledge base, including

through the use of artificial neural networks, which in uncertainty makes it

possible to make decisions that minimize energy costs, take into account

the state of commodity markets and, ultimately, maximize profits.

The theoretical basis and practical tools for analyzing and forecasting

decisions in economics and business are the economic-mathematical

models and the calculations that follow them. Moreover, the main

difficulties, as a rule, lie not in the execution of calculations, but in the

construction of the models themselves, adequate to the real situation.

The paper deals with issues related to modeling and decision making

in conflict situations. The mathematical theory of conflict is game theory.

Classic examples of conflict situations are buyer-seller, arbitration

disputes, auctions, elections, etc. The parties of the conflict tend to pursue

different goals, and the outcome of any decision of each of them depends

on the decisions made by the other participants. More difficult situations

arise when there are associations or coalitions of participants.

The simplified formalized model of the conflict is called a game.

Interested parties are called players. The main task of the game is to

determine the optimal strategies of players to achieve their goals.

A strategy is a set of rules (or a program) that determine which action

(move) one has to take for each game implementation.

In game theory, it is assumed that each player knows his/her own

winning function and the set of strategies at his disposal, as well as the

other players' winning functions and strategies, and according to this

information he/she organizes his/her behavior.

The theory of games was first systematically outlined by J. von

Neumann and O. Morgenstern in 1944 in the monograph “Theory of

Games and Economic Behavior», although some results were published in

the 1920s. Since that time, considerable interest in game theory begins to

emerge, first in the military field and then in other areas of practice.

5

DOI https://doi.org/10.36059/978-966-397-107-0/5-35

SOFTWARE TOOLS

Kyselov V. B.

1. Engineering interpretation of programming

Engineering (industrial) methods, although are not universal, are now

widespread in programming. They require a revision of the traditional

concepts and the development of new ones.

Let us consider, first of all, the evolution of the concept «Program».

Any computer while solving a specific problem works on a specific

program. In general, a computer program (P) is a record of an algorithm

for solving a problem in the form of a sequence of commands or operators

in a strictly formalized language accessible for the computer. This

definition of the program is to some extent abstract and not sufficiently

specific. It is used when we are not interested in the specific form of the

program, the language of presentation, the degree of completion
1
.

The program can be recorded on ordinary sheets of paper, on special

forms, on data carriers. It may be debugged or undebugged, ready for its

intended use, or may require some conversion before use. To make the idea

of the program more specific, epithets are added to the name of the

program, such as debugged (undebugged), object, controlling, etc. The

abstractness of the term «Program» creates great difficulty in

communicating of professionals, and in some cases is unacceptable.

Therefore, there is a need for additional terms and definitions.

Under, the software tool (ST) one understands a program or a set of

programs on data carriers with program documentation developed in

accordance with standards and other regulatory documents and suitable for

its intended purpose. The definition of the software emphasizes the

completeness of the product (the availability of software documentation)

and the readiness to use it directly for its intended purpose to solve a

specific problem on the computer (recording on a data carrier). But the

software may not be a commodity product, especially a product for

production and technical purpose. It may only be intended for use by the

1
 Antipensky V.E., Bilousko V.S., Chujdan T.I. Computing Machines and Programming: Workshop. Kyiv:

Higher School. Main issue, 1987. 245 p.

6

developer himself and is not used by others. In this regard, there is a need

to allocate a subset of software tools which have features of products that

are developed and manufactured to meet the needs of the national

economy, population and programs on data carriers with program

documentation developed and manufactured in accordance with standards

and other regulatory documents, having undergone state, inter-

departmental or departmental testing and technical control of the

manufacturer, provided with guarantees. A software product is a unit of

software production for technical purposes. It follows from the definition

that not every software tool is a software product.

The relation between programs, software tools and software products

can be established using the concept of sets. Let us suppose A = {P};

B = {ST}; C = {SP}. The following relations are established between the

sets A, B, C: And B C. So, any software product is a software tool, but

not the other way around. Accordingly, any software tool is a program, but

the reverse statement is not valid. The B\C difference is a subset of

software tools which are not software products; the A\B difference is a

subset of programs that are not software tools.

To get a software tool from a written program, it is necessary to insert

this program into the computer memory, compile, debug and compile

program documentation for it. This requires some labor costs, generally

exceeding the labor costs for initial writing the program text. In order to

obtain a software product from the software tool, it is necessary to more

fully anticipate possible application and requirements of potential users, as

well as to ensure that the previously stated requirements for SP are

fulfilled. Labor costs, which three times exceed labor costs to create ST,

may be needed for all that.

2. Software production specificity

Software production has features that should be taken into account at

all stages of the software tools’ lifecycle as well as in quality management.

The software production has a high scientific capacity and intellectual

content, it is created on the basis of intensive use of scientific knowledge

and promotes the dissemination and use of knowledge by creating banks of

this knowledge, information and expert systems, etc. Software tools

development almost always requires high mental stress, deep and accurate

knowledge. In ST development, besides programming specialists, highly

7

qualified specialists in a wide variety of subject areas (chemistry, physics,

control systems, technological processes, and the like) have to be involved

The narrow specialization and qualification of these specialists makes them

unique. The complications in the control of progress and quality of

development emerge. These difficulties are often subjective. High

scientific capacity causes the need for increased costs for research and

development work in the process of creating programs. This feature

complicates the use of engineering methods in the design and quality

management of ST

Software production is not expended and does not consume its

resources when used. It is known that industrial production is divided into

two main classes. The first are products expended when used (fuel, raw

materials, substances, etc.); the second are products that consume their

resources when used (machines, appliances, worktables, etc.).

The software production cannot be assigned to any of these classes of

industrial production on these grounds. It is not expended when used and

does not consume its resource. Moreover, with a well-established support

service, ST is improved by detecting and correcting errors, as well as

upgrading of methods, structure, and parameters. During the period of

storage and usage the data carrier, on which the program is recorded, loses

its features and may eventually become unusable. But by removing the

copies from the ST in advance, the influence of this factor can be

eliminated. The question of whether a copy of ST may be compared with

the original and whether a user has the legal right to make copies of ST

slightly impacts the nature and character of the features of the ST because

it does not cause major complications for a user.

This feature significantly affects the methods of assessing the

reliability of the ST and the possibility of extending the traditional

interpretation of the reliability of technical means to software products.

This is especially true of reliability indicators such as durability and

maintainability. The nature of the main indicator of reliability, infallibility,

is also changing.

2.1 Easy to manufacture

In most cases, manufacturing a software product on magnetic or paper

media involves a relatively simple operation of removing copies from the

product's sample-standart (original). However, no qualitative changes

8

occur. The identity of the copy with the original is easily controlled. It is

somewhat more complicated to make copies of a software product in a

permanent storage device. But this way of storing information is, firstly,

not widespread, and secondly, it is also easily controlled and automated.

This feature significantly affects the organization of quality control of

software production. The main difficulty of this control lies not in the

process of manufacturing the product, but the processes of development

and testing of the prototype. The high quality of the prototype with strict

adherence to the technology of rewriting guarantees the quality of the

copies made from it – new copies of software products. It should be noted

that the ease of manufacturing SP complicates the control over their

distribution.

2.2 Easy to make changes

Upgrading a software product requires knowledge of the structure of

the product being changed, a thorough analysis of the impact of the

changes. But the process itself is simple. All you need is a good editor

program. This feature, when skillfully used, is a significant advantage of

software. This advantage is vital in dynamic spheres of applications, such

as in automated control systems, where a constant search for the most

optimal control modes goes on, which leads to the need for continuous

improvement of the software. But the same feature easily becomes a

drawback if the flow of change becomes poorly managed and unbalanced.

The ease (sometimes it seems to exist) of modernization generates a

large number of relevant proposals, wishes, and sometimes insufficiently

justified orders.

Attempts to implement all these changes are often unbalanced

(uncoordinated) with real needs and opportunities. Under these conditions,

the text of the program and the interrelations between its elements are

confused; the program loses its consistency and accessibility for review;

the difficulties in maintaining program documentation emerge. After all, it

can accelerate the degradation of the ST to complete ineligibility. The ST

upgrade process should be subject to careful control and planning.

2.3 The abstract materiality of the software

By its formal content, any ST is an information object. But the

information contained in the software is very specific. In general,

9

information reflects the object of knowledge. The information contained

in the command (operator) part of the program itself is obtained on the

basis of the study of a certain object of knowledge (such as knowledge of

a controlled object or process) and contains an order for the sequence of

transformation (processing) of data that reflects the state of the cognition,

to the required result. Information (data) is the object of processing in

human-machine systems. The application code is not subject to

processing. It itself contains data processing rules. This is the

fundamental difference between the program as an information object and

information (data) in general.

As part of the computing system, the ST manages the data conversion

process. Naturally, the question arises whether ST can be considered a

material object. The materiality of the ST, its components, the internal

mathematical support of computers or implemented in long-term storage

devices, is not questioned as they are susceptible to organoleptic

perception. The materiality of the ST implemented on magnetic data

carriers is questionable, since these ST carriers are not susceptible to

organoleptic perception. Physical embodiment, the materiality of the

software in this case are somewhat abstract. The absence of concepts of

tolerances and landings. Each element of the program has its size in bytes.

With hardware, program elements are easily moved within me
’
mory, which

greatly facilitates the build process of the programs. Therefore, in

programming there are practically no restrictions on the maximum

tolerances for the required dimensions when designing program elements.

3. Software production life cycle

3.1 The stage of research

Software production is science-intensive, so its life cycle begins with

the stage of research, which is carried out in the framework of research

work on this issue. The main result of the research is the draft Terms of

Reference (TOR) for development. TOR is the document that should be

guided by the team of developers when creating the software. It is

developed by the customer organization and agreed with the developer

organization. In some cases, on behalf of the customer, the project of TOR

is developed by the developer organization.

10

In the development of complicated software complexes on separate

components of the complex one creates private TOR
2
.

The TOR should include the following sections:name and scope; basis

for development; aim and purpose of development, scientific and technical

requirements; economic indicators; phases and stages of development; the

procedure of control and acceptance. It follows that the main attention in

the study should be given to the conditions of use and purpose of SP, the

justification of scientific and technical requirements and economic (socio-

economic) efficiency, which determine the level of quality and

performance characteristics of the product. In TOR for multifunctional ST,

besides the general requirements for ST in general, requirements for the

quality of implementation of each function, as well as the priority

(significance) of functions and information interaction between them,

should be defined. Such differentiation will allow more purposefully

influence the quality of the software tool being developed. A software

quality assurance plan should be attached to the TOR, which defines the

measures to ensure the required quality of the ST being developed, the

sequence of their implementation, the responsibility for carrying it out, the

objects and methods of control, the forms of recording data on quality and

reporting. The value of a thoroughly grounded and compiled TOR cannot

be underestimated. Such underestimation, especially on the part of the

customer and the contractor, leads to a delay in the development and

release of defective products. When implementing complex software

complexes, up to 70% of all emerging problems are directly related to the

imperfections of the requirements in the TOR and only 30% are the result

of errors in the development process.

The imperfection of the TOR for the development of SP is caused not

only by the misunderstanding of the TOR value, but also by such objective

difficulties as novelty of problems, lack of relevant experience, lack or

insufficient reliability of the initial data for the design, etc. In these cases,

the customer and the developer want to have good TOR, but cannot

develop it. In such a situation, preliminary (at the stage of research)

prototype of automated systems, data processing systems and processes

give good results. The essence of the prototype is as follows. The

developer, having received from the customer the most general information

2
 Antipensky V.E., Bilousko V.S., Chujdan T.I.. Computing Machines and Programming: Workshop. Kyiv:

Higher School. Main issue, 1987. 245 p.

11

about the purpose of SP, creates a prototype (simplified preliminary

sample) of SP on the basis of those computing and software tools that he

possesses. In doing so, he makes extensive use of unified software

modules-components and modules of software products-analogs.

At the same time, in the requirements implementation restrictions

when using the hardware interface and the equipment itself should be

specified. When conducting research it is necessary to predict the life cycle

of SP, trying to properly account possible changes in the conditions of use,

tasks performed, the direction of upgrades. Particular attention should be

paid to substantiating the requirements of SP resistance to various

distortions (failure of information sensors, operators' errors, errors in

communication channels and computing devices).

Many guidelines for the development of Software Requirements

Specifications (SRS) include the IEEE Guide to Software Requirements

Specifications standard.

The first section of the standard provides information about the SRS

environment, the characteristics of the «correct» SRS, and aspects

regarding the evolution of the SRS. The characteristics of the «correct»

SRS are of particular interest.

Such characteristics are: uniqueness of interpretations, completeness,

verification, possibility of citation, consistency, modification, clarity

(possibility of tracing), usefulness at the stages of operation and

maintenance.

It is considered that the SRS has the property of uniqueness of

interpretation only when each requirement contained therein permits a

single interpretation. SRS is complete if it has the following properties:

includes all the essential requirements related to the operation, method of

display, restrictions, equipment, attributes and external interfaces;

determines ST responses to various (correct and incorrect) types of input

information in different situations; meets some standard (individual

discrepancies must be specified); all pictures, charts and tables in it are

accompanied by detailed signatures and definitions of all terms and scales

of measurement. The SRS is true if its every claim is true. The SRS is

considered consistent if none of the requirements contained therein are in

conflict with each other. The SRS is modified if it is easy to make any

necessary changes in it without making any contradictions. The SRS has a

track record if the reasons for any requirements are obvious and if it

12

facilitates the process of justifying the requirements arising from the

development or improvement of the documentation. The SRS will be

useful at the operational and maintenance stage if it facilitates the use and

upgrade of the ST at this stage.

The second section of the standard addresses the basic ways of

expressing requirements (using I/O specifications, multiple examples, and

model specification); annotation (explanation and ranking) of

requirements, as well as the most common mistakes in the description of

requirements. It should be noted that none of the methods considered in the

standard is universal. The method of expressing requirements using I/O

specifications is only suitable if possible inputs and expected results are

available for review; the way of expressing using examples – if possible

system situations are available for review; the method of expressing using

model specification imposes restrictions on the construction of software

that contradicts the purpose of the SRS.

The third section of the standard sets out the overall structure of the

SRS. In particular, in the «General Questions» section, it is recommended

to display the product purpose, functions, user characteristic, general

constraints, assumptions, and dependencies (factors that influenced the

choice of the SRS requirements). Obviously, these issues should be

reflected in one way or another in the TOR for the development of the SP.

3.2 Development stage

This stage begins with the development (consistency and approval) of

the TOR and ends with the test of the prototype SP. In the general case, the

stage of development of SP consists of the following stages: the

development of SP, the development of technical proposals, sketchy

design, technical engineering, functional engineering, testing. The results

of the works for each stage respectively are: TOR, technical suggestions,

sketch project, technical project (algorithms for solving problems),

functional project (text of the program), test prototype. Let us consider the

content of the works at these stages.

3.3 Technical Suggestions and Developments

SP should include a justification for the feasibility of the proposed

variant of the structure selected on the basis of the analysis of the TOR and

the various options for possible solutions.

13

The technical proposals list all the fundamental issues to be addressed

in the engineering process with a preliminary assessment of their

feasibility. For example, technical proposals for the development of ACS

software should reflect the following issues: the degree of system

automation; the composition of the general algorithm; previous structure

and scope of the algorithm; determination of the structure and scheme of

information of flows between computers, information sources and

managed objects; preliminary estimation of the temporal diagram of data

exchange between the computer and the objects of the system being

automated; development of quality assessment criteria and methodological

bases for their verification (control) during development; identification of

problems that require preliminary modeling; determining the scope,

methods and tools of modeling; preliminary selection and evaluation of

methods for solving major problems; preliminary elaboration of principles

and methods of ensuring the stability and reliability of management;

working out the issues of development organization, as well as providing

developers with general-purpose hardware and software.

The technical suggestions are the starting point for the development of

the sketch project. In justified cases, both of these stages can be combined.

The sketchy design should include fundamental solutions that give a

general idea of the structure of the SP, the designation of its components,

the organization of relationships between these parts, data exchange and

dynamic distribution of computer resources, as well as programming

technologies. As a result of sketchy design, a preliminary estimate of the

computer system (CS) resources required for the development and

operation of SP is given. While developing of sketchy design, the problem

of choosing the optimal structure to be released, the manufacturability of

design, debugging and testing programs and the construction of a common

algorithm for solving the problem are solved.

If necessary, one develops structural diagrams of the general

algorithm at the level of its components, including databases; pre-connect

the components of SP on the time of execution, use of external computers

and information; sets the acceptable range of characteristics of the input

and output values for each component; make private TOR for the

development of the main components; simulates the operation of kernel

components in order to test the basic principles of data processing and

control; establishes basic principles of quality management of SP; identify

14

the critical ways and paths of the SP calculation; solves organizational

issues of work at the stage of technical design. At the stage of the sketch

project all the fundamental issues of technology creation of software

complex should be developed. The sketchy design is approved by the

customer organization. It serves as a guidance document for the

development of a technical project. In justified cases, it is decided to carry

out the task of sketch design in the framework of a technical project. The

reasons for this may be the experience of developing similar products or

their simplicity.

The SP technical project is a set of design documents that give a

complete picture of the algorithmic and information structure of the

product under development and contain all the source data for

programming. The language used to describe the algorithms for solving

problems in a technical project depends on the set programming

technology. In the traditional approach, the so-called linguistic-formula

descriptions and graphical schemes are used.

When describing algorithms, the developer uses any terms, concepts,

and designations that are understood by him (but not necessarily

understood by other developers). Mutual understanding between

developers of complex software systems is difficult, which leads to

unproductive spending of time and other resources. Therefore, in modern

programming technologies, much attention is paid to the strict regulation

of both the linguistic means of description and the design procedures

themselves. After the design process is completed, the functional design

stage begins. Functional design (FD) consists of three main stages: the

development of the program, the development of program documentation

and the testing of the SP prototype. The main content of the works on the

stage of FD of program complexes is programming and debugging of

components of the program complex, autonomous component testing,

assembling of the program complex, development of program documents,

development (alignment and approval) of the program and testing methods,

conducting of all types of tests, adjustment of programs and program

documents according to the results.

Production of SP. Production is a set of works to ensure the

production of the required amount of SP in a set period; it includes the

following types of work: studying the demand for this type of SP;

production planning and production management; organization of

15

technological preparation and maintenance of production, logistics; storage

and delivery. The stage of production of products for one-time orders has a

hidden (implicit) character. It lies in making the required number of copies

of the SP, including the program documentation.

Thus, in a single production, the SP developer combines the functions

of the SP manufacturer and supplier.

3.4 Maintenance of SP

This stage consists of collecting information about the quality of SP

during operation, modifying the product and notifying users of changes

made. Maintenance functions are usually performed by the SP vendor.

Practice shows that the initial stage of SP operation the developer's

involvement in SP maintenance is very useful, and sometimes necessary.

As the user and the supplier master the SP, this need is gradually

eliminated. The maintenance stage is conditioned by the need to perform

such tasks as the inclusion of new features in the SP, change of functions,

modification and replacement of equipment in data processing systems,

error detection and correction. The stages of operation and maintenance

proceed in time paralleled. At the same time, the production of new SP can

be carried out.

The reasons for the end of the SP life cycle may be different: no need

for further use; replacement by new, more advanced SP; incompatibility

with new equipment; dissatisfaction with the results of usage, etc. Due to

the mentioned specificity of software production, the problems of

evaluating its non-compliance with its purpose and utilization differ

significantly from the corresponding problems of evaluating technical

production. These differences are basically the following:

1. The difficulty of identifying non-compliant products as a result of

uncontrolled upgrading of product units by users. In these circumstances,

individual non-compliant units of products can be brought to compliance

by users and, vice versa, compliant units to non-compliant ones. In general,

regarding the appearance of software production, the assessment of its

conformity becomes ambiguous;

2. The complexity of identifying inappropriate types of products

causes the complexity of their isolation, i.e. separation from products that

meet the requirements;

16

3. Non-compliant software products are generally not suitable for any

use without further refinement and processing, so they should not be

disposed (used for any other purpose). Their use should be completely

excluded.

Separation and clear delineation of the phases and stages of the SP

lifecycle, defining the necessary relations between the stages contribute to

a clearer organization of certain types of work – ways to create

appropriate technologies and technological tools, including methods and

means of quality control both within and after the stage. When forming

stages, it is very important to define clear links between them, to identify

control points and decision making, which should facilitate a more

accurate transition of information from one stage to another and

ultimately reduce the development timeframe and improve the quality of

the developed SP. The SP life cycle is not strictly consistent. It is

iterative. The terms of reference, the sketch and the technical projects of

the SP after their approval shall not remain unchanged. In the

development of sufficiently complex SP it is impossible to achieve the

invariability of the life cycle in practice. Sometimes, some design

decisions made at previous stages of the life cycle have to be modified or

refined and revisited. The reasons for this are different. Basically, they

exist because the customer at an early stage of development does not

quite clearly imagine and formulate system requirements, and the

developer does not always immediately find the best solutions.

4. Software Tools Classification

The penetration of computer technology in all spheres of human

activity, the desire to solve with the help of this technique a set of

completely different problems extremely diversify software products by

purpose, application, nature of production and maintenance, level of

complexity, etc. Each type of ST has its characteristics that can

significantly affect the methods of their development and quality

management. Ignoring these features leads to problems of interaction,

different kinds of misunderstandings and contradictions. Requirements for

quality indicators depend on the type of ST: high requirements for one or

another indicator for one ST may not be necessary for another
3
.

3
 Ivashchenko N. N. Automatic regulation. Theory and elements of systems. Textbook for universities.

Ed. 4th, rework. and ext. Moscow: Mechanical Engineering, 1978. 236 p.

17

Depending on the purpose, five subclasses of software are identified:

system ST, applications for scientific research, applications for designing,

applications for control of technical devices and technological processes,

applications for the solution of economic tasks.

The following breakdown into types of software can be considered

universally accepted: application, system, and tool software. We give the

following informal definition of these types. For a computer to do your job,

you need to create application software. For the computer to cope

effectively with many applications and to be well-adapted to the

environment, you need to create system software. To make it easier to

develop software, you need to create and use tool software. Application ST

are developed by experts who are well versed in the processes they

automate. System ST are usually more complex than application and tool

ones. They are developed by experts who know all the intricacies of

programming and operation of computer systems.

Examples of system software are operating systems, database

management systems, and the like. Instrumental ST are used at the stages

of program development and maintenance, including debugging and

testing. Typical examples of software tools are compilers, text editors, data

archivers, change analyzers, and the like. Instrumental ST are developed

by experts who are knowledgeable in programming technology as a whole

or in specific aspects (transmission, editing, debugging, testing, etc.).

All considered types of ST are classified by one attribute – purpose. But

when planning development, development management, quality management

of software products, it is necessary to consider not only the purpose of the

software, but also their other characteristic features. Such features include, for

example, the number of users. Of course, the ST that a specialist has

developed for himself and which he will use for himself, do not have the

requirements that apply to ST developed for thousands of users.

In the first case, the requirements for the ST are determined by the

developer at his discretion, and in the second they must be determined by

the customer, taking into account the possibility of using the ST in a wide

range of conditions. Even when developing software for your own use, the

frequency of use (one-time, daily, weekly, annually, etc.) is essential.

Problems that are of great importance for specific (consisting of

components) ST may be irrelevant to unspecified ST (that is, the

components themselves). The requirements for real-time ST differ

18

significantly from the requirements for ST that implement, for example,

basic computational tasks. The problem of comprehensive detailed

classification of software is extremely complex and has not yet been

resolved. Let us consider some classification methods that are important

for understanding software quality management issues. By the nature of

the manufacture one should distinguish between single and mass

production. The developer himself performs the functions of the

manufacturer and the supplier. He provides training for the customer

support staff, assists the user with the commissioning of the ST into

industrial operation, accompanies the ST.

The single nature of the manufacturing does not preclude the re-

production of ST for implementation at another enterprise (re-

introduction). In this case, the developer usually has to refine the software,

taking into account the specifics of use in the new conditions. Depending

on the scope of the revision, it may happen that the revised ST should be

considered as new ST. The batch type is characterized by periodic

production of batches of homogeneous software that is in high demand.

By nature of supply and use, software may be characterized by the

autonomy of supply and use, or the supply and use of PCS or an

automated technological complex (ATC). A distinctive feature of

autonomous ST is that it can be developed, manufactured, tested and

delivered (sold) autonomously An example of autonomous ST can be

almost any ST related to system ST. Distinctive features of the

ST supplied as part of PCS or ATC are the joint development,

manufacture and testing of ST and system being automated in which it is

delivered to the customer (user). Examples of such systems are the PCS.

In terms of the number of functions performed, all specified SP except the

software modules are multifunctional. For example, in the Logistics

Supply Subsystem (LSS) of ACS considered as SP, the following

functions (tasks) can be implemented: determining the need for materials,

determining the need for equipment, determining the need for spare parts,

developing a schedule for the supply of units, etc. Each of these features,

with the exception of the latter, has a specific purpose and therefore has

autonomy of use, i.e can be used independently. The LSS itself can be

considered as a multi-purpose system, although it has a general (global)

purpose. But multifunctional SP can be one and the same. These

SP include, for example, those SP that bring two managed objects,

19

moving in space, together. The goal here is one (approximation for a

given distance), but for approximation it is necessary to solve the

following problems: determine the position of each controlled object in

space at time (t+1); by extrapolation calculate the position of objects at

time (t+1); calculate the optimal approximation trajectories for each

object at time (t+1); to calculate the control actions corresponding to

these trajectories. It is clear that the successful solution of the general

convergence problem is possible with the correct solution of all partial

problems. Depending on the nature of the implementation process, the

following types of ST are distinguished: implemented as part of the

developed ACS; implemented in existing PSC (АТК); autonomous

implemented and self-relevant ones; software components that are built

into the software system. To determine the level of unification, ST and

their components belong to one of the following types: standard;

unified; original.

To standard one includes components of a specific ST that meet the

requirements of state, industry or national standards, which are referenced

in the design specifications. Unified ST include components of a specific

ST that can be used to solve the same problems in several software tools.

Unified ST are purchased, borrowed ST, as well as developed according to

the standards of given enterprise and used in various ST. Components of a

specific ST that are not made in the organization but purchased are called

acquired. Borrowed items include components of a specific ST that were

previously designed as original to other ST, used in given ST, and which

have developed program documentation.

Original ST include components of a specific ST developed for the

first time for this ST and used only in this particular ST. In practice,

original ST are often refined (unified) and thus transformed into unified

ST. ST is a complex product. The average software package contains

40–50 thousand source text operators.

Taking into account the existing semantic relationship of operators,

which needs to be known and recorded, the average ST is compared to the

locomotive, which has about 25 thousand details. Many materials basing

on ST quality and programming technology are difficult to use because it is

unclear to which class the ST they belong, and unreasonable

generalizations often make it difficult to create effective methods and tools

for evaluating ST quality.

20

5. Quality features of the ST

While identifying the terms «Software tool» and «program»,

sometimes the measure of its relevance to the original algorithm is

understood under the quality of ST. However, the following two mistakes

are made: the concepts of «program» and «software tool» are not identical;

errors in the original algorithm are no less likely than programming

(encoding) errors. Errors may also be contained in the program

documentation. Therefore, the full compliance of the program text with the

algorithm text cannot guarantee the suitability of the ST for its intended

purpose. The compliance of the ST algorithm is characterized not by the

quality of the ST as a product, but the quality of one of the main

technological processes in the creation of the ST- the quality of

programming. It is more common to define the quality of the ST as a

measure of compliance of the real characteristics of the ST with the

characteristics given in the TOR. Such interpretation of the ST quality is

acceptable only if the TOR has fully and uniquely defined all the consumer

properties that the developed ST must have. But this condition is not yet

feasible due to the lack of a common nomenclature of quality indicators,

methods of setting scientific and technical requirements for ST and lack of

experience in solving these problems.

Software quality one should understand as a set of ST features that

determine their suitability to meet specific needs according to their

intended purpose. It is based on three key concepts: ST feature, need,

ability to meet needs. Let us consider these concepts
4
.

The existence of ST as a product of labor is an objective reality. As a

product, ST has many attributes – objective features that determine its

difference or similarity with other objects and are manifested in its creation

and operation. These attributes may be common to a given product class,

and specific to a particular type of software or specific ST. According to

the impact on the ST quality one should distinguish between essential

attributes and insignificant. Only the essential attributes are of interest. But

the measure of the impact of these attributes on the quality of specific ST is

also different. These differences need to be taken into account. ST

attributes are quantitatively and qualitatively characterized by quality

indicators.

4
 Miroshnik I.V. Automatic control theory. Linear systems. St. Petersburg: Peter, 2005. 336 p.: pic. (Training

Series).

21

The following main aspects of ST needs can be distinguished:

scientific, technical, economic social. The need for ST is established at the

beginning of its life cycle, usually at the stage of research (marketing). In

doing so, the following basic questions should be answered: field of usage;

solved tasks; expected effect from use (scientific, economic, social). In the

narrower sense, the need for accuracy of data conversion results, trouble-

free operation, ease of maintenance, ease of exploration, and the like are

established. In order to meet the needs, ST as a product of labor must

possess certain useful (consumer) attributes that collectively determine the

public usefulness of ST. Usually, each product has several useful features,

each of them satisfies one or more needs. ST quality is both a technical and

a socio-economic category. On the one hand, it is closely linked to features

that satisfy certain needs. But the attributes of the subject are not economic

categories, so a technical approach is promising from these positions on the

ST quality.

On the other hand, the ST quality is a concrete expression of the public

consumption value, so an economic approach should be applied to it.

Two characteristic features should be noted in the formation of

ST quality.

1. The quality of any industrial product on batch or mass production

depends largely on the manufacturing process. It cannot exceed the

technical level achieved in design. But it may be well below this level due

to non-compliance with manufacturing technology requirements.

Production of SP is often a simple technological operation of making a

copy from the sample-standard by rewriting from one data carrier to

another. However, no qualitative changes occur. The identity of the records

is easily controlled. Therefore, it is necessary to control and manage the ST

quality, not mainly while its production, but in the development, that is,

when the ST quality is formed.

2. SP during operation and maintenance, as a rule, are constantly

changing, modernized. Therefore, the maintenance process itself can be

called, for example, an extended development process. But any change in

the structure of the software production leads to a certain qualitative

change, so the quality control and management of the ST must occur not

only during their development, but also at the stage of operation

(maintenance).

22

Factors affecting the quality of the ST can be constant and variable,

direct, indirect and inverse. Quality factors should not be confused with

quality indicators. Quality factors characterize the conditions and elements

that influence the formation of quality.

Quality indicators, more precisely, denotation of quality indicators,

directly characterize the quality itself. Any management is a purposeful

action on a managed object to achieve specific, predetermined results.

Quality, as a set of consumer attributes of products and services, is a

specific management object and has significant features. The product

quality management itself differs from the management of the product

creation process in that not the organization of production, but the

regulation of the properties of the products produced is the object of

management here. These attributes are formed at the stages of the life cycle

under the influence of various conditions and factors. Quality management

(QM) is the process of acting on those conditions, factors and socio-

economic relationships that influence the formation and change of

consumer attributes of products.

To accomplish this process, a system of governance is created – a set

of interacting bodies, tools and methods of management. Software quality

management has organizational, methodological and socio-economic

aspects. The organizational and methodological side of SQM is expressed

in the development and application of advanced programming

technologies, consolidation of scientific and technical achievements in the

relevant standards and methodological documents, equipping the

developers with advanced technology, etc.

The socio-economic side of SQM is expressed in the creation of such

a system of socio-economic relations between all participants in

the development, which will ensure the creation and production of PP of

the required and guaranteed quality. This system shall cover: a) the

relationship of the administration of the developer organization with

the customer organizations; b) the relationship of the administration of the

organization with the staff of its units; c) the relationship between the

development units; d) the relationship of the managers of all units with its

individual executors.

At the same time, personal interest and responsibility of each manager
and contractor for the quality of the software under development should be

ensured at all levels. Users are most interested in the quality of the

23

software, but they are little interested in the ways in which the developer
achieves a certain level of ST quality. It is only important that this level

meets the actual needs. Actions aimed at assuring the user (customer) with
the confidence in the proper level of purchased products constitute the

External Quality Assurance. Such actions include, in particular, marketing,
drafting and mutual harmonization of specifications of requirements,

testing and maintenance of software. Elements of internal and external
quality assurance can generally overlap. Having a specification of

requirements contributes, for example, to confidence in achieving the
required level of quality both by the developer and the customer.

For a better understanding of the nature of software quality

management in the process of its development, let us consider the
conceptual model of management.

6. Conceptual model of software quality management

In general, management is an integral part of the functioning of
systems of organization of various nature: biological, technical, socio-

economic. In each of them there are objects that subordinate to others, and
therefore, and control them, forcing them to move in a certain direction,

perform the specified actions, organize their activities as a whole
5
.

Management of the project (object-system), its components and

processes, with the purpose of increasing the efficiency of the systems
functioning occurs at the stage of system design, creation, formation,

development, formation, functioning of the system. The effectiveness of

the management is determined by the adequacy of the control actions to the
object of the management.With regard to computer ST, the quality

management scheme is as follows. The object of management (action) is
the quality of the object of labor. The subject of labor, depending on the

stage of development, respectively, is the TOR, technical design,
functional design (program text), ST prototype. ST quality is mainly

formed at these stages, so quality management should start from the very
beginning of the software development process and be continuously

implemented throughout the process. In general, management actions can
affect not only object labor directly, but also labor and technological

processes, if they do not contribute to the management goal, as well as
factors affecting ST quality.

5
 Popovich M.G., Kovalchuk M.G. Automatic control theory: a textbook. 2nd edition, revised. and suppl.

Kyiv: Libid, 2007. 656 p.

24

Programming labor tools include compilers, downloaders, program

builders, documenters, automated debuggers, test data generators,

automated programmer jobs, including computers, etc. Technological

processes consist of certain technological operations for ST creation,

performed by means of labor under the control of programmers (operators)

or directly by programmers. In any case, the role of the person in the

technological process, its impact on the quality of the product is crucial.

The purpose of management is to provide the necessary level of ST

quality, which guarantees the expected socio-economic effect of the use of

this ST for its intended purpose. The main role in software quality

management is performed by software development, operation and

maintenance managers (depending on the life cycle stage), direct

developers or ST maintenance specialists, together with management tools.

The category of specialists involved in software quality management

will be referred to as developers. Developers have an effect on the state of

the ST either directly or through appropriate technological means (TM)

and technological processes (TP). These actions can be both positive

(coinciding with the purpose of management) and negative (not predictable

perturbations). Negative actions result in program errors. Sensors of

information about the status of the managed process and the quality of the

software depending on the stage of the software life cycle are either the

developers themselves (at the design and debugging stage), or experts of

the quality control groups (at the design stage), or testers (at the test

stages), or users (at stage of operation). Naturally, certain categories

(concepts) should be used to describe quality. First of all, it is necessary to

determine the consumer properties of the ST being developed, that is, those

attributes that the software must possess to be able to be used effectively

for its intended purpose. Each attribute or group of attributes is

quantitatively characterized by quality indicators. In order to manage

quality, it is necessary to know the acceptable rates of the quality

indicators as well as the criteria for quality assessment at each stage of the

ST life cycle. This information should be contained in the terms of

reference and specifications for specific ST or groups of homogeneous ST.

The actual rates of the Quality Score can only be set when the

ST development is completed. In the process of development, you can only

make predictions about the quality of the ST, controlling the presence or

absence of certain features in the project documentation and programs

25

when debugging. Monitoring the current state of the quality of software

being developed usually relies on special quality quality management

groups (QMG) that are independent from the developers. In order for the

QMG to perform its functions successfully, it must have a clear

understanding of the quality of the controlled ST analyzed at different

stages of the life cycle, of the methods for determining quality indicators

and quality criteria.

The conclusion about the current state of quality of the controlled

software is made by the ST QMG on the basis of examination of the

project documentation (if the program has not yet been written or has

not acquired the performance capability), or by analyzing the correctness

of the initial data (results) by comparing the actual data with the

expected ones (in the working program). In the first case, it should have

a methodology for conducting the examination, and in the second case

there should be clear signs of identification of correct (incorrect) results.

All ST quality information should be submitted to developers or

maintenance professionals who, basing on the analysis of the

information, make decisions about how to influence the management

object. Primary information about the quality of software in the

development stages is often symptomatic. Only external signs of design

errors, deviations of the data processing process (ST operation) from

normal mode, or lack of the required attribute in the ST are recorded. In

order to make a decision on the impact on a management object in order

to improve its quality, it is necessary to establish the reason for deviation

from the required quality level and the way to eliminate this cause.

When designing an impact, developers should consider the requirements

and capabilities of the programming technology used, the requirements

for ST from customers (users), the structure of the ST, the available

resources, as well as the relationship between the signs of errors, their

causes and ways to eliminate them.

The essence of managers' influence is to change the structure of the

program and program documentation (error correction, introduction of new

functions and procedures, improvement of methods of solving problems,

etc.) in the direction of its optimization according to the criteria specified

in the TOR. If necessary, labor tools and technological processes change.

Thus, ST quality management tasks are a variety of optimization tasks and

have the following components: defining the goal of quality management

26

(QM); knowledge of ST quality assessment criteria; knowledge of the

current position in relation to the purpose; knowledge of the microstructure

of ST and factors that affect the quality of ST; knowledge of limiting

conditions in terms of execution and resources; determining the best ways

to reach your goal. Under the products quality management system (QMS)

one understands a set of organizational, scientific, technical and economic

interrelated measures to establish, provide and maintain the required level

of ST quality in its development, production and operation. The ST QM

system is multilevel.

Previously, a quality management scheme for a single ST was

considered. But organizations that specialize in the development of

complex software solutions can simultaneously develop or prepare for the

development several ST. Taken together, these ST constitute software

produced by this organization. The governing bodies in this scheme form

the administrative and technological units of the organization. Direct

management objects are not software, but teams, software developers,

technological lines (TL) development and technological processes (TP).

The ultimate goal of management is the required quality level of software.

Information on the state of the software development process goes to the

Software Quality Control Service (SQCS) along with the QCG of the

ST being developed. To make decision about management actions it is

necessary to have an annual and perspective plans of software development

(thematic plan of research and development works); a list of requirements

for the quality of software by potential users; data on the current state of

quality of the developed software; data on available labor, material and

time resources; a list of organizational and economic mechanisms for

regulating the activities (OEMRA) of developers, including the rationing

of labor and resource costs, the promotion of high productivity and quality

of software; methods and means of technological preparation of

development (TPD), including formation of technological lines and

technological processes; data on the availability and characteristics of

technological programming modules, etc.

Having this data at its disposal, the governing body influences the

quality of the software created in the organization by beforehand and

purposeful technological preparation of the development of specific ST,

setting and correction of the ST QM goals for separate periods of time

depending basing the state of the developed ST, regulating the team of

27

developers, stimulating the creation of high quality software. It is

important to emphasize the special role of the latter factor, since an

individual in the system of SQM certainly plays a decisive role.

The quality of software is formed at all stages of its creation,

therefore, operational quality control is necessary for the operational

impact on quality. During the operation of the SQM system, there is a need

to collect, store and process large amounts of information. Naturally, the

SQM system should be as automated as possible. Like any automated

control system, it consists of the following elements: organizational,

methodological, technical, software and information providing. The model

under consideration contains the basic elements of the SQM system at the

level of the developer organization and the relationship between them.

On its basis, by further detailing, it is possible to determine the

composition of the necessary regulatory, methodological, information and

software tools for supporting the SQM systems, as well as the tasks and

overall structure of the quality system of the developer organization.

Three quality objectives, that the organization faces, have been

identified. These tasks can be interpreted as follows: the organization must

achieve and, in the case of support, maintain the quality of the software at a

level that ensures continuous satisfaction of the user set or offered

requirements; the organization must assure its management that the

required quality is achieved and maintained at the required level; the

organization should provide the user with the assurance that the required

quality of the delivered software is achieved or will be achieved.

If necessary, the user may require appropriate evidence to be provided.

Solving these tasks requires the introduction and definition of key terms

and definitions. Quality policy is the main directions, goals and objectives

of a quality organization, formally formulated by its senior management.

Overall quality management is an aspect of the overall management

function that defines and implements quality policy. General management

includes quality planning, resource allocation, evaluation and other

systematic quality actions.

A quality system is a set of organizational structure, responsibilities,

procedures, processes and resources that ensure the overall quality

management. As a condition of the contract, the customer may require

clear evidence of the use of certain elements of the system. Methods and

activities of an operational nature are used to meet the quality

28

requirements. In order to avoid confusion, it is advisable to add specific

references to narrower, specific concepts, such as «quality management in

the design process». Quality assurance is a set of planned and systematic

activities needed to create confidence that a product meets certain quality

requirements. The quality of software is formed at all stages and stages of

its life cycle. Therefore, the quality system functions simultaneously with

all other activities affecting quality. The quality loop of software has some

differences from the quality loop of other industrial products. These

differences are mainly due to the decisive role of the software prototype in

shaping the quality of the development stages rather than the production

stage, as is the case in industry.

7. Factors affecting the quality of software

The software quality depends on many factors. Let us consider the

main of them.The responsibility of the management in quality assurance is

determined by the presence in the organization of the quality system of the

following elements: documented policy in the field of quality, goals and

obligations; responsibility and interaction of the staff which affects quality;

means of inspection and specially trained personnel; representative of

management bearing personal responsibility for meeting product quality

requirements; periodic analysis of the effectiveness of the quality system

which runs in the organization, the quality of regulatory documents of the

software being developed, in the part of optimality and completeness of the

claims set in it.

Preparation of Terms of Reference (TOR) for ST development and

defining the main list of requirements therein is the first stage of ST

design. TOR must be composed both on software, supplies (software

complexes), which are standalone objects, and on program components.

When developing complex ST that have no analogues at the time of

design, direct assembly of the TOR is usually preceded by research work,

the purpose of which is to determine the purpose of the ST, areas and

features of its application, as well as to analyze the requirements of

potential users.

Efficiency of programming technologies. Technological

preparation of software development. The process of creating a PP is

costly and time consuming. Programming technology, management of the

software creation process should provide the maximum beneficial effect at

29

certain costs. Naturally, such an effect can only be achieved by using the

most advanced methods and tools to develop software. The technological

preparation of software development should be complete and timely.

Regularity and effectiveness of quality control of development.

The process of creating software should be under constant and careful

control. The technology for detecting and eliminating errors, as well as

temporary material resources for the implementation of this technology,

should be installed in advance. Practice shows that for the production of

high quality products, it is necessary to plan up to 60% of labor costs in

advance to ensure proper control, debugging and testing of programs, to

establish control procedures in advance, to create software and technical

means for debugging and testing. Regular use of inspection methods

prevents up to 60% errors in advance.

Developer Qualification. The quality of the created ST is determined

by the following properties of developers: the level of knowledge

(knowledge of problems, programming languages and computers,

engineering techniques, data processing principles), the availability of

practical skills (experience in creating similar programs and software

systems);) level of initiative (understanding of the tasks being solved and

their relationships, efficiency of working time use, the desire to bring each

task to a complete completion, maintaining working contacts with the co-

workers); level of responsibility (focus on the work being performed,

constant desire for self-improvement, healthy self-esteem).

Content and quality of software (instrumental) tools used in

development. The development of sophisticated software is associated

with the need to use various computer hardware and system software.

These tools serve as a kind of technological equipment for programmers.

Naturally, the quality of ST created depends on the reliability of this

equipment and the stability of technological operations. Also timely and

fully meeting the developers' need for these tools is important.

Stimulating the creation of high quality software. Despite

significant achievements in the field of programming industrialization,

the nature of programmers' work is also individual and largely dependent

on the personal abilities of the performers. The performance and quality

of programmers working under the same conditions can vary several

times. Therefore, an effective system of stimulating the creation of high

quality software must be introduced when creating programs, which

30

involves the remuneration programmers depending on the quantity and

quality of results. Development managers should always remember that,

with stimulation for quality work, developers will find effective ways to

achieve a set goal. Conversely, with the absence of stimulation, many

useful start-ups will be unfulfilled. This is one of the manifestations of the

human factor.

Formation and adherence to uniform principles of software

development. Based on the results of the study and analysis of the factors

affecting the quality of the software, taking into account the specificity and

experience of creating these products in each development organization,

the basic principles of software development should be formulated:

development management with the help of a project plan broken down into

stages, quality control throughout the development period, from the early

stages, ensuring strict control of compliance of the features of the original

software product with the requirements set out in the specifications; use of

advanced methods and programming tools; supporting a high sense of

responsibility for the quality of the programs being developed in each

project partner; use of the minimum number of highly qualified employees;

continuous improvement of methods, means and software development

organization. Another quality system is based on the following principle:

all stages of development are clearly distinguish At each stage, the outputs

and quantitative and qualitative criteria for their evaluation are determined.

Quality processes and output are standardized according to quality.

Outputs are monitored according to previously established criteria; special

attention is paid to the organization and quality control of the work of

autonomously working groups of programmers. Various methods of

software quality checking are considered, which are considered not an

optional occupation, but one of the most important elements of design
6
.

Marketing. The quality of a particular ST depends on the

effectiveness of the system of market research measures and the consumer

features of that ST (marketing effectiveness) throughout its life cycle under

different conditions of application. Marketing units should work closely

with the software support units, as the support team usually receives

information not only about ST errors found during their operation, but also

suggestions on ways to improve the software.

6
 Tsypkin Ya.Z. Fundamentals of automatic systems. Main Editing Physical and Mathematical Literature

Publishing "Science", Moscow, 1977, 56 p.

31

The clarity of the results of the quality control. For each software at

the earliest stages of development quite simple and clear criteria (signs) of

high quality and lack of design should be set. Information on the progress

of software development and the results of its monitoring should be clear

and publicly available. Software developers should always be prepared not

only to guarantee high quality ST, but also to demonstrate it convincingly.

Existence of a comprehensive quality assurance plan for the

software developed. The plan includes a set of measures to ensure and

maintain the required level of quality of software, distributed by

contractors, in time and by material resources. It is based on the

specification of the requirements for the software, the knowledge of the

quality factors, the specifics of the ST being developed, and the necessary

resources for implementation. The plan is developed at the same time with

the development of the TOR as an appendix to it. The listed quality factors

(first order factors) are common to all types of software products and to all

the attributes of these products. In addition to these factors, it is possible to

distinguish into separate groups such factors (second-order factors), which

most significantly influence the formation of a specific attribute or group

of software attributes. The specific attribute of the ST in this case can be

considered as a consequence of the actions of the selected factors.

8. Errors in software and ways to prevent them

Errors in the programs of automated process control systems lead to

the violation of technological regimes and the production of defective

products. Errors in automated organizational management systems lead to

irrational use of material resources and labor costs. In some cases, bugs in

the programs can have catastrophic consequences. In addition, bugs in the

software, poor quality, or lack of quality assurance for individual software

are reasons for poor implementation rates. With the implementation of

software containing gross errors, in tens or even hundreds of enterprises,

the negative effect will increase an appropriate number of times. This

effect is exacerbated by the need to involve in the search and eliminate the

mistakes of many of the most qualified professionals who are doing the job

with the detriment of their kernel business. It is an admitted pattern that the

earlier a project error is detected, the easier it is to correct it. The

dependence of the relative cost of bug fixing on the time of its detection is

shown in table 1.

32

Table 1

The dependence of the relative cost of correcting

the error on the time of detection
Stage of the life cycle The relative cost of bug fixing

Development of the TOR 0,1…0,2

Sketch design 0,3

Technical engineering 0,5

Programming 1,0

Combined testing 2,0

Preliminary tests 3,0

Experimental operation 4,0

Acceptance Tests 5,0

Operation 20…30

Therefore, ST bug prevention measures in the early stages of design

should take a special place in software quality management systems in

development organizations (enterprises). In order to develop effective

measures to prevent software bugs, it is first of all necessary to establish

their nature, causes and symptoms. To understand the nature of bugs, it is

needed to consider the following characteristics: nature of the external

manifestation, physical essence, stages of introduction, nature of bugs,

their types and classification. Any program, after all, is a set of

instructions, the execution of which provides the conversion of the varied

initial data to the desired result. An error (a set of errors) in the program

leads to an incorrect result. This is the essence of the external

manifestation of bugs in the program. The physical essence of the software

product is a record of the program on a data carrier. Therefore, the physical

expression of the error is the incorrect entry of any element of the program

(commands, macros, elementary construction, operator, data set, etc.). The

error correction process in this case is a replacement the incorrect entry

with the correct one. Thus, an error in the software product from the end-

user perspective is the entry of a program element on a data carrier or in

the software documentation, which results in the wrong result being

sought. Note that this definition allows the correct result to be obtained in

the presence of errors in the program. This is possible indeed in cases

where program elements containing bugs are not used in specific

implementation conditions. The elements of the program can be not only

prescriptions for the order of conversion of the initial data into the desired

result, but also records of quantities, descriptions of variables, etc.

33

Therefore, the definition indicates the use, not execution of the program

element. Bugs in ST can be made at different stages and phases of their life

cycle. Accordingly, there are errors in the statement of the task, in

designing, in programming and in recording on the data carrier.

Errors in formulating a ST development task.The formulating a

ST development task is formulated in the form of terms of reference and

technical conditions. These documents define the consumer attributes of

the ST, which must take into account all requirements of potential users.

In turn, user requirements should be based on knowledge of the purpose

and conditions of use of the ST. Thus, to understand the tasks of

development means, first of all, to set the aim and purpose of

development, conditions of application, expected ranges of input data

and results. Misunderstanding of the problem being solved, inaccurate

knowledge of the initial data, conditions of operation and expected

results lead to errors in the formulation of the task, resource planning,

which may eventually make all further work of the designers

unnecessary. The requirements for the quality (specifications of quality)

of the ST should be an integral part of the general technical

requirements. Moreover, they must be comprehensive and well-

grounded. Otherwise, the ST will be disabled. There are situations in

which the TOR for development did not have the requirements for the

stability of ST ACS in the presence of distortive effects. Such ST had to

be radically modified immediately after experimental operation. If the

ST has the ability to be modified, then the problem of improving the

stability of the software will be solved. Otherwise, the design process

must be started from the beginning.

Design errors. Design errors include: errors in the choice of

methods for solving problems and parameters; inconsistency in the use

of data in time (in real time systems); neglect of correlation between

individual components, etc. All these errors can be qualified as the

inadequacy of mathematical models to real processes occurring in the

system, to researched processes. Design errors are sometimes referred to

as algorithmic errors because they are formally contained in problem

solving algorithms. All the errors that are not detected at the stage of

algorithm development are subsequently transformed into programming

errors.

34

Programming errors. Modern programming languages and

translators contain some set of tools for debugging and checking programs.

However, these tools are not enough to guarantee error-free programming.

Therefore, programming (encoding) is also a source of ST errors.

Software errors include errors in the choice of numerical methods of

implementation of algorithms for solving problems, schemes and

calculations; interpretation of algorithmic constructions (semantic errors);

coding (syntax errors); in conjunction of program modules and programs;

in the implementation of logical conditions; in the data description; in the

documentation.

Errors while recording on data carrier. Compiled program text must

be recorded to a specific data carrier before entering the computer. This work

is mostly done manually and can cause new errors. The percentages of these

errors are small because they are easily controlled and eliminated. ST errors

can also be introduced during operation and maintenance. Such errors are the

result of unqualified correction of predicted errors, unqualified ST

modification, negligent treatment of data carriers, etc.

The classification of errors considered is a priori. It is based on the

types of ST creation and operation work (at the stages of the ST life

cycle). This classification is useful for forecasting errors at different

stages, assessing the quality of work of teams specializing in the

performance of particular types of work, and making the necessary

decisions. For example, data input/output errors are symptomatic

because they have external characteristics (symptoms), which, however,

do not allow to explicitly identify the causes of these errors.

Computational errors usually directly indicate the true cause (error in

sign, index, etc.), but have no characteristic features.

Table 2 shows the distribution of errors by ordering the signs of

causes by frequency of occurrence. An attempt to establish the

interdependence of causes and signs of manifestation of errors was

made. The general pattern was not established, but it was possible to

identify the signs of errors that are most common in these projects.

These include: -bit grid overflow – 30.4%; incorrect management

transfer – 16.4%; incompatibility of programs with databases – 14.5%;

incompatibility of programs by the types of data being forwarded – 9%;

failure to perform additional functions by the program – 4,9%,

incompatibility of programs – 7%.

35

Table 2

Error distribution by frequency of occurrence

Type of an error
Error distribution,

% from total
quantity

Type of an error
Error distribution,

% from total
quantity

Calculations 7 Of interface 10

Logical 22
Database
initialization

6

I/O 10
In the
documentation

8

Data manipulation 15 Other 22

Collecting, processing error data, classifying errors, establishing their

causes and probabilities make it possible to do purposeful work on error

prevention and thus affect the quality of ST.

REFERENCES

1. Antipensky V.E., Bilousko V.S., Chujdan T.I. Computing Machines

and Programming: Workshop. Kyiv: Higher School. Main issue, 1987. 245 p.

2. Ivashchenko N.N. Automatic regulation. Theory and elements of

systems. Textbook for universities. Ed. 4th, rework. and ext. Moscow:

Mechanical Engineering, 1978. 236 p.

3. Miroshnik I.V. Automatic control theory. Linear systems.

St. Petersburg: Peter, 2005. 336 p.: pic. (Training Series).

4. Popovich M.G., Kovalchuk M.G. Automatic control theory: a

textbook. 2nd edition, revised. and suppl. Kyiv: Libid, 2007. 656 p.

5. Tsypkin Ya.Z. Fundamentals of automatic systems. Main Editing

Physical and Mathematical Literature Publishing "Science", Moscow,

1977, 56 p.

Information about the author:

Kyselov V. B.

Doctor of Technical Sciences, Professor,

Director of the Institute of Municipal Administration

and Urban Economics

of the V. I. Vernadsky Taurida National University

36

DOI https://doi.org/10.36059/978-966-397-107-0/36-65

SOFTWARE AND METHODOLOGICAL COMPLEX

OF SYSTEMS

Kyselov V. B.

1. Standardization of quality systems

Standardization refers to the activity of finding solutions to repetitive

tasks in the fields of science, technology and economics, and aimed at

achieving the optimum degree of ordering in a particular field.

It is known that algorithms and programming have been evolving as a

kind of creative activity, poorly regulated. Industrial methods are based on

strict regulation and automation of technological processes. Thus,

standardization in the field of programming has become a vital necessity.

The first objects of standardization have been programming languages and

program documentation. Within the framework of the Unified

Programming Documentation System (UPDS), about thirty standards

regulating the development of program documentation are developed and

standardized. Standardization is one of the most effective ways of ensuring

the required level of software quality. In the software QMS of the

organization-developer (enterprise) complex of enterprise standards (CES)

occupies an important place. To create such a complex it is necessary to

establish objects and methods of standardization.

Practice shows that the objects of standardization in the software QMS

can be: programming technology, software and hardware debugging and

testing programs, technological processes (design, coding, debugging,

compiling, testing, documentation, support), typical algorithms and

programs, quality control organization, inter-module interface, etc.

The main methods of standardization of SQMS in developer

organization are systematization and classification; typing and

unification; regulation. Systematization and classification are aimed at

ordering control elements, establishing their rights and responsibilities,

as well as the interaction between them. Typing and unification are

aimed at identifying and forming similar program components and

program complexes by the organization's profile, creating libraries of

unified components, tools for generating applications from these

37

components, interface agreements. The regulation is aimed at ordering

the organizational and technological procedures to ensure the required

level of quality at all stages of the software life cycle.The need for

enterprise standards is due to the following. State and industry standards,

as a rule, contain requirements for the quality level of the final product ,

its consumer attributes. But to ensure this level it is necessary to specify

the quality features of products in the stages of its development, the only

requirements for the design of algorithmic and software modules, the

only requirements for the interface between them, etc. according to the

specific characteristics of products and the specifics of the enterprise. In

other words, by means of enterprise standards, the requirements of state

and industry standards are interpreted in terms of the conditions of a

particular enterprise and are brought to attention of every contractor

of the project.

When creating the regulatory and technical base of the SQMS, both

the software and its development specifics should be taken into account.

The work of programmers has been a highly intellectual activity. The

productivity and product quality of each developer fluctuate in a wide

range. The individual qualities of each developer and his/her character

traits play a big role. Individualism is traditionally inherent in

programming, therefore, at the initial stage of creation of the SQMS, at

the stage of its testing, most regulatory and methodological documents

should be given a recommendation only. Excessive regulation of all

aspects of ST developers' activities in the absence of proper conditions

can cause a negative effect instead of the expected positive one.

Five international ISO standards have been approved to set

requirements for enterprise quality assurance systems: «Standards for

quality management and quality assurance. Selection and Application

Guide «(ISO 9000);» Quality System. Quality assurance models for

design, development, production, installation and maintenance

«(ISO 9001);» Quality system. Models of quality assurance in production

and installation «(ISO 9002);» Quality system. Models of quality assurance

in the process of control and testing of finished products «(ISO 9003);»

Quality management and elements of the quality system. Main directions

«(ISO 9004).

38

2. Choosing a Quality Indicators Nomenclature

The choice of a Quality Indicators Nomenclature of software products

is to establish a list of names of characteristics of products attributes,

which determine the quality of this type of products and provide the

opportunity for a complete and reliable assessment of its quality level. The

choice of a a Quality Indicators Nomenclature for a particular ST depends

on the type (group) of ST, the purpose of the application and the stage of

determining the indicators.

For each type (group), and sometimes specific ST, they establish their

a Quality Indicators Nomenclature, which takes into account the specific

purpose and conditions of use. The a Quality Indicators Nomenclature for

each subclass, group and type of ST is drawn up in the form of tables of

use of quality indicators. In addition to the list of recommended and

mandatory quality indicators for this subclass (type, group) of ST, the

coefficients (parameters) of the weights (significance) of each of the

indicators should be indicated in the tables of usability. Determining the

weighting of coefficients of quality indicators is the most significant and

difficult task of choosing a a Quality Indicators Nomenclature. In solving

this problem, one can use either the method of value-regression equations,

or the method of limit nominal values. But their use is complicated by the

lack of the necessary initial data. Therefore, in practice, the most common

method is the expert method of determining the weighting coefficients.

Usability tables are a guide or reference material for choosing a working a

Quality Indicators Nomenclature for specific ST. The working

nomenclature of the ST is established taking into account the purpose and

conditions of ST use; results of analysis of requirements of the user

(customer); quality management tasks; composition, structure and specifics

of the attributes that are characterized. The goals of application of the

Quality Indicators Nomenclature are set in accordance with the tasks of

software quality management. Such goals may include, in particular, the

following: setting up a technical specification for ST development; setting

up technical specifications for the ST; filling in the technical level map;

establishment of controlled indicators in ST design; establishment of

controlled indicators in the experimental operation of the ST; certification

of ST by quality categories. The stages of determining the quality metrics

correspond to the stages of the software life cycle.

39

While distinguishing attributes and relevant ST quality indicators, the

following basic principles must be followed: the distinguishing of groups

of attributes should be performed on clear, specific features; attributes

belonging to one group, as a rule, must be mutually exclusive and

independent.

If the attributes are dependent on each other, then the methods for

determining the quality indicators should give clear instructions to

exclude multiple effects of the same attribute on the generalized

evaluation of the ST quality; every initial Quality Indicators

Nomenclature must be open, i.e it must allow the inclusion or exclusion

of individual elements: for each of the selected attributes there must be

an opportunity to express them in the scales «better – worse», «more –

less»; the group should include the attributes necessary and sufficient to

determine the corresponding complex (group) attribute; the formulation

of the attributes must be clear; the set of attributes that characterize the

quality of the evaluated ST should be ordered according to a certain rule

in the form of a multilevel hierarchical structure – a tree of attributes;

the attributes tree should reflect all the main features of ST usage and

operation; the selected Quality Indicators should be correlated with the

ST attributes respectively.

This means that a clear correspondence must be established between

each of the distinguished attributes and the indicators that characterize it.

Establishing such compliance allows to use the software quality indicators

tree instead of the attributes tree. The quality indicators that characterize

the ST attributes should help to ensure that the ST quality meets the

requirements of their users and take into account the current achievements

of science and technology. It is often necessary to carry out specific studies

to perform this principle, since in general there may be significant

contradictions between quality indicators, and the improvement of one

indicator may lead to the deterioration of another. To test the performance

of the selected system of quality indicators, it is necessary to establish a

measure of correlation of each given indicator with the ST quality, the

usefulness of the indicator, the possibility of quantitative presentation, and

the automatic evaluation of the indicator
1
.

1
 Feldbaum A.A., Butkovsky A.G. Methods of the theory of automatic control, Main editorial office of

physical and mathematical literature "Nauka", Moscow: 1971, 744 p.

40

In particular, it is recommended to evaluate the usefulness of each of

the selected indicators for specific ST by the following scale:

5 – it is extremely important that this indicator to be of high score;

4 – it is important that this indicator be of high score;

3 – it is good that the score of this indicator is high;

2 – to some extent it is useful to have a high score of this indicator;

1 – at a low score of this indicator there is no significant loss.

About 50% of individual indicators can be determined automatically

by a computer, 25% by a comparator. Thus, 75% of indicators can be

formalized. An estimate of 20% of indicators can only be performed by a

qualified professional. Most indicators are set by static analysis of

programs and only about 5% are set in the process of dynamic testing.

3. Quality Indicators Groups

Quality indicators nomenclatures always have a hierarchical structure.

Their formation begins with the selection of groups of the upper level of

the hierarchy, and then the nomenclature is detailed until single indicators

are obtained.

Distinguishing the quality indicators groups is an important and

complex task of forming a Quality indicators nomenclatures. Failure to

complete groups can complicate the relationships between groups and

individual indicators and make the Quality indicators nomenclature less

constructive.

To evaluate the quality of industrial products they use the following

indicators: purpose; economic use of raw materials, fuel, energy;

reliability; ergonomics; aesthetics; adaptability; patent-law; unification and

standardization; environmental friendliness; security.

All of these indicators can also be used to evaluate software quality.

However, due to the software peculiarities, it is impractical to use some

groups of indicators when evaluating its quality.

Such indicators include indicators of aesthetics, environmental

friendliness, safety.

Aesthetic indicators are uncharacteristic for software due to the almost

complete absence of organoleptic properties in the software production.

At the same time, it is impossible to deny the presence of ST attributes that

are close in nature to the aesthetic indicators (attributes). These are

41

attributes such as information expressiveness and the integrity of the ST

structure depicted, for example, as a graphical scheme.

Indicators characterizing such attributes should be considered in the

group of structural (constructive) indicators.

Environmental Indicators and Safety Indicators are also

uncharacteristic for software because software products can not directly

have harmful effects on the environment or on human health. Such actions

are possible in cases where the ST is used as the managing elements of the

objects, for example in ACS. In this case, designed computers, with a

certain algorithm of the control action, can cause adverse environmental

consequences, and be dangerous to humans. But this is already indirect

action through regulators and enforcement mechanisms of automated

technological complexes (ATC). These are taken into account as

corresponding ATC Quality Indicators.

Patent-law indicators of software products cannot be used until the

issues of patent-law protection of these products are resolved in the

legislative (legal) aspect. The nature of the reliability of software and

hardware is different.

For software products, such indicators of reliability as durability,

storage, maintainability are not very meaningful. The sources of low ST

reliability are mainly software bugs made at the design stage and not

detected during debugging and testing. In the analysis of some software

attributes, which are manifested in their functioning, we have to use

Therefore, in the quality indicators nomenclature of software it is

advisable to distinguish the indicators characterizing the software

attributes, which are close in their external manifestations to the equipment

reliability indicators, in a separate group.

This group is called the reliability functioning proof. Thus, in the

basic quality indicators nomenclature of software at the top level we

distinguish the following indicators: purpose, reliability of operation,

ergonomics, adaptability, unification and standardization. The quality of

software is mainly formed in the process of product creation and largely

depends on the effectiveness of structural (constructive) decisions.

Therefore, at the same level, we distinguish structural indicators into a

separate group. Indicators of purpose, reliability of operation, ergonomics

and adaptability characterize the attributes of software, which are

manifested in the process of their use (operation). On this basis, they can

42

be considered operational. Structural indicators and indicators of

unification and standardization characterize the ST attributes of the

structure (construction), they can be combined into one group of

constructive indicators. In relation to a group of performance indicators,

this group is of auxiliary character. Achieving a certain level of score of

these indicators can not be an aim itself, it is only a means of providing the

necessary score of one or more indicators belonging to the main group –

the group of performance indicators.

4. Purpose indicators

Purpose indicators characterize the ST attributes to perform certain

functions that meet their purpose in a given environment. The indicators

that belong to this group answer two main questions: in what computing

environment (technical, software, and information) this ST works and what

functions performs.

The purpose indicators group includes the following subgroups:

classification indicators, functional indicators, input area, output area,

information security indicators, performance indicators.

Classification indicators characterize the ST affiliation to a particular

classification group as well as the operating environment (computing

environment). Belonging to a particular classification group is determined

by a general classifier (class 50). Classification grouping can be refined by

industry classifiers of software. Knowing the classification group to which

the evaluated ST belongs, it is possible to establish special requirements

common to this type of software. ST classification in the general classifier

is carried out by the purpose. But when comparing the ST quality level,

besides the purpose, it is necessary to consider the type of ST and the level

of programs complexity. When comparing ST characteristics, when

selecting basic samples for comparison, samples belonging to the same

class by the corresponding feature should be used. It is recommended to

divide the software complexity criteria into two broad groups: the

complexity of design of the programs (software systems and subsystems)

and the preparation of tasks to be solved (static complexity); the

complexity of programs functioning and getting results (dynamic

complexity).

The group of parameters that affect static complexity include: the size

of the system, expressed by the number of commands or the number of

43

software modules in the system; the number of variables being processed

or the amount of memory to accommodate the database; labor costs for

system development; duration of development; the number of specialists

involved in creating the system. Depending on the value of these

parameters, we can distinguish the following levels of complexity of

software systems: simple, medium complexity, complex, super

complicated, unique. Dynamic complexity characterizes software systems

at the stage of operation as complete functioning products. This indicator

combines the following concepts: the computational complexity of the

software system, the complexity of preparing data and analysis of the

results of calculations. Computational complexity determines the resources

of the computing system that are required to obtain a set of completed

results. This group indicator may be characterized by the following

indicators: the time of solving problems on the computer; the amount of

memory required to accommodate the ST; data carriers' capacity used for

accumulating and storing information when executing the program.

The characteristic of complexity of data preparation and performance

analysis is taken into account in the group of ergonomic indicators. ST

complexity indicators do not nearly reflect the consumer attributes of the

ST. The ST user is somewhat indifferent to the complexity of the software

he/she needs. It is important that it performs its functions reliably and is

easy to operate. But the development, testing, manufacturing,

implementation and maintenance of complex ST are significantly different

from the same processes of simple ST.

Accordingly, requirements for indicators such as the level of

infallibility, reliability, adaptability, etc., may differ. For example, for

simple ST, such indicators as adaptability and supportability are of little

importance. ST complexity Particularly impacts the organization of

program development, including debugging and testing. The study of

complexity, the assessment of the complexity of programs is also of

interest for predicting the number of errors and is taken into account in the

analysis of the work results in the group of ergonomic indicators.

The following factors are analyzed to predict the number of errors:

logical complexity, measured by the number of logical operators; the

complexity of the relationship, measured by the number of applications

and system programs that are called while the program is running; the

complexity of calculations, measured by the number of appropriation

44

operators containing arithmetic operations; the complexity of the I/O

process, measured by the number of I/O operations; easiness to read,

measured by the number of comments.

Functional indicators characterize the ability to perform certain

functions from the potential variety of functions specific to this type of ST

and useful in terms of ST users. The essence of these indicators is as

follows. Two software environments of the same purpose may differ

substantially from one another in functionality with other indicators being

equal or similar.

When considering functional indicators, one should take into account

their ambiguous dependence on other indicators. For example, the

implementation of additional functions in ST usually requires additional

costs of resources (labor and material, including computer resources),

complicates the structure of ST, which can lead to a decrease in the ST

reliability and the like. Therefore, it may sometimes be the case that an

increase in the number of functions implemented in the ST will not lead to

an improvement in the ST quality. This contradiction can be easily

eliminated for a specific ST, if its scope is clearly defined, as well as the

functions (tasks) performed and the weighting parameters of these

functions.

While comparative quality assessment by these indicators, it is

impossible to compare the ST belonging to different classes. It is not

possible, for example, to compare SuperComputer operating systems with

MicroComputer operating systems in terms of their functionalities.

Coefficient of completeness of the functions implemented in the program

and average arithmetic indicator of completeness of the implemented

functions can be taken as the only functional indicators. The input area is

characterized by a range of acceptable input rates that can be converted to

the correct result. The attribute of its mass must be one of the mandatory

attributes of any algorithm. This means that theoretically the rates of the

variables (input data) used in the algorithm can be arbitrary. In fact, when

designing a particular algorithm, and especially in its software

implementation, restrictions on the permissible range of changing the rates

of the variables are introduced. These restrictions are due to objective

conditions (limitations on the amount of memory allocated for this

program; limitation of the computer's bit rate, rules for measuring the rates

of variables, etc.), as well as subjective decisions made by program

45

developers. Limitations lead to the fact that two programs with the same

purpose may differ significantly from one another in the ranges of

acceptable values of the input data.

The input area is characterized by a range of acceptable input values

that can be converted to the correct result. It is natural to assume that users

have a more acceptable version of the ST that has a wider range of input

data changes (with other identical indicators). The range of acceptable

values of the input data can be characterized by the following separate

indicators: the allowed range of change of input data elements; permissible

error of input data elements; valid input format; admissible speed of

change of input data values; possibility of selective use of details,

maximum number of simultaneously processed objects; adaptability to

changing input formats, etc. Information protection can be implemented

either centrally, in a scale of a particular computing environment, or

autonomously in every ST that needs information protection. In this case,

the ability to protect information from unauthorized access will be an

attribute of specific ST. Security requirements are imposed only if the

information really needs protection. Performance indicators characterize

the ST's ability to perform, under the given conditions, a certain number of

data processing functions (including the same type) per unit of operation

time. Average performance can be taken as an elementary characteristic of

productivity.

5. Performance reliability Indicators

Performance reliability indicators characterize the ST attributes which

are manifested in the direct data processing on the computer and that affect

the quality of the results of processing
2
.

This group includes the following subgroups of indicators: accuracy,

resistance to distortion, reactivity, infallibility and reproducibility.

Accuracy indicators characterize the closeness of data processing

results to their true, specified, or theoretically correct values. The ST

accuracy requirements in this interpretation should be applied to each ST,

as each ST provides a certain result of data transformation, and the

closeness of this result to the true values is indifferent for users. But the

software is extremely diverse.

2
 Krainnikov A.V., Kurdikov V.A., Lebedev A.N. and others; Probabilistic methods in computer engineering:

Textbook manual for universities on spec. Computer. Ed. A.N. Lebedeva, E.A. Chernyavsky. Moscow: Higher

school, 1986. 316 p.: pic.

46

This diversity gives rise to a variety of unitary precision indicators

(criteria). For computational programs, the following traditional indicators

can be taken as unitary: an absolute error in the computational value;

relative error of computation; maximum value of the relative error of

computation; average value of the error of computation; mean square

deviation of calculation error.

Resistance to distortion Indicators characterize the ability of ST to

reduce the negative effects of a distorting actions of environment on the

data conversion process.

Resistance requirements are imposed on all real-time ST of automated

systems, as well as on those whose continuous operation time exceeds the

average time interval between failures (uptime interval) of the computer on

which this ST is implemented.

The data transformation process and the quality of the transformation

results are significantly affected by various distortions from the computing

environment.

In relation to the ST and the computer on which it is implemented,

these actions can be both external and internal. In this case, external

actions mean actions that lead to distortion of input data; internal ones lead

to distortion of program codes, intermediate and final results of

calculations, databases, as well as violation of functional connections

between program components. The source of external actions is the

external (in relation to the computer) environment. These actions are

caused by failures and interruptions in the operation of information

sensors, communication channels and data transfer devices; errors of

computer operators, etc. The sources of internal actions are the computer

equipment used in the operation of the ST. These actions are caused by

interruptions, partial and complete failures of these devices. The sources of

distortive actions are independent of algorithms and programs.

But the degree of suppression of the effects of these actions in

automatic mode depends only on them. In the general case, software may

either reduce or intensify the effects of distortive actions.

The specific actions that need to be taken in a particular situation are

determined by the content of the software. Sometimes individual

occasional interruptions lead to grave consequences, nullifying the results

of long and difficult work. At the same time, in some cases it is possible to

achieve positive results under the same conditions due to the fact that the

47

program provides special modules for eliminating the effects of distortive

actions. Operating systems, that application programs run within, typically

help solve this problem by logging crashes, interrupts, and the like.

Therefore, the degree of ST resistance to distortive actions in a given

operating environment is a specific characteristic of each ST. A software

tool is considered to be resistant to distortion if it retains performance

during the specified period of operation and provides for the

transformation of any set of input signals (from a given set) into an

acceptable set of output signals. In other words, a persistent program is a

program that continues to remain operational, despite hardware outages

and operator errors.

To quantify software counteraction to distortive actions, one can use

such a criterion as the area of sustainable operation, which is understood to

be an area of input and disturbance in which the functional parameter

(error of the data conversion results) is not beyond the design tolerance and

the ST provides a sustainable process of development output data (results).

This criterion is difficult to obtain by analytical calculations, it can be

found through statistical modeling. Thus, you can set the resistance to

distortion indicator.

Reactivity indicators characterize the ability of software to convert

input (requests) to the desired result on time.

Reactivity indicators are of particular importance in real-time systems,

in which the delay of these data leads to their depreciation and can cause

complete disability of the systems.

ST reactivity indicator is not a constant. It depends on the path in

which the information was transformed in this implementation, and this

path is determined by the totality of the transformed data, which is

generally formed randomly from data belonging to a finite set. Therefore,

individual ST reactivity indicators are statistical.

The term «reliability» is borrowed from technology. Reliability is the

ability of an object to perform the task of a function, preserving over time

the values of the installed performance indicators within the necessary

limits, corresponding to the specified modes and conditions of use,

maintenance, repair, storage and transportation.

To quantify the reliability of the product they use indicators that take

into account the specificity of a particular product. But, regardless of the

specifics, at the heart of these indicators there is the assumption that at a

48

particular point in time, any product can be found in one of two possible

states: valid or invalid. Valid condition of the product is the condition in

which it is able to perform the functions assigned to it with the parameters

set by the technical requirements (conditions). In the process of operation,

the transition from the valid state to the invalid and vice versa is possible.

Rejection is an event that involves the lose of validity, renewal – an

event that involves the transition from an invalid state to a valid one as a

result of eliminating the reasons of the failure.

Recovery can be done either automatically or manually. There are

persistent, self-eliminating and alternating failures. Self-correcting failures

are usually called interruptions.

The reliability of equipment in technical systems and systems in

general is mainly determined by the reliability of the components, as well

as structural and functional features. The following are the main causes of

equipment failures: design errors; production defects; deterioration of

parameters due to the wearing out and aging. Design errors are difficult to

predict. They are individual in nature, depend on the qualifications of the

designers, the complexity of the equipment and the presence (lack of)

experience of creating similar equipment. Every detail and component

product can have manufacturing defects from the very beginning (poor

soldering, improper wiring, errors in parts fastening, poor insulation, etc.).

The causes of deterioration of the product parameters during operation are

such physical phenomena as friction, overheating, oxidation, radiation, etc.

As initial we accept the following prerequisites. Reliability in

technology in the traditional sense is characterized by four indicators:

reliability, durability, maintainability and safety. Reliability of software

products is significantly different from the reliability of the equipment.

Magnetic data carriers (magnetic tapes, disks, drums, etc.) have high

reliability. The records made on them can be stored for a long time without

being destroyed. Program records on punch cards and punch tapes can also

be stored for a long time if the necessary conditions are provided. In

addition, the production of a new copy (making a copy) in advance is a

simple operation that is practically accessible to every user. Therefore, the

factor of destruction and aging of data carriers does not significantly affect

the reliability of the ST. Some manufacturing defects (errors in data entry,

punch card filling; errors in records and rewrites) are only in the original

software sample and can be corrected during debugging and testing. Errors

49

resulting from batch production, copying of systems to magnetic and other

data carriers, are relatively rare, are quickly identified and are not

significant. The information part of the programs, the data itself (program

codes) are neither aging nor wearable. This can only be a matter of moral

aging. Thus, neither manufacturing defects nor wearing out and aging

practically affect the ST's reliability. Only some similarity of durability and

storage features can be detected in ST. Therefore, we exclude these

attributes from further consideration. The ST reliability depends to a large

extent on the number of errors made and eliminated during the

development of the ST prototype. In batch production of homogeneous ST,

these errors are copied along with other program text. Errors are detected

and eliminated during operation. If bug fixes do not make new ones or

make less than fixes, then the reliability of the software is continuously

increased during operation. The more intensively the ST is used (especially

in different conditions and in different organizations), the more errors are

detected and the reliability of the ST is growing faster. This pattern is

widely confirmed in practice. It manifests a fundamental difference

between the reliability of the ST and the reliability of the equipment.

Software may lose its functionality when operating or storing. This can be

caused by errors that remain undetected in the program, defects in its

maintenance, storage or use, or data corruption. Making defects turns out

to be a quite rare and easily controlled event. Therefore, this factor will not

be considered here.

ST functioning reliability is a function of the errors that remain in it

after commissioning. Non-buggy ST is absolutely reliable. But for

complex and large ST, absolute reliability is almost impossible. Errors that

remain undetected manifest themselves under certain conditions of use

(a certain set of initial data).

By the nature of the consequences we should distinguish the following

two groups of errors: 1) errors, data transformations that affect accuracy

but do not lead to ST failure; 2) errors that cause ST failures.

The errors of the first group can be significant and insignificant.

A characteristic feature of significant errors is their negative impact on

the results of the data processing, they can lead to software failure under

certain unfavorable operating conditions. The signs of failure (disability)

of the ST should be specified in the regulatory technical documentation

for a certain type of software. All errors of the second group should be

50

considered as gross mistakes. In assessing their impact on the ST

effectiveness they use such statistical characteristics as the probability of

failure-free operation, the probability of failure, the frequency of

failures, etc.

Given the decisive influence of errors that remain undetected on the
reliability of the software, it is advisable to introduce an error indicator that

characterizes the attribute of the ST to contain undetected errors that occur
under certain conditions of operation. If the software lost its efficiency,

then the user (the operator) is tasked with restoring it. In the simple case,
this task is solved by overwriting the program and restarting it. But such a

restart will be futile if, in the process of data conversion, there will be a
need to use a defective program element, that is, a program element that

contains a gross error. In this case, you need to find and fix the error to
restore performance.

The operation of restoring the performance of complex software
systems is a complex operation and requires some automation. Adaptation

of ST to the restoration of performance is called reproducibility.

Reproducibility Indicators characterize the adaptation of ST to the
rapid transition from a invalid state to a valid one in a process of its

intended use.

If T = { – set of indicators of certain accuracy; Y ={ – set of

indicators of stability; P = { set of reactivity indicators; O = { } –

set of indicators of infallibility; B = { } set of reproducibility indicators,

then the group indicator of reliability can be expressed as follows:

NF = F (T, Y, P, O, B).

With some assumptions, we can assume that software failure occurs

because of low levels of T, B, P, O, B indicators. Cases of manifestation of
low accuracy can be attributed to the category of errors. efficiency of

software functioning. Group NF indicator allows to take into account the
total impact of accuracy, stability, infallibility and update on the

effectiveness of the software.

6. Ergonomic indicators

Ergonomic indicators characterize the adaptability of the software to

ensure optimal operating conditions for users during its operation.

This indicator also describes the convenience of controlling and

maintaining (accessibility) of the ST, that is, a measure of how the

51

software contributes to the selected mode of use or maintenance of its

components. The following indicators can be included in this group.

Indicators of ease of ST preparation for work characterize the ST

suitability for preparation for work, start and qualification of service

personnel. This indicator is especially important when machine time is

spent preparing for work and the cost of this time, especially in large

computers, is still high. For the user, the most appropriate for this indicator

is a software in which all operations to prepare for the job can be

performed by one full-time operator, no special training of operators is

required. Otherwise, large unproductive expenditures of computer

resources are possible. Indicators such as the ratio of the number of events

of the data conversion process displayed in a human-readable form to the

total number of such events can be taken as single indicators of this

subgroup; conformity of methods and means of reflection to the

psychological capabilities of the person, etc.

As a comparative assessment of the quality indicators of several

similar types of software is carried out, both quantitative and qualitative

indicators may be useful. The indicators of the analysis characterize the

adaptation of the ST to the prompt and deep analysis of the results of its

work. At the end of the data conversion process, there is a need, especially

in management systems, to use the results immediately, at least for

preliminary analysis
3
.

If the software developer has anticipated such a need in advance, then

the user will be given the appropriate opportunity to quickly analyze the

results. Otherwise, the user will have to spend a lot of time (including

machine time) to search for the information that interests him/her.

Diagnostic indicators characterize the adaptability to ST status

establishement, localization and troubleshooting, generation of failure

messages. An example of a ST single indicator may be the average time of

localization of the problem.

7. Indicators of manufacturability

Adaptability indicators characterize the attributes of the structure and

documentation of the ST, which determines its adaptability to achieve

optimal costs in the manufacturing, implementation (development),

3
 Miroshnik I.V. Automatic control theory. Linear systems. St. Petersburg: Peter, 2005. 336 p.: pic. (Training

Series).

52

operation, modernization, adaptation to the user environment and

maintenance for specified values of quality indicators, volume of supply

(implementation) and conditions of performance of works. This group

includes the following subgroups of indicators: manufacturability;

adaptability of implementation; adaptability of support; modification;

adaptation (mobility) and rational use of computing environment

resources.

Manufacturing adaptability characterizes the fit of the sample-

standard to the production of copies on the specified data carriers and

documentation for further distribution and use at optimal use of resources.

This figure is essential for batch-produced ST. The weight of the

indicator is in direct proportion to the number of software produced. It

should be borne in mind that the production of new ST by making a copy

from the sample-standard is the most common, but not the only way to

obtain a new copy of the ST. Sample-standard copy-making operations can

sometimes be preceded by a ST build operation from a specific set of

custom components, or a ST build operation from some distribution

system. In addition, copying can be transformed into, for example,

complex technological operations such as mounting a program in a long-

term storage device; making a chip that implements a program, etc.

Developers should take care in advance of the adaptability of this method

of ST production. The following indicators can be taken as single

indicators of the adaptability of ST production: total labor costs for

software production; the number of computer resources required to

produce a single copy of the ST; coefficient of automation of manufacture,

etc. The amount of computer resources required for the manufacture of one

ST copy can be determined by the total employment of the computer or its

devices in the manufacture.

Adaptability of implementation characterizes the adaptability of the

software to launch at its destination (customer organization or user) at

optimal cost of resources. In difficult cases, the software vendor assumes

the adaptive maintenance function, which is performed to ensure that the

ST can be used in a changed operating environment. The following can

also be taken as indicators of this subgroup: total labor costs for

implementation in machine hours; average time of ST exploration by the

user support staff; the level of automation of implementation operations;

availability of training courses for staff (programmed training courses are

53

meant), etc. The adaptability of support characterizes the adaptability of

the ST to perform the support functions over it at optimal costs. Support is

the most important stage in ST life. Tasks, problems, methods of support

were considered earlier. The evolution of ST does not end with the creation

of both a prototype and a sample – standard of this ST. Changes in the

configuration of the computer system, refinement and change of

requirements of customers (users), finding of previously undetected errors,

changes of the task and management methods necessitate changes to the

ST. Since the execution of this procedure is accessible to every user,

usually after a certain time of operation, numerous versions of the same ST

appear. The costs of time, labor and material resources to support the ST

are significant and make up 50...70% of the total costs of securement of all

stages of the ST life cycle.

These costs can be reduced by providing (at the design stage) a certain

level of adaptability of the ST support. The solution of many problems that

arise during the maintenance phase can be facilitated by the early (starting

from the moment of the giving the TOR for development) creation of an

automated software database. The database is maintained throughout the

ST life cycle. It records the requirements of the customer (both satisfied

and dissatisfied); general information on debugging and testing software;

information about found and corrected bugs, testing tools, ST upgrades;

operational quality indicators, etc.

Indicators of modified software characterize the adaptation of the ST

to corrections, changes and additions both in the text of the program and in

the text of the documentation. Indicators of adapted ST characterize the

suitability of the software to be used in a technical, software, information

and production environment of a different type than the one for which it

was directly developed. This subset of indicators is essentially similar to

the subset of the indicators of adaptability of implementation, but

characterizes adaptability to use in an environment other than the one for

which it was intended. In essence, this is about so-called re-

implementation. Of course, some ST setup is required for re-

implementation. The cost of this setup depends on the adaptive attributes

of the ST for use in the new environment.

Indicators of rational use of resources of the computing environment

characterize the ability of the software to perform the specified functions

with minimal cost of resources. The main resources of the computer are the

54

performance of the processor and the amount of memory. Computer

resources also include external devices, communication channels, media

(including paper for printing devices), and the like. A software tool that has

a high value of resource efficiency can reduce operating costs. This

indicator is of particular importance for commonly used ST (operating

systems, translators, database management systems, ACMS software, etc.).

8. Constructive indicators

Design indicators characterize the perfection of the methods of

decomposition, interface tools, information expressiveness and rationality

of the structure of the software. Constructive indicators, unlike all other

groups of indicators, have little reflection on the consumer attributes of the

ST. For a user who interacts with the software as with a «black box», to

some extent, the micro- and even macrostructure of this «box» is

irrelevant. But constructive indicators significantly affect almost all groups

of indicators, so when evaluating the scientific and technological level and

quality of ST should not be neglected. The group of constructive indicators

includes the following subgroups: structured, completed, coherent,

documented. The structure indicators characterize the perfection of

methods used by decomposition and organization of interaction between

the elements of the ST, facilitating the labor costs savings at all stages of

the life cycle of the ST. A well-structured program is a program with a

distinct modular structure, while encoding which structural programming

methods were consistently used. As a single indicator, you can use the

structure factor.

where m page – the number of components of the software, the

encoding of which strictly followed the methods of structural

programming; m is the total number of components in the ST.

Completeness indicators characterize the absence or presence of

unresolved at the design stage problems of ST. In the best case, there

should be no such problems in the completed and tested ST. But in

practice, the Admission Commission often draw conclusions about the ST

suitability for industrial exploitation, while determining the need for

refinement. Such solutions may in some cases prove to be economically

justified. At the same time, the presence of unresolved problems is a

55

disadvantage of this ST. The number of unresolved problems at the design

stage is an indicator of the quality of the ST. Consideration can be given to

the coefficients of significance of these problems. Consistency indicators

characterize the unity of style, terminology and symbolism across all

components of the software tool, including software documentation at all

stages of its development. Different software design methods and tools are

now developed. The methods of top-down, bottom-up design, the method

of designing data structures (Jackson method), structural and modular

programming, various programming technologies and forms of project

representation have become widespread. Each of these methods has certain

advantages and disadvantages. It is very important when designing large

software complexes as a whole and each component separately to strictly

and consistently adhere to pre-selected design methods.

If in the development of each component we use its methods, its

symbolism, its terminology, then the difficulties of integrating the

components into the software complex, maintenance and support of the

complex increases excessively, and its accessibility decreases.

Documentation indicators characterize the availability, accessibility for

understanding in the program documentation of all information required for

the production, implementation, operation and support of ST, as well as

compliance with the requirements of standards and other regulatory

documents, including standards in programming languages. Documentation

plays a large role in all stages of the ST life cycle. Complete and accurate,

understandable documentation provides management, control, and support

for workflows. With good documentation, programs are written and

debugged faster. Such programs are easier to learn, upgrade and adapt to

different conditions of use. Therefore, all documentation throughout the

software lifecycle from the beginning of development to the time of

termination of use should be kept in full order and effectively monitored.

In the programming firms specialists are working who with the

knowing the subtleties in programming, are able to quickly, professionally

and clearly prepare the entire text part of program documentation. At the

same time, they produce and reproduce not only the final reports, manuals

and instructions on time, but also all general working materials: plans,

terms of reference, algorithms, accepted coding tables, functional schemes,

memory allocation schemes, accepted restrictions on the use of

programming languages, etc. The amount of justified labor costs for

56

documentation is 20... 25% of all costs, so for every 5 programmers, it is

sometimes advisable to keep one technical designer. Indicators of

documentation should include indicators such as completeness of

documentation, compliance with the requirements of standards and

regulatory documents, clarity of documentation, availability of

documentation (availability of tools that facilitate the search for necessary

information), availability of automation tools for document correction, etc.

All these indicators are qualitative.

9. Unification indicators

The unification indicators characterize the saturation of the ST with

standard, unified and original components, as well as the level of

unification with other software.

Unification of ST and their components avoids duplication of

development, facilitates the process of integration of software systems,

their assimilation and use.

Compilation of complex software complexes from unified

components is relatively easy to automate. Thus, the unification of ST

contributes to a significant reduction in the cost of labor and material

resources for the development and use of software. To determine the level

of unification, the ST and their components belong to one of the following

types: standard, unified, original.

Unified ST are thoroughly tested and examined. As components or

independently, they can be used in different conditions. Their use is twice

advantageous. First, using ready-made ST, the user or developer saves

their resources because it is no longer necessary to create this component.

Secondly, the unified ST has already been thoroughly tested and is

therefore of high quality. In addition, unified ST is easier to build into

software complexes. When comparing two identical ST, all other things

being equal, preference should be given to a ST with a higher proportion of

unified components.

10. Multilevel hierarchy of structure

of properties and quality indicators

The considered quality indicators nomenclature of computer ST is

multilevel, hierarchical. Its structure is defined by two levels of hierarchy

of indicators. The first level consists of groups of quality indicators; the

57

second is subgroups. The tree of attributes and quality indicators of ST is

generally unbalanced in height. This means that at the same level, complex

and single indicators or complex indicators relating to different levels may

be found near different groups of indicators. Thus, the heights of

components of a tree of attributes and indicators of ST quality do not

depend on each other.

The quality indicators nomenclature of ST is common to all types of

software. The working nomenclature of quality indicators for a particular

type of ST is selected on the basis of a preliminary study of the attributed

of the ST of this type and determination of the significance of specific

quality indicators. The proposed nomenclature is open. This means that

some new groups and subgroups quality indicators can be added to its

membership.

11. Quality and efficiency of software. Quality Economy

The considered nomenclature of quality indicators allows to

characterize the attributes of the evaluated ST and to conclude on the

degree of suitability of its use for its intended purpose. But the positive

features of the ST are not yet a guarantee of high efficiency. The use of ST

should have some economic or socio-economic effect. The social effect is

in many cases obvious but difficult to quantify and will not be considered.

Cost-effectiveness indicators should constitute a mandatory stand-alone

group of indicators and complement the assessments of the scientific and

technical level of software. The concepts of Software Quality and

Efficiency should not be confused
4
.

The concepts of efficiency refer to such an operation by which any

agreed set of actions combined by a common purpose. In a specific ST

operation, as a measure of the relevance of the actual result of the use of

the ST to the desired (expected) the efficiency of use should be understood.

To obtain the effectiveness of a ST operation, it is required to establish a

dynamic relationship between the attributes of all objects (entities)

involved in the operation, the methods and conditions of the operation and

the purpose of the operation itself. Therefore, the effectiveness of this

operation depends not only on the quality of the ST, but also on other

factors that affect the course and outcome of the operation. Generally,

4
 Popovich M.G., Kovalchuk M.G. Automatic control theory: a textbook. 2nd edition, revised. and suppl.

Kyiv: Libid, 2007. 656 p.

58

efficiency is characterized by the following three components: goal output,

resource costs, and time. At different stages of the ST life cycle,

preliminary, potential, guaranteed and actual effects of the use of the

evaluated software can be calculated. The preliminary economic effect is

calculated before the start of development based on the TOR, technical

proposals and usage forecast data. The preliminary economic effect is an

element of the feasibility study of the need for software development and is

used in the planning of development and implementation. The potential

economic effect is calculated after completion of the development based on

an assessment of the actual achieved technical and economic

characteristics and the forecast of data on the maximum volumes of use of

this software in the national economy. The potential effect is used in

assessing existing organizations – ST developers. The guaranteed

economic effect is calculated from one particular implementation, and

from the implementation of several objects (guaranteed general economic

effect). Guaranteed economic effect from a single implementation is

calculated on the basis of data on the developer's guaranteed specific effect

of the use of the ST and the terms guaranteed by the user, as well as the

annual volume of its use. The guaranteed effect of a single software

implementation is calculated when the contractual relationship between the

developing organization and the user organization is made. The guaranteed

total economic effect is calculated when setting up the ST for production

on the basis of generalization of the estimated indicators of software use

(by several sites of implementation), as well as data on the volumes of

software implementation, corresponding to the possibilities of production,

supply and maintenance. The guaranteed overall effect is the basis for the

development and approval of economically justified prices for software

products, production planning, delivery and implementation of software.

The actual economic effect is calculated based on the accounting data

and the comparison of actual costs and results in the specific applications of

the ST. The actual effect is calculated from both the single implementation of

a particular ST at a particular site and the overall economic effect of using

that ST at all implementation sites during the billing period. The actual effect

is used to evaluate the activities of organizations that develop, implement and

use ST to determine the amount of contributions to economic incentives, as

well as to analyze the effectiveness of ST operation and to make proposals for

ST improvement and conditions for its use.

59

The user applies any software product in conjunction with the

computer on which it is implemented as a tool (means of production) to

solve organizational, managerial, industrial, scientific and other tasks in

their daily activities. Therefore, in assessing the cost-effectiveness of

software, one can use a methodology for evaluating the cost-effectiveness

of industrial products. In the first place, you should establish the sources of

savings when using computer ST.

The main sources of cost savings for organizations (enterprises) using

the software are: improving the performance of their kernel business;

improvement of technical level, quality of production, and volume of work

performed; shortening the time of information processing and increasing

the speed of decision making; increasing the utilization rate of computing

resources, means of preparation, processing and transmission of

information; decrease in the number of personnel employed in data

processing systems (DPS); reducing labor costs when performing certain

types of work; optimizing decision making. Indicators of economic

efficiency of ST are determined: for applied software – the impact of ST

on the end result of their use; for ST organization of computing process

and expansion of functions of operating systems – influence on

technological processes of preparation, transfer and processing of data in

DPS; for ST creation and program transformation – an action on the

technological process of creating new ST, the productivity of programmers

and the quality of programs.

In determining the economic efficiency of the ST included in the

ACS, CAD, automated technological complexes, etc., the share impact of

the software on the efficiency of automated systems are taken into account.

12. Assessment and methods for determining

the quality level of software

An assessment of the quality level of any product is a set of operations

that involves the selection of a nomenclature of quality indicators for the

products being evaluated, the definition of these indicators and their

comparison with baseline values. After defining the Quality indicators

nomenclature, you must select the methods for determining the values of the

indicators. Methods for determining the values of the quality of the

evaluated products are classified as follows: by methods of obtaining

information on these products (measurement, registration, organoleptic,

60

calculated), by sources of information (traditional, expert, sociological). The

measurement method is based on obtaining information on the attributes and

characteristics of software tools using measuring hardware and software.

This method determines, for example, the volume of ST – the number of

lines (machine commands, elementary structures, etc.) of the source text of

the program and the number of lines-comments, the number of operators,

operands, executed operators, branches in the program, the time of

execution of branches of the program, reactivity indicators. To measure such

characteristics, both technical, such as an electronic clock-timer, and

software means, such as a path analyzer, a program for calculating

elementary structures, etc., are used. The registration method is based on the

receipt of information during the test or when running ST, when certain

events are recorded and counted, such as time and number of failures,

moments of time and reasons for interruptions in work, moments of transfer

of control from module to module, moments of start time and end of work.

When registering such events, they also use both technical and special

ST. The organoleptic method is based on the use of information obtained

from the analysis of the perception of sensory organs, mainly the organs of

vision and hearing. Because the software tools are poorly susceptible to

organoleptic perception, the possibilities of this method are very limited.

At the same time, this method can be used to determine such indicators as

demonstrability, analysis capability, completeness, consistency, etc.

Software and hardware are also required to implement this method. Visual

perception is widely used, for example, display screens, in auditory –

reproducers, etc. The calculation method is based on the use of theoretical

and empirical dependencies in the early stages of development, as well as

the use of statistics accumulated in the testing, operation and maintenance

of ST. When designing ST, the calculation method predicts the accuracy,

reliability, reactivity, etc. This method is also used to determine the actual

values of the results of the testing and operation of the ST. When

determining the values of some quality indicators often have to use not

one, but a combination of several methods. For example, when

determining the performance of a modified ST, the number and

qualifications of the specialists involved in the ST modification are first

recorded and then the time spent on the modification is measured and

recorded. The coefficient of modification is calculated on the basis of

empirical dependence.

61

The determination of ST quality indicators by the traditional method is

carried out by employees of specialized experimental and (or) calculation

units. Testing units include laboratories, landfills, departments, ST testing

centers, etc., and design departments, software centers, computing centers,

quality control services, etc. competent in this subject area. Determination

of values of quality indicators by the expert method is carried out by a

group of experts-specialists competent in this subject area. The decision is

based on the experience and intuition of experts, not the direct results of

calculations or experiments.

The organization and carrying out of expert evaluation of product

quality is regulated by state standards of Ukraine. The expert method of

software quality assessment is applied in the following cases: 1) the

problem of quality assessment cannot be solved by any other existing

method; 2) other methods are unacceptable due to extremely high labor

costs. Sociological methods are to distribute special questionnaires with

questions; conducting conferences and exhibitions to gather information on

user satisfaction with the quality of the evaluated ST; elucidation of

unsolved problems, peculiarities of usage and functioning of ST, directions

of ST modernization, etc. In preparing for sociological research, particular

attention should be paid to the preparation of questionnaires. There have

been cases where the results of a major work were almost zero due to poor

preparation. In order to avoid this, you need to conduct a pre-survey and

data processing. The value of many ST quality indicators are random

variables. Such indicators, in particular, include indicators of accuracy,

reliability, reactivity, diagnoses, reproducibility. Therefore, there is a need

to use statistical methods of obtaining and processing data to determine the

value of these indicators. Initial data for statistical processing are either

accumulated during the real-time operation of the ST, or obtained during

testing when modeling the operating environment. The peculiarities of

such tests will be considered further. Indicators that are evaluated on

metric scales are called quantitative, and ordinal and nominal tests are

qualitative. The accuracy of the rating depends on the choice of rating

scales. Metric scales are the most versatile, and therefore generally more

acceptable. But they are often unacceptable either because of the lack of

technical capacity to measure the parameters or due to the unjustified

complexity and cost of measurement. The selected scales should match the

technical capabilities of their use and the tasks to be solved. Methods for

62

determining the values of quality indicators depend on the stage of the ST

life cycle. For example, measurement and registration methods for

obtaining information can only be fully applied after the development of a

draft copy of the ST.

13. Selection of basic samples of quality indicators

The quality level of the evaluated product is determined by comparing

its quality indices with those of an existing or hypothetical product, similar

to the one evaluated, taken as the basic sample. The basic sample is the

really achievable set of values of product quality indicators taken for

comparison. Quality indicators of a basic sample are called baseline values

of indicators. The set of baseline values of indicators should characterize

the optimum level of quality of this type of production for some specified

period of time.

Thus, before starting to evaluate the quality level of the software, it is

necessary to select a basic sample for comparison and to set the values of

quality indicators of the basic sample. By having this data and the Quality

indicators values of the basic ST sample, you can set the quality level of

that sample. If the evaluation of the ST exceeds the baseline values of the

quality indicators in all its indicators, then the developer of this software

can be considered to have achieved the goal that is set for him.

The following requirements are required for the basic values of ST

quality indicators: these indicators must meet: 1) the values of the quality

indicators of the best domestic and foreign software from the number of

analogues; 2) the predicted value of the quality indicators of the best

foreign and domestic samples-analogues until the completion of

development; 3) the normative values of the indicators, which are set by

individual types of ST.

Analogs-samples include real existing domestic and foreign ST of the

same kind as comparable ones, having similarity of functional purpose,

basic parameters, structure and conditions of use. Thus, the baseline values

of the quality indicators should not only exceed the values of the best real

domestic and foreign samples, analogues of the ST, but also the predicted

values of the best of these samples, which can be achieved by the time of

the end of the development of the evaluated sample ST. Only such an

approach can ensure that the speed of software quality growth and the

actual conformity of the scientific and technical level of the used products

63

with the best analogues are the most appropriate. The choice of the basic

sample and the basic values of the quality indicators largely depends on the

reliability of the results of the assessment of the quality of products and the

correctness of the decisions taken. The use of outdated and imperfect

samples leads to an unreasonably overestimated assessment of the quality

of products. The choice of the basic sample and the baseline values of the

quality indicators should be scientifically substantiated, and the decision-

makers should be personally responsible for the correctness of the

decisions taken. The choice of baseline samples and baseline values of

quality indicators for software products is associated with great difficulties,

which are due, albeit to temporary, but objective reasons: the lack of

generally accepted quality indicators, suitable for comparative software

evaluation; lack of data on the value of quality indicators of most foreign

and domestic ST; low level of unification, limited information on the

properties and characteristics of the ST, which impedes the choice of

samples analogues of the ST; lack of a unified classification system that

includes all hierarchical software levels (subclasses, groups, subgroups,

species, subspecies of ST); weak development of methods for determining

optimal values of software quality indicators. However, without defining

the baseline values of quality indicators, it is impossible to establish the

level of product quality, so the assessment of the quality level of specific

types of software should begin with eliminating the reasons that impede

the choice of baseline values of indicators. However, due to the lack of

samples-analogues or their characteristics, it is often necessary to justify

the optimum values of the baseline indicators, which must be carefully

evaluated beforehand, which eliminates the arbitrary choice of the baseline

values of the quality indicators. The selection of basic samples is carried

out at the stage of development of the TOR

14. Methods for assessing the quality level of software

Differential, complex and mixed methods are used to evaluate the

quality of software.

Differential method is the method of estimating the level of product

quality, which is based on the use of single quality indicators. At the same

time they determine the following: to achieve level of the basic sample as a

whole, by what indicators it is reached and by which it is not reached.

When using the differential method, the quality level of the products being

64

evaluated is considered to be above or equal to the level of the basic

sample if all values of the relative indicators are greater than or equal to

one. Otherwise, the level of quality of the evaluated products is lower than

the level of the basic sample. Differential method allows to take into

account the value of each indicator (among the selected) when assessing

the quality level of the software. Then with poor quality, customers and

developers see what software properties need improvement. This is the

main advantage of this method. But this method requires careful

justification of completeness and selection of quality indicators, uniformity

of methods for determining the values of quality indicators of the evaluated

ST and the basic sample. A comprehensive method of assessing the level

of product quality is based on the use of a single generic indicator, which is

a function of several main unit (group) indicators. The generalized

indicator can be expressed as the main indicator reflecting the main

purpose of the software product; an integral indicator of economic

importance; a weighted average (geometric or arithmetic) indicator of

quality. To use the main indicator, you need to set its dependence on the

original indicators. This indicator is focused on accounting for the direct

effect of using the ST for its intended purpose, but does not take into

account the cost of achieving this effect.

The integral indicator is used when the total useful effect of the use of

SP, the total cost of its creation (acquisition) and operation, as well as the

acquisition (depreciation) of computer equipment (including the required

system programs) and their operation are established. Weighted average

indicators are used in cases where it is necessary to determine the main

indicator and to establish its functional dependence on the initial

performance indicators of the software product. The values of the

parameters are determined when drawing up the terms of reference

(specifications) for the ST being developed or the ST quality improvement

plan, and are reviewed only when these documents are corrected. The

advantage of a comprehensive method of assessing the quality of products

is that it allows you to immediately obtain a generalized value of the

quality indicator and, in the presence of an appropriate baseline value of

the quality indicator to conclude on the quality level of ST. However, if the

result is unsatisfactory, this method does not provide information about

what ST parameters should be affected to improve its quality. It does not

give information about the specific attributes of the evaluated ST of

65

interest to the user (for example, the properties of the modified ST,

flexibility, accuracy, reactivity, etc.).

The mixed method of assessing the level of product quality is based

on the joint application of single and complex (group) indicators. When

using the mixed method, some of the individual indicators are grouped

together. After that, the relative values of the group and some individual

indicators are calculated by the formulas. The comparison of the quality of

the evaluated ST with the basic sample is carried out in the same way as in

the differential method. The mixed method is applicable in the following

cases: the set of single quality indicators is too large and complicates the

generalization of conclusions; a generalized indicator of quality in the

complex method allows to draw conclusions about important groups of

attributes. The mixed method compensates for the disadvantages of

differential and complex methods. But its use is associated with the

difficulty of finding (allocating) group and single indicators that determine

the quality of the evaluated ST.

REFERENCES

1. Feldbaum A.A., Butkovsky A.G. Methods of the theory of

automatic control, Main editorial office of physical and mathematical

literature "Nauka", Moscow: 1971, 744 p.

2. Krainnikov A.V., Kurdikov V.A., Lebedev A.N. and others;

Probabilistic methods in computer engineering: Textbook manual for

universities on spec. Computer. Ed. A.N. Lebedeva, E.A. Chernyavsky.

Moscow: Higher school, 1986. 316 p.: pic.

3. Miroshnik I.V. Automatic control theory. Linear systems. St.

Petersburg: Peter, 2005. 336 p.: pic. (Training Series).

4. Popovich M.G., Kovalchuk M.G. Automatic control theory: a

textbook. 2nd edition, revised. and suppl. Kyiv: Libid, 2007. 656 p.

Information about the author:

Kyselov V. B.

Doctor of Technical Sciences, Professor,

Director of the Institute of Municipal Administration

and Urban Economics

of the V. I. Vernadsky Taurida National University

66

DOI https://doi.org/10.36059/978-966-397-107-0/66-94

SCIENTIFIC AND TECHNICAL LEVEL

OF SOFTWARE TOOLS

Domnich V. I.

1. Evaluation of the scientific and technical level of software tools

Under the scientific and technical level (STL) of ST one understands a

relative characteristic of ST quality, based on a comparison of values of

indicators characterizing the scientific level and technical perfection of

evaluated ST, with the corresponding baseline values of these indicators.

The term STL is also used to summarize the quality of design decisions

during the ST development stages.

The value of STL of ST is used in solving the following tasks:

1) conducting feasibility studies at the established stages of developing

new ST; 2) determination of the best among developed homogeneous ST;

3) solving the issue of readiness to move to the next stage of ST

development; 4) resolving the issue of ST readiness for transmission to the

customer; 5) ST certification by quality categories; 6) addressing the need

for upgrading or replacing the ST that arises during operation.

Depending on the stage of determination and sources of information,

the following types of STL are distinguished: predicted; design;

guaranteed; operating
1
.

Under the predicted STL os ST one understands the scientific level

and technical excellence of pre-design decisions based on the verification

of the sufficiency and validity of the data contained in the TOR or in the

replacement documents for the creation of the ST, which exceeds the

known analogues or requirements of the ST in its characteristics, and the

effectiveness of the preparatory action to provide high quality ST.

Under the design STL of ST one understands a characteristic of the

scientific level and technical excellence of design decisions, based on the

verification of their completeness and compliance with the requirements of

the TOR and other regulatory and technical documents.

1
 Feldbaum A.A., Butkovsky A.G. Methods of the theory of automatic control, Main editorial office of

physical and mathematical literature "Nauka", Moscow: 1971, 744 p.

67

Guaranteed STL of ST one understandsa characteristic of ST, based

on the comparison of values of indicators characterizing the scientific

level, technical implementation of the evaluated ST and obtained in the

tests of the ST sample, with the corresponding baseline values of these

indicators.

Under operational STL of ST one understands the relative quality of

ST, based on a comparison of the values of indicators characterizing the

scientific level, the technical perfection of the evaluated ST and obtained

during its operation, with the corresponding baseline values of these

indicators. When evaluating the STL of ST, quality indicators are used to

characterize the scientific level and technical excellence of the evaluated

software (hereinafter referred to as the STL indicators). Accordingly, the

features that make up the ST STL are included in the overall set of product

quality attributes. The STL indicators are set for each of the evaluated ST

or groups of homogeneous ST (types of ST). When selecting the indicators

of the STL of the evaluated ST (type of ST) they use the nomenclature of

indicators recommended for this type of ST. If the initial nomenclature of

the quality of the evaluated ST is predefined and defined in the TOR or the

document that replaces it, then the STL indicators are selected from that

initial nomenclature. There are no generally accepted criteria for the

selection of attributes that characterize the STL of ST. Decisions are made

by people charged with assessing the STL based on their own experience

and understanding of the task, or by specially appointed experts. This

decision must be agreed with the officials who issued the Task Assessment

and the ST developers.

At the same time with selecting STL indicators, you must select the

Quality Indicators Score Estimates. If different rating scales are used in

estimating STL, then in order to calculate STL, the values of the indicators

should result in a single multidimensional scale. In order to order and

simplify the casting procedure for each case, it is necessary to establish the

scales and methods used for casting in advance.

Three variants of rating scales are the most convenient to use:

1) scales of baseline values of quality indicators; 2) a single ordinal scale;

3) scales of different orders.

The first variantof the rating scale is used when the baseline values of

the quality and usage indicators to determine the scale are known. The

values of each Iindicator are determined on the same scale as the base

68

value. The values of quality indicators to a single scale is given by

calculating the relative values of the indicators.

The second variant of rating scale is used mainly for expert methods

of determining the values of quality indicators. Within one examination, it

is recommended to use one pre-set rating scale in points (for example, a

ten-point score).

The third variant of rating scale is also used for expert methods of

determining the values of quality indicators.

The objects of control (evaluation) while determining the values of

quality indicators depend on the stage of the ST life cycle and the type of

STL that is determined. The main object of control in determining the

predicted STL is the terms of reference or documents that replace it, design

documentation (sketchy, technical or working software projects), ST

sample, software tools (software products) that are in operation.

When estimating the projected and projected STL, the main source of

information is the expertise of the project documentation, and the method

of obtaining the information is estimated.

When evaluating a guaranteed and operational STL, you can use any

means and sources to obtain information about ST features.

The validity of the STL estimates depends on the methods and sources

for obtaining the information, as well as the quality scoreboards used.

Therefore, the scales should be defined in advance in the quality assurance

plan or in another document agreed with the unit or the person who issued

the task for the evaluation of the STL. ST quality data at the stages of

development and testing are collected by the development units, during the

period of experimental operation – the developers together with the experts

who carry out the experimental operation.

The composition of the registered data and the procedure for their

collection are determined by the program and methodology of the

experimental operation. After delivery of the ST to the customer (user), the

user of the ST and the ST support service of the organization-supplier

collect the data for the evaluation of the operational STL. When assessing

the STL of a ST, it is necessary to use as much as possible all previously

accumulated data on the quality of the ST that is credible. The average

weighted arithmetic is most often used as a generalized STL. The

calculation of this indicator is based on the nomenclature of indicators.

69

Evaluation of each of these types of STL has its own specificity, due to the

specificity of control objects at different stages of the ST life cycle.

For each control object, indicators should be set to characterize its

quality. The direct use of quality indicators set out in the TOR or the

specification of ST requirements in the early stages of ST development is

almost impossible, as these indicators are geared towards assessing the

performance of the ST ready for its intended use. They reflect the

consumer properties of this ST, and design decisions need to be monitored

from the earliest stages of ST development. A good specification of

requirements is a must, but not sufficient condition for a high projected

STL. The prognosis of a software STL may not be favorable with a good

specification of requirements, but the lack, for example, of the necessary

resources (labor and material) to meet these requirements. Therefore, it is

not by chance that the three other groups of STL indicators are estimated.

The assessment of the operational STL is made on the basis of the analysis

and generalization of information about the consumer attributes of the ST,

which were manifested during their industrial operation. If the evaluated

ST is a batch product, then the quality of all these products installed during

operation under different conditions of use should be taken into account

when evaluating the operational STL. In this case, it is advisable to use the

sociological method of data collection as a source of information.

As a result of the STL calculation, the relationship between the quality

indicators, characterizing the scientific and technical excellence of the

evaluated ST, and some baseline values of the indicators, taken as the

standard of excellence, should be obtained. This ratio characterizes the

scientific and technical level of the evaluated ST.

When using the Quality Score Estimation Scale, this ratio is obtained

automatically because the scores themselves are pre-ranked.

2. Technical software for the quality management system

2.1 The modern concept of programming technology

and its connection with software quality management

Programming technology is a set of methods, ways, techniques,

automation tools, technological equipment and regulated order of their

application, aimed at the development, production and use of software

products in the given conditions and with the specified quality indicators.

70

The ultimate goal of using any programming technology is to ensure

high productivity at all stages of the software life cycle and the required

quality level created and maintained (accompanied) by the software. This

goal is achieved by improving the methods and technological methods of

creation, operation and maintenance of software, their strict regulation and

high automation. R-technology is the implementation of multi-circuit and

multi-level software design by the method of step-by-step specification of

any informal concepts of graphic structures in algebra that provide the

«assembly» style of programming; writing algorithms, programs, data and

processes in graphical form; friendly interface of all experts involved in the

development. This technology is intended for the development of a wide

range of ST, including structurally and logically sophisticated software in

all areas of computing. In most cases, the values of the quality of software

and other software technologies are unknown to developers or suppliers,

and are often not guaranteed in the prescribed manner. Thus, from the

point of view of quality assurance of the software under development,

currently used programming technologies, the very concept of

programming technology needs improvement. First of all, this

improvement should cover all technological processes. The desire to

regulate all technological processes of the ST life cycle urgently requires

the introduction of new and refinement of old concepts and definitions in

the technology of programming. The very name of this area is outdated. In

the software life cycle, programming (coding) is only one of the steps.

Other stages (system analysis, design, testing, manufacturing, operation,

support) meet their goals and technological (production) processes. They

also need regulatory, technical and software tools. For example, the

software testing process should be provided with testing programs and

techniques, as well as testing tools, measuring values of quality indicators

and processing results
2
.

The tasks, content, and therefore the name of a particular technology,

must be considered in conjunction with the supported process and the

requirements of technological readiness. The technological readiness of

some SP process means the existence of complete sets of design and

technological documentation, as well as the means of technological process

(TP) with established technical and economic indicators. According to the

2
 Atans M. and Falb P. L. Optimal management. Translation from English. Ed. Dr. Techn. Sciences prof.

Y. Topcheeva. M., "Mechanical Engineering", 1968, 764 p.

71

technological preparation of the SP process, they call the set of measures

that ensure the technological readiness of this process. In the general case,

the technological preparation of the SP process consists in the completion of

the previous technological process by the development of appropriate design

documentation, in its examination, as well as in the preparation of

technological documentation and software (software-instrumental) tools for

the execution of TP. For example, technological preparation of the stage

(process) of programming consists in the following: completion of a

technical project (development, algorithm for solving a problem) and

registration of the relevant design documentation; examination of a technical

project; preparation (selection and/or development) of all technological

documents that regulate the programming process (selection and description

of programming languages, setting restrictions on their use, choice of

programming methods and preparation of appropriate instructions, etc.);

preparation of software and hardware for programming (translators,

automated tools for debugging programs, static analyzers, etc.).

Technological processes consist of sequentially or sequentially-

parallelly performed operations.

The technological documents governing these operations, as well as

the software (software-instrumental) tools that support them, are called

technological modules (eg, programming language, translator, text editor,

documentation system, software test method, text data generator, static

analyzer, etc.).

The set of technological modules, mutually linked by a common

scientific and technological idea, which regulates and ensures the

successful execution of the technological process of SP, forms the

technology of this process. Thus, there can be no technology at all, there

can only be a technology for a particular production process or a set of

processes.

Process technology is an integral technology. For example, the

integrated technology of development (creation) of ST prototype should

regulate all the processes of creation, from system analysis to testing of ST

prototype.

The technologies themselves can be developed in the following ways:

- creation of integrated technologies focused on a specific application

environment, type of automation tasks and the entire ST life cycle;

72

- creation of a bank of problem-oriented technological modules from

which it is possible to synthesize technological lines of support of certain

technological processes;

- creation of partially integrated technologies with their subsequent

development by adding missing technological modules.

Integrated technologies that cover all stages and stages of the software

life cycle have not yet been created. Work in this direction is being carried

out, in particular, within the framework of the R-technology concept.

Creating a bank of problem-oriented technology modules is still going on.

The interface module is not unified.

The modules themselves do not have the autonomy of application.

Only with the elimination of these shortcomings can one count on the

effective integrated application of technological modules.

Most existing technologies are partially integrated. In many respects,

this is entirely justified. A single (integrated) technology in the general

case may not be of interest to any of the categories of specialists:

developers need development technology; manufacturers – manufacturing

technology; users – technology of operation. According to these interests,

the degree of technology integration should be chosen.

According to the initial concept of programming technologies,

integrated technology must meet the following requirements:

- methodologically cover the entire ST life cycle; be flexible, mobile,

integrated on the basis of technological lines of different problem

orientation;

- provide a significant increase in the productivity of programmers

and ST development with the required quality indicators;

- to provide possibility of realization of technological processes on

the existing and perspective computer systems;

- to provide automated planning, regulation, execution of works,

control over the course of technological process and quality of products;

- contain a set of normative-methodological and legal documents

defining as a way of describing technological modules and lines, as well as

the procedure of carrying out a technological process and the forms

received at each stage of documents;

- to provide, when using computers, purposeful activity of both

professional programmers and their teams with a well-defined industrial

73

organizational structure, as well as specialists of other professional

orientation (non-programmers);

- to be easy to learn, to automatically include tools for teaching and

learning, as well as recommendations for its implementation, including all
levels of education (schools, higher education institutions, training

institutes, etc.).
Software attributes are formed at all stages of development and

production, as well as stages of operation (use for the intended purpose)
and support. Therefore, the SQMS should contain measures that cover all

stages of the software life cycle.
The SQMS should fit into the programming technology organically. It

is subject to the basic requirements and principles of the concept of
programming technology. However, software quality control and

assessment systems should be independent of programming technology.

Software quality management (SQM) to the formation of
technological lines for the development, production and use of specific

software should be started after establishing the affiliation of this ST to a
particular classification group.

There are a number of complex, under-researched problems on the
way to creating an effective SQMS both at the country level and at the

level of the development organizations. Let us look at some of them.

Establishment of the initial nomenclature of software quality

indicators. This nomenclature includes those indicators that characterize
the main attributes of software as an independent class of products for

industrial and technical purposes.
With the help of the initial nomenclature, the properties and indicators

characteristic of homogeneous product groups are distinguished, and thus

the nomenclature of quality indicators for each of these groups is formed.
In this case, it may be necessary to introduce new indicators characterizing

the specific attributes of a group of software.
Software products and their individual types have numerous attributes.

But the effect of these attributes on the quality of the software is different:

some properties are only desirable; in the absence of others, it becomes

impossible to use the ST for its intended purpose. Therefore, it is very
important to study the correlation of the properties of specific types of

software with the quality of these products. As a result of these studies, the
weighting parameters of quality indicators for all types of software should

be determined.

74

In order to manage quality, it is necessary to investigate the factors

that influence the formation of software quality at different stages of its life

cycle. Particular attention should be paid to the stages of development and

support of software. It is important to establish not only the factors, but

also the whole mechanism of their action. Only in this case can one count

on effective software quality management.

Managing any process involves controlling the states of that process.

The programming process has been developing as a purely intellectual kind

of activity that is weakly controlled from the outside. Methods of quality

control by customers and users of software are still poorly developed. Due

to the transition to industrial methods of software design and production,

these methods need to be intensively developed.

The development of software should be completed with

comprehensive testing, during which it establishes the actual achieved

quality indicators and the suitability of the software for its intended use.

Products that do not meet the requirements that are put forward to it,

does not have the full set of consumer attributes, or returned to refinement,

or discontinued production. Thus, software testing is the most important

technological process in the system of quality control and management of

these products.

However, so far, little attention has been paid to existing processes in

existing programming technologies. The test process itself is usually

replaced by less efficient processes of examination, inspection, test and test

of the performance of programs with the power of control examples.

Improvement of methods of optimization of quality indicators, automation

of these methods deserve special attention. In the long term, these methods

should be brought to a level that ensures the creation of software with

predefined properties.

When defining the relationship between quality problems and

programming technology problems, it should be borne in mind that quality

and technology are completely different categories. Quality is an aggregate

property of products, technology in a materialized form is a certain set of

technological modules, each of which defines a process and, when used,

should contribute to the achievement of the required level of quality of the

created ST (relative to a given property) and/or increase the productivity of

developers.

75

Some properties of software are largely dependent on the technology

used in programming, others are provided in a constructive, algorithmic

way and depend little on the technology. Most software attributes are

provided both constructively and technologically.

2.2 Automated software creation and support environment

Automated support tools (AT) are required for each stage of the

software life cycle. Together, automated tools of system analysis (ATSA),

design and coding (ATDC), debugging and testing (ATDT), production

(ATP), and support (ATS) form an automated environment for creating

and support (AECS) of software that are integral part of integrated

programming technology.

Automated software creation and support environment is a set of

language, software, technical, organizational and methodological tools and

databases that provide support for technological processes at all stages of

the software life cycle.

Realizing the modular principle of programming technology

formation, it is advisable to create object-oriented complexes of

technological modules (TM), intended for automation of technological

processes of creation and maintenance of certain subclasses (groups, types)

of software products. Some TM may be suitable for use in the creation and

maintenance of any kind of software, that is, universal. Universal TM form

a separate set or group of sets
3
.

The Program Modernization Analyzer is designed to automate the

analysis of the source text of a program on its information and logical

structure and perform the following basic functions:

- syntax analysis of the source text of the program in a high-level

language, given by context-free grammar;

- construction of program control graphs and module hierarchy;

- combination of two versions of the program for finding added,

deleted and common fragments of program texts;

- analysis of the impact of added fragments in the upgraded program

and deleted fragments from the original text of the program on the

common (saved) fragments caused by the change of information relations

and the control graph;

3
 Tsypkin Ya. Z. Fundamentals of automatic systems. Main Editing Physical and Mathematical Literature

Publishing "Science", M., 1977, 56 p.

76

- formation of a combined listing of two versions of the program with

the statement of the operators that need to be tested for efficiency (relative

to the final results of the program);

- analysis of the control graph to identify the input, output and

hanging vertices, unconditional loops;

- determining the values of structural quality indicators of the initial

and upgraded versions of the program.

3. Typical Requirements for Automated Debugging

and Testing Programs

Software products are extremely diverse in their nomenclature,

conditions and areas of application, complexity, modes of operation, which

causes a variety of debugging methods and software testing.

The software is a constituent part of the automated debugging and

testing tools programs (ADTT), so we use the nomenclature of software

quality indicators when formulating the requirements. The experience of

automating debugging and testing programs allows you to formulate the

following typical requirements for the ADTT programs.

Multifunctionality. Debugging and testing of software is a long and

time consuming process associated with the need to simulate input,

documentation (event logging), processing of results, analysis of

completeness of checks, accounting of resources used, etc. In addition,

ADTT is a kernel element of the automated software creation and support

environment and is often used throughout the ST life cycle as a means of

analyzing the results of operation, modification, training of service

personnel, and the like. All these functions should be implemented in

economically justifiable terms by the ADTT.

However, it should be remembered that an insufficiently substantiated

desire to implement all the functions can lead to negative consequences.

Openness and Modification. Despite the desire to automate software

debugging and test processes, experience in creating ADTT systems is still

poor.

It is often difficult to determine in advance all those functions that

need to be assigned to the ADTT, so consistent system development may

be most appropriate. But this requires that the system has the properties of

openness and modification.

77

Adequacy of the simulated environment to the real environment

of functioning of the tested ST. The ADTT system should provide

simulation of incoming messages of the tested ST, adequate to the

incoming messages in the real operating environment. Moreover, the

format of incoming messages, their time sequence and distribution on the

communication channels should be equivalent to real formats, sequences

and distributions, regardless of the method of modeling.

High reliability of functioning. The ADTT system is a kind of

measuring tool used in ST debugging and testing. It is known that the

accuracy and reliability of measuring instruments have very high

requirements, which are usually no less than an order of magnitude greater

than the requirements for the instruments, devices and systems controlled

by these measuring instruments. A similar requirement is relevant for the

distribution of ADTT. ADTT systems that do not have high reliability, or

will not be used at all (due to lack of trust in them), or will be used,

causing more problems than solutions.

The highest requirements must be advanced to the accuracy and

infallibility of the ADTT. The reactivity and recovery rates are less

significant

In the case of low ADTT resistance to distortive actions, signs of

ADTT failure due to these actions should be clearly identified in order to

invalidate the results of the respective experiments.

High ergonomics. Using the ADTT system as a tool for debugging

and testing programs, the programmer should be able to communicate

extensively with the ADTT in order to quickly analyze the results of

debugging (testing) and changing experimental conditions.

The ADTT system should be easy to prepare for operation and

maintenance, demonstrably sufficient and able to be analyzed. The system

should be dialog.

Reproducibility of results. To localize and correct bugs in the

program, it is necessary that the system of ADTT allows to repeat any

experiments for an unlimited number of times with the exact observance of

the same conditions.

Uniformity. Unified elements (technological modules) should be

used to the fullest extent possible when creating a system of ADTT.

Fulfillment of this requirement will, firstly, increase the reliability of

functioning (unified components are more carefully tested and therefore

78

error-free); second, the assembly and development of new (flexible)

technological lines.

Technology of assembly and application. When designing the

components of the ADTT, one must stick to the unified interface design

requirements that facilitate the assembly of process lines. The technology

of application of the ADTT must be consistent with the concept of

programming technology.

Information secureness. ST automated debugging and testing tools

should be protected against unauthorized access because, first, with access

opened, users may inadvertently corrupt information from each other and,

second, certain information may need to be restricted for commercial or

other reasons.

Documentation support. During the debugging and testing of the

software, it is usually necessary to make numerous changes to the project

documentation. To reduce labor costs, this technological operation should

be automated in both graphic and textual information. When designing,

there are different versions of solving problems. Practice shows that these

versions should be stored at least until the project is completed. Designing

and storing versions can also be a function of documentation support tools.

Analysis of changes. When making changes to the program, the task

of promptly establishing the consequences of these changes. testing has to

be repeated when numerous changes occur. Change analysis tools should

identify program elements affected by the changes and offer an optimal

test plan.

Methodological unity. The ADTT complex should be built on a

single, pre-formulated, methodological basis consistent with the

foreseeable programming technologies. Otherwise, there will be additional

difficulties when using it.

Flexibility. The ADTT components designed to debug and test one

program must be suitable for use in other similar tasks.

Easy to learn. When using ADTT, users should not have difficulties

that cause them to abandon the idea of use.

4. Software Testing

The object of the test may be either the product itself or its model.

Modeling of the product is performed when it is impossible to directly test

it either for safety reasons or because of the excessive complexity and

79

costly testing caused by, for example, the unacceptable consumption of

object resources.

None of these factors is a barrier to direct software testing. Therefore,

the simulation of SP as a test object is unnecessary. With this in mind, the

test of software products should be understood as an experimental

determination of the quantitative and / or qualitative characteristics of the

properties of products when operating in a real environment or modeling

the environment.

The purpose of the test is to experimentally determine the actual

(achieved) characteristics of the properties of the test SP.

These characteristics can be both quantitative and qualitative. It is

important that they can be used to conclude that the SP is suitable for its

intended use. If the conclusion is negative, then the sample SP is returned

for revision.

This overrides the access of poor quality products to the user. Directly

during testing, the quality of SP may not change, since bug localization is

not the purpose of the test. However, some defects in programs and

documentation may be eliminated during the test.

The test is the final stage of development. It is preceded by a stage of

static and dynamic debugging of programs. The main method of dynamic

debugging is testing. In a narrow sense, the purpose of testing is to detect

errors, but the purpose of debugging is not only to detect, but also to

eliminate errors. However, you cannot limit with only the debugging of the

program, if you are sure that all errors in it are eliminated. The goals for

debugging and testing are different.

A fully debugged program may not have certain consumer attributes

and, thus, be unusable for its intended purpose. There can be no alternative

to testing and checking the validity of the program in the control example,

because the program, working in the conditions of the control example,

may not work in other conditions of use. Attempts to cover the control

example all the expected conditions of operation are reduced to the testing.

Under testing programs one understands the establishment of compliance

of the program with the specified requirements and program documents.

This definition is based on the assumption that the terms of reference for

the program development define all the requirements (characteristics) that

ensure that the program is fit for its intended purpose. But such a

requirement is rarely met in practice.

80

In some cases, especially in automated systems, the TOR on the ST is

either not written at all, or has only those features that rely on the software,

without specifying requirements for other consumer attributes. In the

absence of TOR for ST development or a complete and reasonable list of

requirements for the characteristics of the ST being developed, the task of

testing the ST becomes indeterminate and non-constructive. What does it

mean to set a program to meet a set requirement if it is not formally set?

What is the benefit of establishing such compliance if these

requirements are deliberately «truncated» and do not reflect the kernel

consumer attributes of the program? It will not be useful to the user if the

program is working poorly, but it does not explicitly contradict the

requirements of the TOR. In the presence of the necessary characteristics

of the basic characteristics of the consumer's SP attributes, the definition of

the term «test» for the purpose of testing almost coincide. However, in this

case, too, the first definition is more constructive, since it formulates not

only the purpose but also the main test method – the validation of a SP that

functions in a real or simulated, but close to real, environment. In the

literature, including software standards for software, the concept of

«testing» is often equated with the concept of «examining».

For example, the following definition of examining is given: «... the

process of active analysis of software to identify differences between the

actual and required ST standards (i.e, errors in programs) and to evaluate

the characteristics of ST elements.» This definition combines the two

definitions of the term «test» with the only difference that, when adopted

(see definition), the search and localization of errors are not explicitly

stated objectives of the test.

Given the above considerations, the term «examining» used in foreign

literature will be interpreted as testing by the method of testing.

One of the features of software is the comparative simplicity and

controllability of SP replication, so the focus on quality control and

evaluation should be given to prototype products. Quality control of

homogeneous products in their batch production is to verify the identity of

the new record on the data carrier of the reference record.

The experience of SP development shows that the process of testing it

is time-consuming and expensive. Moreover, the bulk of the cost is not

spent on testing, but on their preparation and processing of results.

81

The labor costs of creating a complex of automated debugging support

and software testing are often found to be of the same order as the labor

costs of creating the most tried and tested means.

At the same time, the costs of debugging and testing software justify

themselves, especially when creating mass-produced software tools and

automated software systems. The costs will be reduced as the specialized

(by problems) banks establish unified technological debugging modules

and test them and the means of their assembly into technological lines.

The duration of the test depends on the type, configuration of the

software, as well as the purpose and degree of automation of the process.

When testing operating systems, it ranges from one to six months.

Compound software complexes after integration can be tested for a longer

time.

The purpose of the software test is usually detailed depending on the

type of test. The state system of standards provides for about forty types of

testing of industrial products. Types of test are classified according to the

following characteristics: time, venue, departmental level, type of action,

duration, immediate purpose of the test. Due to the specific nature of the

software and the process of its creation, most of these species during

testing or until they are not used, or devoid of practical meaning

(e.g, resource, mechanical, electrical, thermal tests).

The main types of software testing are preliminary, acceptance and

operational tests, including experimental operation.

Depending on the venue, there are bench and proving ground testing.

The bench means a set of technical devices and mathematical models that

provide an automatic simulation of the operating environment; input of

input data and distortive actions; registration of information on the

functioning of the ST, as well as management of the process and object of

the test
4
.

If the principle of bench testing is based on the principle of modeling,

then the appropriate test benches are called modeling.

In the simple case, bench tests use a computer and pre-prepared tests.

The test proving ground is called a place intended for testing in

conditions close to the operating conditions and provided with the

necessary test facilities.

4
 Ivashchenko N.N. Automatic regulation. Theory and elements of systems. Textbook for universities.

Ed. 4th, rework. and ext. М.: Mechanical Engineering, 1978. 236 p.

82

Proving ground testing consists of systems performed in real time. In

polygon conditions, they usually combine full-scale tests using real

objects, automated systems, and modeling of some objects and their

processes.

Recently, in some development organizations, test polygons are a

collection of test benches specialized in the profile of this organization.

Depending on the test, the developers distinguish between dependent

and independent tests.

In the dependent tests, major ST operations (preparation to work,

preparation and input of initial data, registration and analysis of results) are

performed by program developers. The evaluation of the test results is

done by the commission with the active participation of the developers.

Independent testing is conducted by special units that are not

responsible for program development and are not directly subordinate to

the development executives.

The advantages of independent testing are the following:

- direct developers, knowing that their work will be tested by other

specialists, try to execute it better;

- work managers are more concerned about the quality of the

software being developed, plan the necessary resources for debugging

programs, trying to avoid complications in quality control by independent

skilled professionals;

- employees of testing units accumulate experience in performing

specific testing works, improve methods of carrying out these works and

their qualification, which ultimately increases the reliability of results and

reduces the likelihood of omission of poor quality products.

Independent test units should be created from the beginning of the

development of complex ST. They must exercise control functions at all

stages of their creation.

By the time the acceptance tests begin, these units must form process

lines, and develop test programs and techniques. Thus, the functions of the

independent testing units are the same as those of the quality control

services.

Practice confirms the high efficiency of independent testing. However,

when deciding on the benefits of this type of quality control, other factors,

including the additional costs and complexity of organizing the interaction

between developers and testers, need to be carefully considered.

83

5. Flow scheme of the test

To increase the efficiency of the test, its acceleration and reduction of
cost, it is necessary to develop scientifically grounded methods, tools and

techniques that allow to overcome the disadvantages of the approach to
testing as a kind of heuristics, underestimation of its role in ensuring the

required level of quality of software, replacement of tests by procedures of
checking the validity on check example, etc.

This goal can only be achieved by developing a technological test
scheme that provides:

- knowledge of the purpose of the tested software, conditions of its

functioning and requirements for it by users;
- automation of all the most time-consuming processes and, above

all, modeling of the operating environment, including distortive actions;
- a clear representation of the purpose and sequence of the test;

- purposefulness and irregularity of the test, which exclude or
minimize the repetition of homogeneous procedures under the same

operating conditions of the tested software;
- systematic monitoring of progress, regular maintenance of the

protocol and the test log;
- clear, consistent definition and implementation of the test plan;

- a clear comparison of the available resources with the estimated test

volume;

- можливість забезпечення, а також об'єктивної кількісної оцінки

повноти і достовірностірезультатів випробування на усіх етапах.
Any type of test should be preceded by careful preparation. The

preparation of ST testing includes the following measures:
- drawing up and approval of the test schedule;

- development, acquisition, testing and certification of software and
hardware used in the tests;

- analysis of the suitability of the test facilities used during the
preliminary tests for acceptance tests;

- analysis of the suitability of the accumulated data on the quality of

the software for use in the final determination of the quality indicators of

the tested ST;

- inspection and coordination with the representative of the Customer
of the design documentation for the software presented during the tests;

- development, harmonization and approval of test programs and
techniques;

84

- certification of specialists for admission to testing;

- acceptance of the ST test prototype on the data carrier and

documentation;

- conducting measures aimed at ensuring the reliability of the tests.

Particular emphasis should be placed on the need for the early

development and testing of all software that will be used in the tests.

It should be borne in mind that the level of accuracy and reliability of the

measuring equipment used in the testing of any object should be

significantly higher than the corresponding indicators of the test object.

Therefore, the real characteristics of software and test tools must be

established in advance, and their eligibility to be agreed between the

developers, testers and customers of the software.

Disregard for this rule distrusts the test results and, as a consequence,

extends the test time.

The complexity of software and testing tools, the requirements for

their perfection, and therefore, the cost of resources for their development

depend directly on the relevant indicators of the software being tested.

The volume of test software, expressed in machine commands, can

reach the volume tested by their programs. Therefore, the development of

software designed to test a particularly complex software, should begin

simultaneously with the development of prototypes.

It is appropriate for enterprises and organizations specializing in the

development or testing of software to create unified testing programs. Each

test program must have a passport containing its characteristics.

Based on the above, we can determine the following five stages of

testing: examination of the projected software, analysis of project

documentation, determination of the most important subsystems, functions

and paths of projected software to be tested, analysis of software quality

indicators and methods of determining their quantitative values,

development of programs and test methods, development (development) of

test software, test libraries and databases (if they are required), direct

testing, analysis of results, decision making.

Each stage of the technological scheme of tests depends on the previous

ones. The execution of the staged work may partially intersect. Depending

on the specifics, conditions of use, quality requirements of the investigated

ST, tests can be carried out either by testing, or by statistical modeling of the

operating environment, or on the basis of full-scale and mixed experiments.

85

It is often helpful to use all of these methods. The values of some quality

indicators can be obtained expertly, with the available time and material

resources, in an effort to provide the necessary completeness and reliability

of the test results. The task is complex and controversial, so it is of particular

importance to assess the completeness and reliability of test results in the

reporting documents. The user, when purchasing the ST, should receive full

information about the actual characteristics of the software. This will allow

him to properly organize his use.

6. Planning and evaluation of test completion

The test plan should be oriented to ensure comprehensive validation of

the software and maximize the reliability of the results obtained using the

limited resources allocated to the test. The following approaches to solving

this problem are possible: 1) analyze the entire range of input data. Based

on the analysis, a set of data combinations (test datasets) is prepared in

advance, covering the most characteristic subsets of the input data. The

program is considered as a black box. Testing is limited to the sequential

introduction of test datasets and analysis of the results obtained; 2) analyze

the many situations that may arise during the operation of the ST. Choose

the most typical situations. Each is expressed through a test set of input

data. Further, the essence of testing and analysis of results is reduced to

approach 1), using a graph model to analyze the microstructure of ST. One

selects multiple paths that completely cover the ST scheme, and such a

sequence of test sets of input data, the execution of which will take place

on a dedicated path. Test organization is similar to approaches 1) and 2);

ST is tested in a real operating environment; ST is tested in a statistically

simulated operating environment adequate to the real environment.

None of these approaches are universal. Each of them has its own

advantages and disadvantages, which are differently manifested depending

on the specifics of the tested software. The most reliable results are

obtained when tested in a real operating environment. But such tests are

rarely possible. Therefore, combinations of all kinds are used in practice.

A typical example of such a combination would be a mixed method

where the software environment is simulated and the reliability of the

results is verified by comparing the results obtained with the real-world

software operation. Tests, like any other type of quality control and

evaluation, are only possible in this case if there are methods, tools or

86

procedures in place to determine with reasonable accuracy the accuracy of

the results of the data conversion using controlled ST. Otherwise, this ST is

formally uncontrolled.

Uncontrolled or partially controlled ST are considered, in particular,

ST designed to find the unknown result and which generate too much data

to be validated; ST that controls specification requirements other than

those provided for the assignment; ST whose requirements have not been

predefined in due course. When planning tests, software control issues

should be analyzed with particular care. The signs by which ST

performance results are classified as correct (incorrect), as well as the

methods for determining them, must be agreed in advance between

developers, customers, users and testers.

The analysis shows that absolute verification of the ST is not possible

in any of the considered approaches. Therefore, when planning the tests it

is necessary to analyze the structures of the tested programs and the input

data in advance. In particular, you should set the paths of the program

diagram that are most likely to be used when converting data. The

technique of solving the problem of test planning includes the following

steps: finding all the ways of implementation; selection of a minimum

subset of paths that allow verification of all sections of the program;

development of tests to check the selected paths.

It should be noted that as a result, the solutions receive not one subset

of paths, but some set of such subsets. Analyzing these sets by the criteria

of the minimum time of their implementation on the computer, the choice

of the most probable paths, the absence of these sets of incompatible paths

(the methods considered this disadvantage), choose the most acceptable

set. To create the input test data for each dedicated implementation path,

they make special tables. The tables represent only the conditional

statements that belong to this path and the operators in which the control

variables are calculated. As a result of the analysis of the prescriptions that

satisfy the conditional statements, they produce these tests.

The considered method of planning at the stage of stand-alone

statistical testing of SP modules can significantly reduce the material and

time costs of program testing. The orientation to one or another test

approach depends on the type of ST being tested.

For real-time systems and other systems whose state at some point in

time depends on the prehistory and the transformed data set, approach 1 is

87

most appropriate, but using initial data modeling methods (approach 5).

The essence is not so much the efficiency of the method, but the practical

impracticability of the early preparation of test data for each clock interval

of the program and many different conditions of operation.

In general, the design and organization of testing should seek a

compromise solution that takes into account two conflicting requirements:

ensuring maximum reliability of the generalized SP quality assessment and

performing the test in a limited time using limited resources. Considering

that an absolute evaluation of the ST is impossible, the task of planning the

test in these conditions reduces to finding solutions that maximize the

impact with limited material and time resources.

The maximum impact is the maximum attainable completeness, depth

and reliability of estimates.

The highest efficiency of ST quality control is achieved when the

control itself is carried out at all stages of the software life cycle, and

preparation for testing begins from the moment of software development.

There are three stages of the test: preparatory; direct testing; final

(preparation of reporting materials).

The tasks of these stages are obvious. Let us focus more on the tasks

of the preparatory stage. This stage is the longest and requires the highest

labor costs. Its main tasks are: test planning, development of technological

scheme of tests and test facilities; development of programs and test

methods; accumulation of preliminary statistics that characterize the ST.

Purposeful and accurate organization of work on the accumulation of

statistical data can significantly improve the reliability of the quality

assessment of software, eliminate duplicate checks and reduce the time of

testing and cost of material resources.

However, in some cases, due to poor organization of work, test results

at the program debugging and pre-testing stages are not recorded, so they

cannot be used for the final evaluation of the program's quality. Between

the selected stages of the ST test are direct and inverse relationships,

similar to the links between the stages of the ST life cycle. This means that

the completion of the works of the final stage may reveal the need to return

to the stage of direct testing (or even to the preparatory stage) to clarify

individual characteristics.

Clear planning of all test work is the basis for the success of ST

evaluation and quality assurance. Testing plan preparation should be

88

preceded by analysis of TOR for ST development, structural and functional

schemes, modes of operation, dependencies between program modules,

schedules for development and debugging of software components, results of

their quality control in the early stages of development. the course of the test.

As a result of this analysis, it is necessary to develop and substantiate

a general testing strategy, and on its basis – a set of documents on the

organization of tests, which should contain the answers to the following

questions: 1) the task of testing at each phase, the sequence of development

of phases; 2) the use of special testing facilities; 3) the amount of machine

time required at each test phase; 4) configuration of general hardware and

software; 5) evaluated properties, evaluation criteria, methods for obtaining

them; 6) procedures for monitoring the registration, collection, processing

and synthesis of test results; 8) conditions (criteria) of beginning and

completion of each phase of testing.

The program and methodology of acceptance tests are developed by

the customer with the participation of developers. The test program and

test procedure can be formulated as a single document or as two separate

but clearly agreed documents. If the test program is a separate document, it

shall contain the following sections: test object, test purpose, general

conditions, test volume, conditions and procedure for the test; the

composition of the hardware and software needed for the test; reporting;

applications.

It is difficult to overestimate the value of carefully tested programs

and test methods. Without these documents, the tests turn into a formal,

futile procedure that consumes considerable resources without due

diligence due to the mismatch of the test attributes.

Comparing the traditional program structure and test methods with the

structure of the test plan, it is easy to establish a common similarity.

Consider those sections of the test plan that are significant but not

explicitly reflected in the structure of the test programs and techniques.

Such sections include non-verifiable characteristics; test principles; criteria

of suitability/unsuitability of test items; criteria for suspension and

resumption of tests; tasks of staffing and training; risks and contingencies;

documentation.

The section «Non-testable characteristics» one should identify all the

features of the software and their combinations that are not tested during

the test and give a justification for that. For example, in preliminary ST

89

tests, it may be decided not to evaluate the ergonomic parameters, given

that they will be evaluated in experimental operation by a separate method.

This decision is recorded in this section. In the «Test Principles» section,

for each significant group of characteristics or combination of

characteristics, a principle or method should be specified, the

implementation of which ensures a complete and adequate verification of

all these characteristics. The main types of work, techniques and tools that

should be used in the verification of this group of characteristics, test

completion criteria for testing / testing (test item readiness, test resources

and timing) should be listed. clear criteria for determining whether or not

the test has passed the element. suspension of test work, list the test work

that must be repeated after the test is resumed. The section «Criteria of

suitability/unsuitability of testitems» indicates clear criteria for

determining whether or not the element has passed these tests. In the

section «Criteria for suspension and resumption of test «, the criteria for

complete or partial suspension of test works should be stated, and a list of

test works must be repeated, which must be repeated after the test is

resumed. In the section «Tasks of staffing and training» lists the measures

for the recruitment of test teams, requirements for qualification, measures

for professional development and gaining the necessary experience. The

«Risks and Contingencies» section defines the greatest possible risk in the

test plan (for example, the risk of untimely completion of the test or the

inaccuracy of their results), and approximately estimates the unanticipated

cost for some adverse test cases.

Having analyzed the contents of the selected sections, we can

conclude that it is advisable to include the information contained in these

sections in the ST programs and test methods. Such inclusion will help

increase the information content of these documents and streamline the

process of testing. It is necessary to spend considerable labor and material

resources for conducting software tests. The timing of the tests is always

limited. Therefore, the testers are always tasked with finding ways to

minimize the costs of material, labor and time resources to achieve the

purpose of the test. To accomplish this task, it is necessary to establish test

completion criteria, which can serve as a basis for deciding whether to

complete the test.

Test completion of technical devices (systems) is usually done on the

basis of an analysis of the completeness and reliability of the verification

90

of all the characteristics specified in the TOR for the development of the

device. If necessary, they check the conformity of the structure. When

evaluating the level of completeness of software tests and the reliability of

the results obtained, serious complications often arise.

Note the following: 1) most software are unique and either have no

analogues to compare characteristics or have analogues whose

characteristics are unknown; 2) the absence of generally accepted

indicators, as well as methods of calculating the necessary and actual

values, leads to the fact that in the TOR for the development of ST

requirements for the characteristics of the ST are either actually absent

(in quantitative terms), or are not complete.

Not every error can be quickly identified, so it is recommended that

you document all non-standard events that affect the test and require

further analysis, as reports. The following structure of this report is

recommended: test incident report identifier, annotation, incident

description, incident impact on the further course of the test. The last two

sections are basic.

The description of the incident should include the following elements:

input, expected and actual results, deviation from the norm, date and time

of the test, step of the test procedure, operating environment, results of

attempts to repeat the conditions of the experiment, testers, observers-

registrars. In the section «Impact» one should indicate (if known) the

possible actions of a registered incident on the course of the test, changing

the conditions of the test or test procedures. The registration of deviations

from the specified modes of operation of the ST (incidents) and detected

errors during the tests gives a one-sided characteristic of the tested

software and the test process itself. As the purpose of testing is to

determine the quantitative and qualitative characteristics of the properties

of the ST under test, therefore, in the presence of clearly formulated and

comprehensive ST requirements, the main criterion of test completion is

the fact of establishing the conformity (inconsistency) of the actual

characteristics of the ST specified in the TOR. However, in some cases, the

requirements for the ST are either not formally defined or cannot be

considered sufficient.

At the same time, it is necessary to conclude at a certain stage about

the degree of validation of the ST and the expediency of termination of

tests.

91

7. Benches for debugging and testing programs

The idea of simulation is the basis for the creation of complex

simulation test benches used for debugging and testing complex control

systems in real time. processing of simulation results functionally

combined on the basis of the tested software complex. Integrated

simulation-testing bench (ISTB) is a set of means of the system

investigated and their models, the model of the environment and the

programs of processing of the simulation results, functionally integrated on

the basis of the tested software complex.

Complex simulation and testing benches are used in polygon testing of

complex systems. Testing the performance and performance evaluation of

such systems in real-world conditions are often impossible for technical

reasons or because of the high cost of experimentation. Therefore, the idea

to create a model of the means of the test system and the model of the

environment and to combine them on the basis of a software complex

arose.

Functional integration of models and programs is achieved by

reconciling simulated models of system tools and the external flow of data

about the managed process with communication channels and timing

diagrams of programs. The general idea behind the creation of ISTB is

based on the fact that for testing (research) ST, implemented directly on

the computer control, it is necessary to simulate the controlled process and

simulate the entry into the computer information about this process.

The ST under test is «indifferent» to direct sources of information.

It is only important that all information is distributed on real physical

channels of the computer and time intervals, and also corresponds to the

set (expected) range of environmental conditions. Pairing models with real

system assets is necessary to evaluate the simulation results by comparing

them with real data. Using ISTB directly from the ST itself, not its model,

allows you to obtain more reliable results in the simulation and avoid large

additional labor costs for software model development. ISTB is created on

the basis of a computer system and a set of programs (software), intended

to convert the input information into the output control information.

The control computer, and the software package implemented on it,

constitute the controlling object of the system. The input to the controlling

object can come from either the actual system elements or their models.

92

Such combinations are also possible when some of the information comes

from the real elements of the system and some of it is simulated.

According to its purpose, ISTB should provide: simulation of the flow

of applications for system maintenance; simulation of the issuance by the

objects of the system of functional and one-time signals about the flow of

applications and the state of the controlled process; imposing random

interference on simulated signals; synchronization of simulated input (in

the computer) information with the timing diagram of the functioning of

the test system; required reliability of simulation results; repeated

reproduction of input conditions under which errors in the output

parameters of the system exceed the acceptable limits; statistical

processing of simulation results; real-time work. To create ISTB, in

addition to the main computer on which the tested ST is implemented, use

a computer of approximately the same productivity to implement the

complex The first computer (OS) is usually called technological, the

second – instrumental. Instrumental computers and software form ISTB.

Such ISTB is a cross system (CROSS-ISTB). The simulated on an

instrumental computer data is transmitted to the technological computer,

where it is processed as real data. Automated technological complex

(ATC) consists of elements of the following types: controlled

technological unit (CTU), automated process control system (APCS),

information sensors (IS) on the state of the controlled process. The

processing object (PO) enters the input of the ATC, the output – the

processing result (PR).

If we stop access to information in the computer from real physical

objects of the ATC, and instead enter adequate information simulated by

ISTB on the instrumental computer, then the process of software

functioning of the PCS will be adequate to the real one. The CTU operator

can be involved in both modes. The modeling subsystem includes: a

processing request model (PRM), a processing object model (POM); models

of information sensors (MIS); interference simulator (IS); model of

managed technological unit (MTA). The application model simulates the

flow of applications for processing, based on planned and production

considerations. According to a given priority or a random act, a serviceable

PO is selected from the set of POs simulated by the RM and its

characteristics. Or information sensor models are information models of

specific types of information sensors used in an ATC control system. They

93

simulate the issuance of current coordinates that characterize the state of the

technological process. The model of the controlled technological unit

(eg, rolling mill) simulates the controlled technological process (eg, rolling

of steel) with the release of relevant information about this process. The

impedance simulator, according to the given probabilistic characteristics,

simulates the effect of random factors on the elements of the simulated

system and the controlled process. Thus, the simulation subsystem,

simulating the technological process in a controlled unit, provides the

reproduction of the input information flow in the control computer, adequate

to this flow in the real conditions of operation of the ATC. The simulated

input information flow is to the input of the tested ACS software and

initiates its operation, the result of which is the output information flow that

is issued to the CTU or its model. A closed control circuit, adequate to the

control circuit in a real ATC, is formed. The main components of the test

result analysis subsystem are: program of sampling of results of

transformation of input data, programs of formation of standard values for

the analysis of correctness of results, program of comparison of actual

results with standard ones and evaluation of their acceptability (correctness).

The Event Logging subsystem provides documentation of the progress of

the test and the recording of all those characteristics that may be useful for

determining the values of the quality of the ST under test and for evaluating

the efficiency and status of the test process itself. The planning and control

subsystem, based on the analysis of the state of the tests, the results

obtained, the tested paths of the scheme of the test ST and the tasks coming

from the test programmers, plans the experiments and prepares the

corresponding initial data for the simulation subsystem. The same

subsystem relies on coordination (initialization) of all ISTB elements.

ISTB benefits are obvious. Its use allows to carry out a complex

combination of objects of the tested system and to check the principles of

control long before the creation of all elements of the system (the element of

the system, which is not completed, is replaced by a model).

The application of modeling allows to diversify the test conditions and

save material resources. Complex test simulation stands can be used not

only for testing programs, but also for investigating the interaction of all

elements of the system. The combination of the actual means of the test

system with their models allows to diversify the test conditions and

conduct semi-natural experiments. You can, for example, test the work of a

94

technological unit, that is automated, by modeling the behavior of the

processing object or, conversely, simulate the operation of the processing

unit when working with a real processing object. Such variations allow, on

the one hand, to check the adequacy of the models to their originals and

thus to make sure that the results of the statistical tests are accurate and, on

the other hand, use ISTB at the earliest stages of the development of the

software sample to select and approve the best design decisions.

REFERENCES

1. Feldbaum A.A., Butkovsky A.G. Methods of the theory of

automatic control, Main editorial office of physical and mathematical

literature "Nauka", Moscow: 1971, 744 p.

2. Atans M. and Falb P.L. Optimal management. Translation from

English. Ed. Dr. Techn. Sciences prof. Y. Topcheeva. M., "Mechanical

Engineering", 1968, 764 p.

3. Tsypkin Ya.Z. Fundamentals of automatic systems. Main Editing

Physical and Mathematical Literature Publishing "Science", Moscow,

1977, 56 p.

4. Ivashchenko N.N. Automatic regulation. Theory and elements of

systems. Textbook for universities. Ed. 4th, rework. and ext. М:

Mechanical Engineering, 1978. 236 p.

Information about the author:

Domnich V. I.

Candidate of Technical Sciences, Professor,

Head at the Department of Automated Process Control

of the V. I. Vernadsky Taurida National University

95

DOI https://doi.org/10.36059/978-966-397-107-0/95-123

RESOLUTION METHODS AND APPLIED PROBLEMS

OF GAME THEORY

Medvediev M. H.

1. Methods for Solving Matrix Games

Let the game involve two parties A and B. The playing field is given

by the payoff matrix (payment matrix – table 1):

Table 1

The strategy chosen by the party A, will be denoted as A1,A2,..., At;

and side B strategy will be given as B1,B2,..., ; – probability of

strategy use by the first party; xj – the probability of using the j trategy

by the second party B. A vector is the first (second) player's mixed

strategy

 ̅ () ̅ ()

for which

∑ ∑ (̅̅ ̅̅ ̅̅) (̅̅ ̅̅̅)

96

Elements of the payoff matrix can be positive, negative, or equal to

zero. If the element of the matrix is positive, then party B in a certain

situation pays the party A a sum of money equal to the element of the

matrix.

If the element of the matrix is negative, then party A pays party B a

um of money equal to the absolute value of the element. If the element is

zero, no payment is made.

We will consider zero-sum paired games
1
.

These are games whose payment amount is zero, that is, the loss of

one player is equal to the win of another. In this case, the average gain

(loss) – a mathematical expectation is a function of mixed strategies ̅ ̅:

Function S (x, y) is called a payment function of the game with matrix

[]
.

Strategies ̅̅ ̅ (

) ̅̅ ̅ (

) are called optimal, if

for the random strategies ̅ () ̅ () these

requirements are satisfied

 (̅ ̅̅ ̅) (̅̅ ̅ ̅̅ ̅) (̅̅ ̅ ̅) (1)

Using the optimal mixed strategies ̅̅ ̅ ̅̅ ̅in game gives the first player

a win no less than while using any other strategy ̅ and gives the second

player a loss no bigger than while using any other strategy ̅
The value of the payment function with optimal strategies determines

the price of the game C, i.e (̅ ̅)
The combination of optimal strategies and the price of the game is the

solution of the game.

It is proved that in order for the number C to be the price of the game,

and ̅ and ̅ to be optimal strategies, it is necessary and sufficient the

inequalities to work

∑

 (̅̅ ̅̅̅) ∑
 (̅̅ ̅̅ ̅̅)

 (2)

In the future, for certainty, assume that This can always be

achieved by that the adding to all elements of the payoff matrix the same

constant number d does not change the optimal strategies, but only

increases the price of the game for d.

1
 Neumann D., Morgenstern O. Theory of Games and Economic behavior. Мoskow: Science, 1970, 708 p.

97

1.1 Reduction of problems of theory of games to problems of

linear programming By dividing both parts of the first of inequalities

(15) by C, we get the system in the expanded form
2
:

{

 (3)

where

(̅̅ ̅̅ ̅̅)

Using the last notation, condition ∑

 can be written as

∑

As the first player tries to get the maximum win, he must provide a

minimum value of 1/ C. With this in mind, determining the optimal

strategy for the first player comes down to finding the minimum value of

the function

 ∑

 (4)

under conditions (16).

Similar considerations show that determining the optimal second

player's strategy comes down to finding the maximum value of the

function

 ∑

 (5)

under conditions

{

 (̅̅ ̅̅ ̅)

where

 ⁄ .

Thus, in order to find the solution of the game given by this payment

matrix (see table. 1), it is necessary to make dual (conjugated) linear

programming problems and solve them.

2
 Akulich I.L. Mathematical programming in problem examples. Мoskow: Higher school, 1986, 318 p.

98

The straightforward problem is to find the maximum value of the

function F, given by expression (5) under conditions (6).

Dual (conjugate) problem is find the minimum value of

function given by expression (4) under condition (3).

Using a solution of a pair of dual problems

 ̅̅ ̅̅ (

)
 ̅̅ ̅̅ (

) (6)

we get formulas for determining strategies and the price of the game:

∑

∑

 (7)

∑

∑

. (8)

So, the process of finding a solution to the game using linear

programming methods involves the following steps:

1. Assembling of a pair of dual (conjugate) linear programming

problems that are equivalent to such a matrix game.

2. Determining optimal plans for dual problems.

3. Finding a solution to the game, using the relationship between dual

problems' plans, optimal strategies and the price of the game.

According to these steps, we will solve the above-mentioned problem

of supply of raw materials by linear programming methods. In this problem

(game) the payment matrix is given in Table 2. In order for the price of

game C to be greater than zero, we add the number d = 400 to all elements

of this matrix. This, as mentioned above, will not change the optimal

strategies, but will only increase the price of the game by d = 400. After

that adding a payment matrix will look like

 (

)

According to the first stage, we make a pair of dual (conjugate) linear

programming problems that are equivalent to a given matrix game.

Direct problem (relations (5), (6)) is to find the maximum value of the

function

 ∑

 ()

 (9)

99

with restrictions

{

 (10)

Dual (conjugate) problem (relations (16) and (17)) is to find the

minimum value of the function

 ∑

 (11)

with restrictions

Having solved the problems of linear programming (9) – (12) by the

simplex method, we obtain

 ⁄

 ⁄ ⁄

 ⁄

 ⁄ ⁄

Substituting these solutions into relations (20) and (21), we obtain the

optimal strategies of the firm A:

∑

∑

∑

∑

optimal strategies of the supplier company B:

∑

∑

and the price of the game

∑

∑

100

Since adding to all elements of the payment matrix the number

d = 400 has increased the price of the game by 400, the true price of the

game of the initial problem (expected losses of the firm A) will be

165.8 – 400 = -234.2 $

As it is easy to check, the optimal strategies and the price of the game

found by linear programming methods are exactly the same as those found

above using the graphical method.

Unlike the graphical method that can be applied when either or

 , the linear programming method can be applied to arbitrary finite

values mi n

1.2 An iterative (approximate) method for solving the problems of

game theory Two approaches to solving the problems of game theory

have been considered above: graphic and reduction to linear

programming problems. In both cases there is an exact solution to the

problems of game theory – the price and optimal mixed strategies of

players A and B.
Let us now consider an approximate method for solving the problems

of game theory, which reflects to some extent the real situation of the

players' gradual accumulation of experience in adopting rational strategies

as a result of many repetitions of conflict situations (games)
3
.

This method allows you to simulate the process of training (behavior)

of players during the repetition of the game, when each of them evaluates

the behavior of the opponent and responds to it in the best way for

themselves. Each time at the beginning of the game, they choose the most

advantageous strategies for themselves, basing on the previous choices of

the opponent.

Let us solve, using this method, the previous problem with firms A

and B, for which the payment matrix is given in Table 2 in the case when

the game is antagonistic.

On the first day after the conclusion of the contract, firms А and В

accept random strategies, for example: firm А uses strategy

А3 (–190, –250), firm В uses strategy В2 (–400, –300, –250, –200).

Let us build a model that describes the rules for choosing the next

«moves» by firms A and B.

3
 Kudryavtsev E.M. Research of operations in problems, algorithms and programs. Мoskow: Radio

Communication, 1984, 184 p.

101

On the second day, the firm A chooses its strategy so that its win with

the strategy B2 of the company B was the maximum, i.e the losses, taking

into account the signs of payment, were minimal (–200). Obviously, this

will be the strategy A4 (–330, –200).

Firm В, taking into account the previous day, chooses the strategy В2

again to inflict the firm А with the greatest losses (-250) when its strategy

is А3.

On the third day, the firm A chooses its strategy so that its

accumulated (total) losses for the previous two days with the strategies B2

of the firm B

(

) ()

 () ()

were minimal (they are highlighted). Obviously, this will be the

strategy А4. FirmВ selects its strategy on the same day, based on

information on the strategies of the firm А for the previous two days, so

that the total losses of the firm А with its strategies А3 і ,

(

) () () ()

were maximal (they are highlighted). This is strategy

On the fourth day, the situation is repeated. Firm А, Basing on the

previous actions of the firm В, in three days chooses its strategy so that its

total losses for these days with the strategies В2, В2, В1 of the firm В,

(

) ()

 () ()

were minimal. This is strategy A3.

Firm В, whose purpose is to maximize the losses of the firm А with its

strategies А3, Аа,А4,

(

) () () ()

chooses the strategy B1.

In the following days, the situation is repeated, the behavior of the

choice of strategies by firms A and B does not change, its results are shown

in table 2:

102

T
ab

le
 2

103

where n denote the number of days elapsed after the conclusion of the
contract, or a pair of successive strategies («moves») of the firms A and B;

i denotes the strategy number selected by the company A;

 - denote accumulated (common) losses of the firm A for the

first n
days using the strategies В1, В2 of the company В;

 - maximum average losses of the firm A, which are equal to the
maximum accumulated losses for the first n days divided by the number of
these days;

j – denote the strategy number selected by B.

 are accumulated (general) losses of the firm A for the

first days according to its strategies respectively A1, A2, A3, ;

 is the minimum average losses of the firm A, equal to the minimum
accumulated losses for the first n days divided by the number of these days;

̅̅ ̅denotes an average value of maximum (

) and minimum
(

)average losses of firm A;
 - denotes real company A losses for each day;
 - denotes actual accumulated losses of the firm A for n days;
 ̅̅ ̅is the real average losses of the firm A in one day, which are added

with the accumulated real losses for the first n days divided by the number
of these days.

Table 2 shows that with increasing n all three values:

̅̅ ̅ approach the exact value of losses (price of the game) of

the company A, which equals to $234,2. and were previously found by the

graphical method (§1.2), but the average
̅̅ ̅ coincides relatively faster

since

The mixed strategies of the firms A and B also increase with their

exact values as they increase n (see §1.2, 1.4), respectively

 ̅̅ ̅ () ̅̅ ̅ (), but slowlier.

For example, after n=19 repetitions of the game (days), the
approximate values of losses of the firm А(the price of game)

̅̅ ̅̅̅ , and the approximate values of mixed strategies of firms
А і Вare often determined by their clean strategies:

 (

) ()

 (

) ()

104

For comparison, the last three columns of table 13 provide real

information about the course of the game (each game implementation),

which shows that the model (algorithm) adequately reflects the behavior of

the players (firms А and В) during the repetition of the game and allows

them to determine their optimal strategies and the price of the game (losses

of the company А).

It can be seen from the above that the iterative method is practical and

universal at the same time. Using it, you can easily find an approximate

solution to any matrix game. The volume and complexity of calculations

increase relatively slowly as the matrix game size increases.

1.3 Direct Solution of Matrix Games

In principle, any matrix game can be solved by inequalities (15). But it

requires a lot of calculations, which increases with the increment of

number of players. Therefore, if possible, reduce the number of clearplayer

strategies using the «dominance principle» that is as follows
4
.

If the elements of some row of the payoff matrix are smaller than the

corresponding elements of some other row of the same matrix, then the last

row dominate the first. The first row is removed from the matrix. The case

with columns is similar, only the column with larger elements is removed.

Further we have to check the inequalities (15). If inequation (15) is

fulfilled, then players have pure optimal strategies (the player has the pure

maximin strategy and the player the pure minimax). And if not, at least one

player's optimal strategies will be mixed.

Let us consider the principle of dominance on the example of the

problem of planning the production of by-products (antagonistic case).

1.4 The problem of planning the production

of by-products (antagonistic case)

Let it be: in some city there are two enterprises, which in addition to their

main products may produce some by-products of the same purpose for the

population, but it may be different in design and convenience, etc. Let us

suppose that enterprise А А1, А2, А3, А4, А5, and enterprise В produces

byproducts of type В1, В2, B3, В4, В5. The cost and sales price of all products

are the same. Demand forecasting sociologists have determined that

N=1000 units will be sold; moreover, if the first enterprise A (player I) will

4
 Dyubin G. N., Suzdal V. G. Introduction to Applied Game Theory. Мoskow: Science, 1981, 336 p.

105

produce products of type , and the second enterprise B (player II) – products

of type , then the city will find sales of goods of type and

() of goods of type . The capacity of the

enterprises is such that each of them can provide the city. Taking the profit

from the sale of a unit of goods equal to one, and the usefulness of the player

I equals its profit, the payoff matrix H of player I can be written as follows:

 ()

Similarly, the payoff matrix of player II is written, whose element

(i, j) is () . Since in any situation the sum of profits of players I and

II is equal to the same number () , an increase of player I

winnings is equivalent to a decrease of player II winnings, i.e the interests of

players are opposite. Therefore, player II, minimizing sales of goods

of player I, maximizes () sales of his goods Bj Therefore, the game

given by the matrix H, simulates an antagonistic game.

The solution of the game determines the optimal strategies ̅ ̅ for

players I and II, respectively, as well as the mathematical expectation of

winning of player I is equal to (̅ ̅) In this game, the mathematical

expectation of winning of player II is equal to (̅ ̅). Since the sum of

goods sold equals toN, the mathematical expectation of goods sold by the

enterprise B equals to (̅ ̅).

Let us consider the solution of the game on a specific numerical

example. Suppose that the estimated share of sales of enterprise A products

is given in Table 3.

Table 3

106

It is necessary to determine the types of products produced by each

enterprise. In this case, the player's I payoff matrix will look like this

(

)

Noting that it is enough to solve the game with a matrix of

winnings

 i.e

(

)

The game with the payoff matrix H
1
 is called the subgame of the

game with the matrix H. The set of pure strategies of each of the players in

the game is contained in the set of its pure strategies in the game itself,

from which it follows that the set of mixed strategies of each player in the

subgame is contained in the set of the mixed strategies of the game.

We apply the principle of dominance. It is easy to determine that the

elements of the fifth row of the matrix H
1
 are not greater than the

corresponding elements of the first row, and therefore the first strategy of

player I dominates the fifth. In addition, the elements of the first and

second columns are not less than the corresponding elements of the fourth

column. Therefore, player's fourth strategy dominates his first and second

strategy. According to the principle of dominance, we remove the fifth row

and the first and second columns. Obtain a subgame of the game with the

payoff matrix H
1
, which in the matrix form is given by the matrix

 (

).

Note that the ith row of the matrix Н
2
 is corresponded by ith strategy,

andjth column – (j + 2)-th strategy of the game . Analysis of the

matrix shows that the third strategy of player II is dominated by a

107

mixed strategy that uses fourth and fifth strategies with the probabilities

3/5 and 2/5 respectively. According to the principle of dominance, we

remove the first column of the matrix and get a subgame with a matrix

 (

)

any solution of which is the solution of the game H
2
, and game i H.

From the analysis of the matrix H
3
 it is easy to determine that the

elements of the second row are not larger than the corresponding elements

of the third row, and the elements of the fourth row are not greater than the

corresponding elements of the first row. Therefore, the first and third

strategies of player I dominate respectively the fourth and second strategies

of player I.

Again, using the dominance principle, we obtain a subgame with a

matrix

 (

)

Let us see if the game has a solution in pure strategies, with optimal

strategies of players I and II respectively being a pure maximin strategy

and a pure minimax strategy. However, if the game with a payoff

matrix is not solved in pure strategies, then both players have only

optimal strategies that use all their pure strategies with positive

probabilities.

The matrix does not have saddle point, because the equation of

elements is not satisfied

matrix , i.e the optimal strategies of the players are mixed.

Let ̅ – be a random mixed strategy of player I. If is the probability

of a player's choice of his first strategy in terms of ̅, then the probability

of him choosing a second strategy is . Similarly, if ̅ is a random

mixed strategy of player II, then it looks like (). It is easy to

prove that the optimal strategies of players I and II

 ̅̅ ̅ (

) ̅̅ ̅ (

)

108

are calculated by the formulas

and the payment function of the game is equal to

 (̅̅ ̅̅ ̅̅ ̅)

As a result of calculations we get

 ⁄

 ⁄ () ⁄

Strategies ̅̅ ̅ (⁄ ⁄) and ̅̅ ̅ (⁄ ⁄)are consistent to

strategies ̅̅ ̅ (⁄ ⁄) and ̅̅ ̅ (⁄⁄)

of the initial game. The value of the game with the payoff matrix H is

equal to 1100/3.

The result means that the enterprise A selects the production i

 with probabilities that are equal to 2/3 and 1/3 respectively, and the

enterprise B – production B4 and Band 5 with probabilities of 5/9 and

4/9 respectively. Thus the mathematical expectation of the number of

goods sold by enterprises A and B will be equal to 1100/3 and

1900/3 respectively.

2. Non-zero-sum bi-matrix games

Above, the zero-sum paired games, which are entirely determined by

one payment matrix, were considered (Table 12). The optimal strategies

are the following strategies ̅̅ ̅ and ̅̅ ̅ respectively for the parties A and B,

which satisfy the conditions (15), under which it is not advantageous to

deviate from these strategies for any player. This is called the equilibrium

situation. It proves that zero-sum games always have at least one optimal

solution (̅̅ ̅ ̅̅ ̅), i.e at least one equilibrium point with the price of the

game (̅̅ ̅ ̅̅ ̅) As a rule, such a solution is unique
5
.

But, even when there are no such points of equilibrium, the price of

the game is always the same and is equal to (
 ̅̅ ̅

 ̅̅ ̅)().
Therefore, such equilibrium points are considered equivalent and in the

general case one can assume that zero-sum games always have the only

optimal solution.

5
 Zamkov OO, Tolstenko AV, Cheremnykh Yu.N. Mathematical Methods in Economics. Мoskow: DIS,

1997, 368 p.

109

Unlike zero-sum games, there are non-zero-sum games where it is not
necessary for one player to win and the other to lose; they can both win
and lose at the same time.

As the interests of players in such games are not completely opposite,
their behavior becomes more diverse. For example, if a zero-sum game
made it unprofitable for each player to tell his or her strategy to the other
(this could reduce his or her winnings), then in a non-zero-sum game, it
becomes desirable to coordinate with or influence a partner in some way.

Non-zero-sum games are also called bimatrix, as they are defined
either by two matrices indicating the payments (winnings) of each party A
and B:

or by one block matrix whose elements are pairs or blocks (),

There are two types of bimatrix games – non-cooperative games, that

prohibit any co-operation of the parties, and cooperative games, that allow
such cooperation. It is obvious that cooperative games are a more complex
object of study (at least because forms of cooperation can be diverse).

3. Non-cooperative games
In most economic, industrial, military, political, environmental, and

adaptive maintenanceadministrative-legal conflicts, the purpose of each
participant is to obtain as much individual gain as possible. All participants
in such conflicts, for example, can win at the same time. Therefore, the
non-compliant interests of participants are not quite the opposite, which
makes the conflict non-antagonistic. Such a conflict may be modeled by a
non-cooperative game if it fulfills such conditions.

110

1. Conflict is determined by the non-antagonistic interaction of the

participants.

2. The parties of the conflict cannot (or have no right) to make

mutually binding agreements.

3. The parties' own actions are performed independently of each

other, that is, each of them has no information about the actions taken by

the other party; the results of these actions are estimated by the real

numbers that determine the usefulness of the situation for each

of the parties.

4. Each of the parties of the conflict knows, both for themselves and

for others, the usefulness of any possible situation that may result from

their interaction.

3.1 Situations (points) of equilibrium

Let us take a closer look at non-cooperative games. In this case, an

important role is played by situations of equilibrium, characterized by the

fact that it is disadvantageous for none of the parties to violate them. and

earlier, through (), ()mixed strategies of

players A and B.

Then their average winnings will be accordingly equal to

 (̅ ̅) ∑ ∑

 (̅ ̅) ∑ ∑

 (12)

If among the common strategies there are ̅̅ ̅ (

) and

 ̅ (

)that satisfy the conditions

 (̅
 ̅) (

 ̅ ̅) (
 ̅ ̅) (

 ̅ ̅) (13)

then using ̅̅ ̅ ̅̅ ̅̅ and ̅ creates an equilibrium situation.

The theory holds that every non-cooperative bimatrix game has at

least one equilibrium situation (point) determined by inequations (13).

When such a point (pair) (̅ ̅) is unique, it can be considered as the

optimal strategies ̅̅ ̅and ̅̅ ̅ of the sides A and B.

Uncertainty arises when there is more than one equilibrium point that

satisfies conditions (27). And, unlike zero-sum games, the winnings of the

parties A and B in these points differ – they are not equivalent.

Consider this situation using a simple example.

Let the block payment matrix (Table 4) look like this

111

Table 4

By a straightforward substitution of formula (12), it is easy to check

that pure strategies are ̅̅ ̅ () ̅̅ ̅ () and

 ̅̅ ̅ () ̅̅ ̅ ()satisfy the equilibrium conditions. The

winnings of the parties A and B at these points of equilibrium are

respectively equal to

 (̅̅ ̅ ̅̅ ̅) (̅̅ ̅ ̅̅ ̅)

 (̅̅ ̅ ̅̅ ̅) (̅̅ ̅ ̅̅ ̅)

Now let us check whether there are points of equilibrium among the

mixed strategies of the parties A and B.

Since

then from relations (13) and Table 15 it implies that the average

winnings of the parties A and B are respectively equal to

 (̅ ̅) ()() (14)

 (̅ ̅) ()()

that is, SÀ and SB are functions from two variables and :

 () ()()

 () ()()

The equilibrium situation is characterized by the fact that it is not

profitable for the side A to change its strategy , and for the side B – its

strategy , because this will reduce their average winnings. It follows that

the equilibrium conditions in this case have the form

{

 ()

 ()

112

Solving this system of equations, we find the third equilibrium point

among the mixed strategies for the sides A and B:

that is

 ̅
 () ̅

 ()

with the winnings calculated by the formulas (28):

 (̅
 ̅

) (̅
 ̅

)

It is easy to check that the equilibrium conditions (27) are satisfied at

this point:

 (̅ ̅
) () (̅

 ̅
)

 (̅
 ̅) () (̅

 ̅
)

Obviously, the first situation (point) of equilibrium is more favorable

for the side A, the second – for the side B. In the third equilibrium point,

the parties' gains are the same, but they are smaller than in the first and

second points. In the end, it is difficult to understand what the outcome of

the parties А та В may be and how they should behave.

Thus, if there is more than one point (situation) of equilibrium,

unambiguous recommendations for the choice of optimal strategies for the

parties A and B cannot be given. In many cases, mutual contacts and

agreements between the parties A and B make it possible.

In general, non-cooperative games are examined on a case-by-case

basis.

3.2 The problem of planning the production

of the by-product (non-antagonistic case)

Let us consider the problem of planning the production of the by-

product (non-antagonistic case).

Suppose that two enterprises can produce by-products in the same

production conditions as in the antagonistic case, but the possibility of

selling these products has changed.

Now, according to sociologists, if the first enterprise (player I) will

produce products of type (), and the second (player II) –

products of type (), then the city will find sales aijof goods of

type and sales of goods of type Вj .

113

Since the sale of products of any enterprise depends on what products

the other enterprise produces, and each enterprise tries to maximize the

volume of sales, we have a production-trade conflict. This conflict is

modeled by the game of the same players I and II with the same

respectively m and n strategies as in the antagonistic game.

But this game is non-antagonistic, since the amount of products sold

will now depend on the situation.

Taking the profit from the sale of units of goods equal to one, and the

utility of players I and II equal their income, we model this conflict by a bi-

matrix game given by a pair of matrices

 ()

 і ()

where and – wins of the players I and II respectively in the

situation(i, j).

Consider the solution of this game on a specific numerical example,

assuming that companies I and II plan to produce by-products of types

 () and (), respectively, and the expected profits from

the sale of these products are given by the matrices:

 (

) і (

)

It is necessary to determine the type of products that make sense for

each enterprise.

Let us denote

If and , then the game has a balance of mixed strategies,

namely

 ̅ (

) ̅ (

)

where

As a result of calculations we get

114

Therefore, the equilibrium situation is formed by vectors

 ̅ (⁄ ⁄) ̅ (⁄ ⁄)

and the mathematical expectation of the winnings of players I and II in

the equilibrium situation will accordingly be

 (̅
 ̅) ()

 ()

 ()

 (̅
 ̅) ()

 ()

 ()
 .

The result means that the enterprise A selects the production of type А1

and А2 with probabilities that are equal to 3/5 and 2/5 respectively, and the

enterprise В – production of type В1 and В2 with probabilities of 2/3 and

1/3 respectively. Thus the mathematical expectation of the number of

goods sold by enterprises A and B will be equal to $500 and $1100

respectively.

4. Cooperative games

4.1 Problem Statement

Most non-antagonistic conflicts in the economy and related industries

are characterized by the fact that their participants can join forces through

cooperation. Cooperation between players results in a qualitatively new

conflict compared to a non-cooperative case.

As we have seen, in non-cooperative games, deviating one of the

participants from the equilibrium situation does not give him any

advantage. But if several players deviate, they can earn more than in the

equilibrium situation. Therefore, in conditions where cooperation between

players is possible, the principle of equilibrium does not come true.

For example, let a non-antagonistic game be given by the following

matrices:

 (

) (

)

Here, the only equilibrium situation will be a situation (0,0) in which

each player chooses his or her second pure strategy and wins a unit.

115

However, it is obvious that if players agree and choose their first pure

strategies, then in the situation (1,1), each of them will win five units.

However, it is clear that this situation, which may arise in the case of

cooperation, is rather unstable, since each player, randomly changing his

strategy, increases his winnings.

4.2 By-Product Production Planning Problem (Cooperative Case)

Let two enterprises produce by-products under production conditions

adopted as in antagonistic case, but taking into account sales opportunities,

as in a non-cooperative case. Then, as it was established, such a conflict is

modeled by a finite game of two persons with a non-zero sum given by a

pair of matrices () and () elements of which are the

winnings (in units of utility) of players I and II respectively, if they are

chosen respectively by their i-th and j-th pure strategies.

Now, in this game, given the nature of the conflict, it is allowed to

cooperate without transferring utility from one player to another, that is,

players can make agreements and choose a compatible strategy ̅.

Obviously,

 ̅ () ∑

where – denotes the probability of choosing respectively

compatible strategies (i, j) by players I and II.

The mathematical expectation of winning, respectively, players I and

II under the conditions of their strategy is naturally determined by the

formulas

 (̅) ∑

 (̅) ∑

The points ((̅) (̅)) form the valid set R.

By agreement, players can get as a win a random vector of this set

(̅ (̅) ̅ (̅)).

116

Obviously, with compatible actions, players I and II must win no less

than the values as if playing the antagonistic game (̅
 ̅) and

 (̅ ̅), calculated by formula (26), which are players' winnings when

they fail to reach an agreement.

To find (̅(̅) ̅(̅)) use the followingarbitration scheme.

1. The beginning of coordinates is transferred to a point with

coordinates (̅
 ̅) and (̅

 ̅), that is, this point is transferred to a

point (0,0), where the set P becomes the set .

2.There is a single point with the coordinates ̅
 (̅

 ̅) and

 ̅
 (̅

 ̅) with where ̅
 (̅

 ̅) and ̅
 (̅

 ̅) and

 ̅
 (̅

 ̅) ̅
 (̅

 ̅)is the maximum of all earnings

 (̅

 ̅)
 (̅

 ̅).

3. We find the arbitration solution by inverse transformation of utility

relative to ̅
 (̅

 ̅) and ̅
 (̅

 ̅).
Let us find an arbitration solution for specific data of the problem of

planning the production of by-products in a non-cooperative case, that is,

let a cooperative game without side payments be given by the following

matrices:

 (

) and (

)

In the non-cooperative case, the equilibrium vectors were vectors

 ̅ = (3/5, 2/5), ̅ = (2/3, 1/3). As it has been explored, in a non-

cooperative bimatrix game, where cooperation is neglected and players

choose their strategies independently, the mathematical expectation of

winning of the player I is equal to (̅
 ̅) and player

II - (̅ ̅) .

Now suppose that players can cooperate and choose a compatible

mixed strategy without passing on utility to one another.

We transform the coordinates by moving the origin to the point

(500, 1100) by the formulas

 (̅
 ̅) (̅)

 (̅
 ̅) (̅)

thus constructing the area .

Let us find the point with the coordinates ̅
 (̅

 ̅) and

 ̅
 (̅

 ̅)that maximizes the function

117

 ̅

 (̅
 ̅) ̅

 (̅
 ̅)

на множині при ̅
 (̅

 ̅) і ̅
 (̅

 ̅) .

The equation of the line passing through the points (-200, 900) and

(400, -600) has the form

 (̅ ̅)

 (̅
 ̅)

Substituting this into function
 , we differentiate the result

expression, equate the derivative to zero, solve the obtained equation with

respect to ̅
 (̅

 ̅), and find

 ̅
 (̅

 ̅) ̅
 (̅ ̅)

Next, by inverse transformation, we find the arbitration solution for

the original cooperative game:

(̅ (̅) ̅ (̅))

The arbitration award can be implemented by applying a compatible

mixed strategy ̅ () The strategy j components are found

from the formulas for calculations ̅ (̅) ̅ (̅), substituting (̅)
 ̅ (̅) (̅) ̅ (̅)

In particular, we find ⁄ ⁄ , according to which

player I uses only the second strategy, and player II applies the first and

second accordingly with probabilities 8/15 and 7/15. In this case, the

agreement between the players leads to the fact that the mathematical

expectation of winning players I and II will accordingly equal $580.

($500 in non-cooperative case) and $1300 ($1100 in the non-cooperative

case).

Thus, cooperating in a non-antagonistic conflict increases the

mathematical expectation of winning (in the sense of utility) of each

player.

5. Optimizing product quality control

Let us consider, for example, using an example of the optimization of

product quality control, the non-cooperative case and the case of players'

cooperation
6
.

6
 Ivanilov Yu. P., Lotov A. V. Mathematical models in economics, Мoskow.: Science, 1979, 304 p.

118

5.1 Problem statement

Let some products, manufactured by the supplier company A
(raw materials for light industry, primary agricultural production, etc.), be
supplied to the enterprise B for the recycling and manufacturing of finished
products (clothing, shoes, food, etc.). Each enterprise is interested in
increasing its profits. In this regard, the enterprise B controls the quality of
the products of the enterprise A, and the enterprise A is not always
interested in improving its quality.

As the control frequency decreases, impunity for product suppliers
increases, which in pursuit of quantitative indicators weaken attention to
product quality.

As the control frequency increases, the quality of the products of
company В improves, but the cost of control increases. It is necessary to
determine the optimal frequency of control over the quality of products of
the enterprise A by enterprise B,, as well as the optimal enterprise A
strategy to increase their profits.

Fig. 1

Let us enter the symbols:

 - respectively the price and cost of quality products of the
enterprise A;

 – the corresponding price and cost of the defective products
of the enterprise А;

 ~ respectively the prices of defective and quality products of
the enterprise В;

 – cost of manufacturing of products by the enterprise В;

 - cost of control for the enterprise B;

Cш – the cost of the fine paid to the State bythe enterprise A in the case

of finding a defect.

119

We present graphically the movement of products from the enterprise

A to the enterprise B (Fig. 4).

5.2 Non-cooperative case

We use the theory of non-cooperative games to solve this problem.

Let us denote by the probability of producing quality products by the

company A (strategy), and by – defective ones (strategy A2),

while . Let us denote by хк the probability of production

control of the enterprise В (strategy), and by хв – the probability of lack

of control (strategy В2), хк + хв = 1. Let us draw up the matrix of wins

(profits) for enterprises A and B respectively (Tables 5 and 6).

 Table 5 Table 6

Then their average profits (winnings) according to formulas (26) will

be equal to

 () ()
 () ()

 () ()
 () ()

Using the notation

we get

 () ()[()] (15)

 ()
 ()[()]

The equilibrium situation in this problem is characterized by such an

optimal pair (point) (y*, x*) – the optimal frequency (probability) of

control x* of the enterprise А by the enterprise В and the optimal frequency

(probability)у* of production of quality products by the enterprise А,, in

120

which it is unprofitable for the side В to change its strategy x*, and for the

side А to change its strategy у*, as it will decrease the average profits

(winnings). The equilibrium conditions are:

 [()]= 0;

 ()()

Solving this system of equations we obtain

 (16)

It follows that for any non-zero control value for enterprise B there

is some optimum defective part for the enterprise A, which is equal to
 .

In order to reduce the critical control frequency
 of the enterprise B, it is

necessary to increase the value of the fine .

Substituting the obtained values and , calculated by the formulas

(30), into the relation (29), we obtain the expected optimal profits (wins) of

the enterprise A and B.

()

 [

()]

(

)

 [

()]

121

after simplification we have

 (17)

5.3 Cooperative Case

The theory of non-cooperative games was used above to solve the

problem, that is, the situation was considered when the enterprises А і В

did not have any agreements (cooperation) about increasing own profits –

each company operates at its own discretion. In this case, the total profit at

their optimal strategies is equal to

Now let us suppose that between the enterprises A and B there is an

agreement to join their efforts in order to increase the total profit. In

particular, this may be the case when an enterprise B absorbs an enterprise

A. In this case, they have one goal – to increase the total profit – which

corresponds with one payoff matrix (profit) equal to the sum of the payoff

matrices separately for enterprises A and B (tables 5 and 6):

Table 7

Since the elements of the second column of this matrix (Table 7) are

larger than the corresponding elements of the first column, then for

arbitrary strategies of the enterprise А the second strategy of the enterprise

В,, which is characterized by the lack of control over the products of the

enterprise А (хк=0; хв=1), is optimal for increasing the overall profit of the

enterprises А and В, which average (expected) value in this case is

 () ()

 ()() () (18)

122

Due to the fact that the profit from the sale of quality products is

higher than from the defective ones,

and unlike the first case, when an enterprise A works only for its own

profit and it is profitable for it to produce some defective products y6*, in

order to increase the total profit 5 *A+B it wants (is interested) to reduce this

proportion. Whenb= 0, the total profit equals to

We calculate how much greater the total profit of enterprises A and B

are, when they work together, from the total profit when they work

separately, each for its own result (see (31), (32)):

 (

) ()()

 ()

after simplifications

 ()

 (19)

Since the value of the expression in parentheses is always positive, the

difference is a linear descending function relative to (the share of

defective products of the enterprise A). Therefore, the maximum difference

value looks like

()

when

Let enterprise A, working with company B, produce the same

proportion of defective products yб* when it works independently.

Substituting
 , which is determined by relations (16), into

expression (33), we obtain

 ()

after simplifications

123

which is obviously less than
()-

Finally, it is possible to calculate the share of the enterprise A

defective products, at which. From relation (33) we obtain

()()
 (20)

that is, if the enterprise A works together with the enterprise B with

this share of the defective products, then the total profit of the enterprises A

and B does not increase, compared to the total, when they work separately,

and the share of the enterprise A defective products is equal to
 .

Obviously,

 .

REFERENCES

1. Neumann D., Morgenstern O. Theory of Games and Economic

behavior. Мoskow: Science, 1970, 708 p.

2. Akulich I.L. Mathematical programming in problem examples.

Мoskow: Higher school, 1986, 318 p.

3. Kudryavtsev E.M. Research of operations in problems, algorithms

and programs. Мoskow: Radio Communication, 1984, 184 p.

4. Dyubin G.N., Suzdal V.G. Introduction to Applied Game Theory.

Мoskow: Science, 1981, 336 p.

5. Zamkov O.O, Tolstenko A.V, Cheremnykh Yu.N. Mathematical

Methods in Economics Мoskow: DIS, 1997, 368 p.

6. Ivanilov Yu.P., Lotov A.V. Mathematical models in economics,

Мoskow.: Science, 1979, 304 p.

Information about the author:

Medvediev M. H.

Technical Sciences, Professor,

Head at the General Engineering

and Thermal Power Engineering Department

of the V. I. Vernadsky Taurida National University

124

DOI https://doi.org/10.36059/978-966-397-107-0/124-152

MODELING OF ECONOMIC SYSTEMS.

GAME APPROACH

Medvediev M. H.

1. General Model

Let as suppose that a number of players participate in a game where

they follow certain rules. The win that everyone gets as a result depends on

their own actions as well as the actions of other players. If we consider this

game in terms of its logical characteristics, abstracting from its social

content, we will notice a clear similarity with the situations we discussed.

The players are our participants in the economic process, the rules of the

game – our setting or physical or institutional constraints, the winnings –

our usefulness or income. That is why the general concept of game theory

is well applicable to the study of economic sphere
1
.

We denote each player or participant by the index r or

s (r, s = 1, 2,..., n). Actions r can be represented in an adequate mathematical

way, which in the general case is a vector in some space. Rules or

restrictions require that should belong to some predetermined set

 (1)

The player who wins the prize r, is a numerical function of the actions

made between all participants:

 () (2)

This presentation of the game is rather conditional. But it does not

suggest that the game consists of one move and all players act at the

same time. In fact, should be interpreted as a strategy that determines

the actions of player at each move in all situations in which he/she

may find him/herself as a the result of other players' actions. Let us

suppose, for example, that a two-player game (A and B) consists of three

moves, with the first one making the first and third moves and the

second making the second move. Let us suppose that B has only two

possible moves, denote them respectively by 1 and 2; player A knows in

1
 Malenvo E. Lectures on Microeconomic Analysis. Мoskow: Science, 1985, 392 p.

125

the third move which choice is made by player B. Actions of player A

will thus have three components: what A does in the first move; what he

does in the third move if B chose 1, and what he does on the third move

if B chose 2. In games, even if not very difficult, a component has

obviously a very large number: presenting a game with and can be

very complicated. But this is not a barrier to abstract and general

exploration. In setting such a logical structure, the problem of game

theory is to determine what actions are taken or should be taken by

players if each of them knows not only their own multitude and their

own function but also the multitude and the win functions , of

other players.

It should be noted that the knowledge of and envisaged by all

participants may prove to be very limiting for the application of game

theory to the study of economic phenomena. It contains the natural

assumption that the number of participants is small and each of them can

effortlessly learn about the conditions of activity of each other

participant. However, it is clear that this assumption makes game theory

inadequate for the consideration of all the issues that arise from the need

to organize information sharing in communities with large numbers of

participants.

Game theory, if it were able to provide a general solution to the

problem, could form the basis of a broad field of microeconomic theory. In

all game theory, the difference between the presence and absence of

cooperation between participants is essential both for formalization and for

exploring the applicability of one or another of its variants.

In the formal examination, the above mentioned difficulties relate to

the choice of general concepts, which allows to describe the result of

cooperation between the participants. This choice is not easy. But it does

not cause difficulties if the cooperation is removed. The concept of non-

cooperative equilibrium, which is also called the Nash equilibrium, is

natural and can be applied to quite a variety of situations. Such an

equilibrium is a possible state, that is, a set of certain values of

 vectors belonging to a set that

 (

)
 (

) (3)

126

for all is and for all r. In other words, is a non-cooperative

equilibrium if neither participant is interested in changing its actions and if

he/she considers the actions of others as set ones.

As we can see in the two examples, the non-cooperative equilibrium is

not very plausible for the large number of cases in which the number of

participants is small, because each of them is aware that his/her decisions

affect the decisions of his/her partners. On the contrary, the case where

there are many participants and each of them is insignificant and poorly

aware of the other's capabilities, is more in line with the non-cooperative

equilibrium in which the participants' awareness requirements are low.

Therefore, the structure of the participant community is essential when

choosing between these two basic assumptions, but it is not just that.

The nature of the relationship between participants (partners and

adversaries, suppliers and clients, managers and their employees, etc.) also

influences the degree of cooperation that is established between them. and

duopoly. To begin the consideration of the application of game theory

having imperfect competition, let us first consider a bilateral monopoly and

a duopoly.

Let us note that most of the models studied using economic theory are

complications of the general game theory model: the set of possible

actions of a participant r is initially not completely specified, but partly

depends on the actions of other participants, i.e

 () (4)

However, this complication does not essentially relate to the definition

of basic concepts, such as the Nash equilibrium. (Of course, this implies

that n conditions (38) are not mutually contradictory).

2. Bilateral Monopoly

Bilateral monopoly is a situation where one consumer and one

supplier act on the market of some goods.

We believe that the first is such a good, and in the markets of other

goods there is perfect competition. We also believe that both the consumer

and the supplier are enterprises, and the good 1 is the intermediate, that is,

the products of the first enterprise and the resource of the second. For both

the supplier and the consumer the prices of other goods are set. Both

partners must agree on the price of and the amount of good 1 that is

exchanged.

127

Let us suppose that ()is the cost of production of the supplier

enterprise, () is the profit received by the consumer enterprise

as a result of the use of .
The profits of both participants are equal to

 () () (5)

Let us suppose that and are twice differentiated functions,

 .
To determine the payoff functions, as it is customary in game theory,

we need to clarify the actions and of both entrepreneurs and the

respective areas and . It is possible to make various models, which
are different variants of a bilateral monopoly and contain a specific

definition of a pair () as a function of performed actions(). We

believe that the first enterprise A determines the price and the second

enterprise B – the amount that it will buy, i. e . Areas and are thus

defined for and respectively.
We find out what the non-cooperative equilibrium is. Enterprise B, if

it considers the price as a given value, behaves as if the market for this

good was competitive. It selects that

 () or leaves if

 () (6)

The first enterprise, if it considers as a given value, is interested in

setting perhaps a higher price (infinitely large if the area is

unlimited), except when , i.e when can be selected by anyone.

Strictly speaking, the only possible non-cooperative equilibrium is

and
 (), which results in zero output of the good under

consideration. Obviously, Enterprise A, when choosing , cannot ignore
the impact that this choice will have on enterprise B. It should not set a
very high price that would lead to the disappearance of demand, but could

maximize its profit, given that its partner sets the and according to (40).
In this case, it will act as a monopolist, the demand for products is

determined by this equation Simple calculations show that in this case it

will produce pure products in the quantity
 , which is the solution of the

equation

 ()

 ()
 ()

and sell it for

 (
). But the company B can not satisfy

equation (40) because it knows that A is the only partner. It may, for

example, refuse to purchase for the price
 the whole quantity of

128

products
 , having the right to believe that such a position will force A to

agree to a price reduction. Before defining its actions, every enterprise is
interested in discovering a rule of behavior that another enterprise will
follow. It can do this by putting itself in the place of a partner and
determining the most appropriate rule for him.

Thus, both enterprises should understand immediately or after a

mutual «probe» that it is advantageous for them to reach an explicit or

implicit agreement that would be acceptable to both of them. It is

indifferent that the first sets , and the second - , as they thus act

together to determine the acceptable combination (

)
This combination must satisfy the following conditions:

1) the profit is at least equal to (), otherwise case A is not

interested in exchange with B;

2) is at least equal to ();
3) the combination maximizes provided that preserves the

value
 , otherwise A could offer B a more acceptable combination for

itself, which would also remain good for B;

4) the combination maximizes provided that preserves the

value

To clarify the above mentioned we find out what follows from

condition 3). If we put , then from 3) it follows that such a number

 exists that the derivatives of the expression
[()] [()]of and simultaneously

turn into zero. A derivative of equals to zero when . Since the

derivative of is zero, we have an equation

 (

)
 (

) (7)

which defines
 in a unique way as

 increases and R2' decreases.

The study of condition 4) leads, obviously, to the same result.

Conditions 1) and 2) thus determine the interval to which the price should

belong
 :

 (
) ()

 ⁄
 (

) ()
 ⁄ (8)

This means that all combinations (
 ,

) that allow both parties to

come to an agreement contain the same amount of products, and the price

must be in the interval (42). Thus, there are many similar combinations.

We will assume that this set is the kernel of bilateral monopoly.

129

Let us show the set in the graph, on the abscissa axis of which , is

laid, and on the y-axis – (Fig. 1). The dashed curve corresponds to

combinations for which or takes the same set value. Curves

 and touch each other at the points of vertices

with abscissa
 . The kernel is represented by the interval RS of this

vertical, which is located between the two curves passing through the

origin.

Fig. 1

How can p1 be determined inside the interval (42)? Enterprise A is

interested in choosing the largest price, and enterprise B interested in

choosing the lowest price. Inside the core, the interests of both partners are

completely opposite. Therefore, they believe that the final combination

chosen depends on the relative power of both partners. Each may be

threatened with refusal to comply with the agreement and thus persuade

the other to fulfill their requirements. However, none of the partners can

substantiate their threats by being able to make a big profit alone by

refusing to cooperate altogether. Threats are only effective if an agreement

is eventually obtained.

In view of the above mentioned, we can draw the following

conclusions.

1. The non-cooperative equilibrium is not a productive competition of

bilateral monopoly.

2. Partners are interested in negotiating with each other and executing

one of the core-owned combinations.

130

3. Using threats as a means of achieving a particularly advantageous

combination has the risk of breaking the agreement, which will eventually

lead to an out-of-core combination.

3. Duopoly

Let us consider the theory of duopoly,, which is a market maintained

by two manufacturers, in which demand is determined by numerous but

small-size consumers. Economic theory gives an idea of this situation,

assuming that each unit of good under consideration is exchanged at the

same price and demand is competitive in the sense that the total quantity of

sold products depends only on its price (and therefore it makes no sense to

include for the consideration the individual consumer strategies). For

convenience, we consider that this is a good 1 market and that the demand

function is decreasing and can be written down

 () (9)

as for monopoly. The total number of pure products is produced by

enterprises 1 and 2, each of which produces respectively pure products in

the quantities and .

For the study of the duopoly, let us suppose that the prices

 of other goods are determined, for example in competitive

markets, and do not depend on and . Strictly speaking, this is possible

only when the good 1 is relatively insignificant and thus the demand of

enterprises 1 and 2 in the markets of other goods can be neglected. The

function , obviously, depends on the values as parameters.

Let us denote the cost functions of enterprises 1 and 2 by () and

 (). The corresponding profits will be

 () () () (10)

 () () ()

Since the quantities of pure products and are variable, they

reflect the behavior of both enterprises, and are their profit

functions respectively.

A. Cournot, who first investigated the theory of duopoly, proposed as

a solution the non-cooperative equilibrium, which, when applied to the

duopoly, is called the Cournot equilibrium. This solution assumes that each

enterprise passively observes the other enterprise and accepts its choice as

131

a given one, and then makes its own choice so as to maximize its profit.

The equilibrium in this case is determined by the pair (

) that

maximizes (

), which is considered as a function , and

 maximizes (

), which is considered as a function .

However, in this situation, it is even less obvious than under a bilateral

monopoly that enterprises occupy a similar passive position (Fig. 2).

Fig. 2

The curves bent down are lines of level ; curves, curved

to the left are the lines W2 = const. Curve AA ' is the geometric location of

the points of the lines of level , which have the largest

ordinate. It determines for each the choice of enterprise 1 if it occupies

a passive position. In fact, the profit obviously increases when moving

down along the vertical and, thus, on the horizontal (set) enterprise 1 is

interested in choosing the coordinate of the point at which this horizontal

touches the lines of the level .

Similarly, the curve , that connects the most right points of the

lines of the level , determines the behavior of enterprise 2

when it takes a passive position.

Thus, the Cournot equilibrium is the point of intersection of curves

 and , let it be (

). However, it is assumed that enterprise

132

1 knows not only its function W1 but also the function W2 of its competitor.

It can then determine the curve , that characterizes the behavior of

enterprise 2 if it takes a passive position. In this case, enterprise 1 is

interested in choosing the point on the curve at which it touches the

curve , that is, in the production of quantity (, which is

significantly higher in our case

. It is likely that enterprise 1 is aware

that it can make more profit than with the Cournot equilibrium. It will then

select, for example, production

. But the same considerations are

applied to enterprise 2, which is interested in choosing production

 if it

states the passive position of its competitor. At the same time, choosing a

pair (

,

) means a profit for both enterprises that is much less than

provided by the Cournotes equilibrium.

As with a bilateral monopoly, each participant, while accepting the

situation of the other, must sooner or later come to an explicit or implicit

agreement with him, since only in this case one can avoid a struggle that

harms both competitors, on the assumption that neither of them believes

that it can oust another from the market. An agreement is possible in such

pairs (

,

) when, on the one hand, each enterprise makes a profit at

least equal to what it would gain by withdrawing from the market and

which on the other hand, maximizes the profit of one enterprise at a given

value of the other enterprise's profits. These pairs are depicted in Fig. 7 by

the points of the curvilinear segment RS,belonging to the curve connecting

the points of contact of the lines of levels and ,

where the point Ris located on the curve ()and the point S- on

the curve ()

 and in a bilateral monopoly, the set of pairs depicted by the points

RS,can be called a core. Inside the core, the position of the pair ()
seems uncertain at first. Each of the two enterprise can try to achieve a

particularly advantageous combination for itself, threatening to refuse to

fulfill the agreement. But this position is only beneficial if the threat is not

fulfilled. The implementation of the combination within the kernel is

specified by the agreement between the two enterprises, which, of course,

will not behave as the monopolist would have done in their place. The

monopoly is trying to increase the total profit ,, which would

usually lead to an unambiguous determination of the pair (

,

)

inside the core.

133

Fig. 3

The difference in their behavior can be traced in Fig. 3, in which the

values of profits W1 and W2 are laid along the abscissa and the ordinate.

The kernel is depicted by the curve RS,which limits the top and right sets

of combinations (W1W2), which follow from all choices of values and

 . (The Cournot equilibrium is represented by a point C inside RS.)The

sum W1+ W2 is maximum for the combination M, at which tangent to the

curve RSis parallel to the bisectric line. Point M does not necessarily

satisfy the two enterprises equally. The enterprise may not agree with

choosing this point, which hopes to achieve a more profitable point for it

on RS.However, we must remember that if there is a complete agreement

between the two enterprises, then they can implement any point on tangent

to RSat point M, e.g N.To do this, it is sufficient for them to agree to a

direct payment of one enterprise to another. In our case, shown in Fig. 3,

one enterprise must pay another the sum equal to the projection length of

the segment NMon the corresponding coordinate axis. In the case of a full

agreement, both enterprises behave as one monopolist, and the only

disputable issue between them is the division of total profit,, that is, a

decision on a side payment, which one party must provide to the other. In

the process of discussing this, everyone can obviously exploit threats, at

the risk of breaking the deal.

The two cases considered give us the right to draw several

conclusions.

1. The implementation of non-cooperative equilibrium is, as we see,

impossible.

2. If there are hidden or explicit agreements, then it is possible to

make judgments based on them and without paying attention to the actions

of the participants themselves (only combinations of winnings that are

possible as decisions of the game are important).

134

4. Trade when concluding transactions

Let as suppose that a certain number of players participate in a game

where they follow certain rules. The gain that each of them will receive as

a result depends on his or her own actions and the actions of the other

players. Before determining their actions, each enterprise is naturally

interested in discovering a rule of behavior that will be imitated by another

enterprise. It can do this by putting itself in the place of a partner and

determining the most appropriate rule for him. That is, as noted, a kernel is

formed, within which a compromise solution for both parties must be

chosen if they are genuinely interested in reaching an agreement. However,

the kernel contains many elements, and there are doubts as to which of

them should ultimately be selected. It is quite appropriate to try to find a

deterministic solution in the absence of additional circumstances, such as a

bilateral monopoly (a situation where one consumer and one supply stand

in the market of some goods, a duopoly (the market is maintained by two

producers, whose demand is determined by numerous but insignificant

consumers). and some others. In fact, any logical analysis of the

complications that occur in each case can lead to the same problem – the

multiplicity of possible outcomes. It is advisable to try to deduce the

principles for finding such a solution. It is about principles, that is, finding

a general rule for a category of situations.

The problem of so-called trade defines the scope of this study. They

are easy to define. The vector of winnings and of both

participants must belong to the set P. It is known that it will take the value

 (which belongs, obviously, to P), unless the parties reach an agreement.

What vector of P should be agreed with? The general answer is to find

out how depends on P and ; this (solvable) function allows you to get

a solution

 () (11)

the value of which is defined on the set P.

In order to investigate the properties that the function ()should

possess and to consider its capabilities arising from these features, we have

to accept several common axioms.

A comprehensive answer to this question was given by J. Nesh, who

found it necessary to accept the following four axioms.

A1. The solution must be the Pareto optimal,in other words

 ()should be located on the boundary of P on the upper right.

135

A2. The solution must be individually rational in the sense that each

participant should receive a win no less than that which he or she would

have received in the absence of the agreement, i.e p ()
A3. The decision should not be changed if P is replaced by a subset

Qcontained in P and containing ()

A4. If there are two linear increasing functions and that the

conditions

 (

) (12)

and , when and only when

 () (13)

are carried out, then the decisions () and () must be the

same in the sense that () [()]. Using some low-

boundary conditions for (, P),Nash showed that there is the only one

function that satisfies the axioms A1 – A4. More precisely, () is a

vector that maximizes in P the product () • () of additional

wins that both participants receive from their collaboration.

5. Coalition and Decisions

The distribution is the n-dimensional vector (),

the components of which are players' winnings prior to the end of the

game. Distribution is possible if there is a multiple of possible distributions

n of players, which allows to make winnings corresponding to such

distribution. Most often, for the participant r there is a minimum value

of winnings, which he can provide for himself regardless of the actions of

other players. For example, in an exchange economy, it will be the

usefulness ()that he/she will receive if abandons other exchanges.

The distribution () is considered to be

individually rational if for all r. In fact, it is a priori possible to

remove from consideration a result in which some participant does not

receive the minimal win that he can provide himself with. It is also

believed that the distribution is rejected by or is blocked by a player i if

 .. Therefore, individually rational distribution is not blocked by

any participant.

By definition the coalition a subset C of the set I is meant, consisting

of players: { . In a theoretical study, it is convenient to

136

preserve the term «coalition» to denote both the entire set Iand a subset

consisting of one player r, for example {r}. The possibility of coalitions

influences the outcome of the game, since only one coalition can achieve

some result, or a particular coalition may block the implementation of

another result. To investigate this issue, we introduce a simple

formalization.

Distribution () is called possible for coalition C,

if C can provide its members with winnings (for), whatever

actions are made by players which are not in C. Coalition canblock making

some distribution if it can provide its members with more winnings than

that distribution. Therefore, a formal definition can be given. Coalition C

blocks distribution (

) if there is possible a

distribution (

) that

 for each player r

from C and

 for at least one player r from C. As an example, let

us consider a bilateral monopoly. Let the enterprise A be a player 1, and the

enterprise B be a player 2. Coalition {1}, consisting of single player 1,

blocks any distribution corresponding to player 1 winning less than ();
coalition {2} blocks any distribution that matches player 2 winnings less

than () coalition {1,2} of two enterprises blocks any distribution that

maximizes at a given value of or does not maximize at given

value We state that the kernel thus consists of all possible

combinations (), corresponding to distributions that are not blocked

by any coalition. Similar considerations can be made for the duopoly. This

is the explanation of the following statement.

The kernel consists of the set of possible distributions that are not

blocked by any of the coalitions.

The value of this statement lies in the idea that the game naturally

leads to some kernel-owned distribution.

There are three situations where this is not the case.

1. The use of threats by some players can break agreements and lead

to outcomes adverse for all participants.

2. When the number of players is large enough, the information of

each of them about the position of the other becomes often incomplete and

the making of agreements, which a priori seems to be fruitful, may require

long, costly negotiations. To reflect this, they talk about the costs of

information and communication that make the participants sometimes

content with non-core distributions.

137

3. There are situations where the kernel is empty. This means that for

every possible division, you can find a coalition that can block it.

This is explained by the fact that when considering cooperation and

the clash of interests of many participants, game theory is not limited to a

single concept of the kernel, which, however, is most commonly used in

economic theory. The purpose of conceptual research in game theory is to

find a good description of the likely outcome of the game. To do this, it

would be enough to have a solution concept that satisfies three conditions:

it gives an intuitively correct view; applicable to all or most cases; usually

leads to a single solution of the problem. Three conditions cannot be

satisfied at the same time. Thus, various existing theories are theoretical

compromises.

We see that the kernel does not fully meet the last two conditions. It

seems to fit well with the former. However, in some cases, the emergence

of the blocking coalitions that are needed is doubtful as they involve

reaching an agreement between the parties, the communication between

which is difficult. This means that all blocking coalitions must be treated

equally, regardless of their origin. in introducing some options to negotiate

for players who obviously depend on the outcome of the game. In order to

avoid the extreme consequences of this circumstance, we introduce the

principle of finding solutions, which offers us to simultaneously consider

all the coalitions in which each player can participate, and to introduce

some opportunities to negotiate for players, on whom obviously the

outcome of the game depends. This principle was introduced by Shapley

and developed by him with M. Shubik. Regarding this principle, the

chosen decision is thought to have a Shapley price, or just a price. Let us

consider the contribution () that an individual r contributes to a

winning of a coalition С if it becomes a part of it. For any Coalition C that

does not include r,this contribution is equal to the payoff that the

considered coalition { can receive, minus the payout that C can get.

The definition of this contribution is simple when the winnings are

transferable, i.e they can be transferred from one person to another so that

the overall winnings retain value when using considerations close to those

made for the trade problem).

The determination of the contribution r in C can also be made in the

case where the winnings are non-transferable. The Shapley price is defined

as a distribution whose components are, accordingly, an average ̅ of

138

values on the set of all coalitions C, that do not contain r. In the game

each average determines the natural measure for the ability of the

individual r to reach an agreement – a measure that must be considered by

others in such a way that, as a result of a general agreement, he can get a

win equal to ̅ at the end of the game, thar determines the final division

(the Shapley price). This concept is considered acceptable when

considering some economic problems, and it is often an interesting

alternative to the concept of the kernel, when the solution involves

cooperation between participants. In each case, the question remains

whether the most non-cooperative equilibrium is appropriate here. The

larger the number of participants, the more complex the links between

them are; the more problematic the possibility of a coalition is, the more

plausible the realization of a non-cooperative equilibrium is. Conversely, a

small number of participants, naturally interacting for a long time in

recurring situations, are naturally cooperative.

6. Arbitration and exchange between the parties

After examining some special situations, let us return to the general

economic models. We look for states that can be realized if the exchanges

are made not under the laws of perfect competition. It is assumed that all

forms of imperfect competition are a priori possible. Let us find out what

states can be achieved.

Let us begin to study this problem without any preconceived idea, as

Englishman Edgeworth did at the end of the XIX century. This

consideration will help us better understand some aspects of equilibrium.

We use the terminology adopted by M. Ale in exploring the same issues.

Let two consumer individuals i and have the goods and

 () respectively. These are the numbers they originally

owned (and) or as a result of exchanges. Let us suppose that the

operation, which involves the exchange of goods, is beneficial for both.

Denote by the amount of good h, which i inferior to in such an

operation, or by () the amount of this good, which inferior to i.Since

the operation is beneficial for both, then () ()
 () , where S denotes utility. The possibility of such an

operation may be unknown either i or . In doing so, any third party that

becomes an intermediary in carrying out this operation will be able to derive

some benefit for themselves. In fact, because of the continuity , there is a

139

non-zero vector ш with indefeasible components such as ()
 (). All three participants will find a exchange profitable. in which the

quantities of benefits h will change to () for i, to for and to

 for the mediator. Such an operation is called an arbitration.

In the previous example, the possibility of exchange is of interest to

two consumers – mediation is two-way. Multilateral mediation is also

possible in cases where multiple consumers are involved in the exchange.

A mediator that facilitates the transaction will be able to benefit from this.

In the future, we assume that either the mediator is himself a participant in

the economic process, or the charge for the mediation is small enough

and can be neglected.

We will call a state, in which both bilateral and multilateral mediation

are impossible, all operations have already been completed, no exchange

can take place, a stable distribution Obviously, there are no reasons why

this state must coincide with the competitive equilibrium.

The stable distribution , defined in this way is obviously the

optimum of distribution. Otherwise, there would be another possible

condition E
1
, selected by a random consumer that others consider to be no

worse than . The statement that E
1
 is possible is tantamount to the

statement that the transition from toE
1
 is an exchange.

Therefore, there is a possibility of mediation (which may cover all

consumers), which is contrary to the stability of distribution . The

concept of mediation can also be used to describe the exchange process. If

the initial position in which each consumer owns , is not a stable

distribution, some exchanges and mediation may occur. The amounts of

goods owned by different participants change as many times as necessary

for a stable distribution. The benefits of cannot be diminished during

these exchanges. Assuming that no advantageous opportunity remains

missed (that is, the information is fairly well disseminated to the mediator,

or that no participant refuses the advantageous for him operation if he

could behave having formulated the requirements acceptable to others),

then such a process converges.

The disadvantage of such a theory is that there may be different ways

to achieve a stable distribution.

140

Fig. 4

Let us explain this in the example of the Edgeworth diagram for

obtaining the two goods and two participants shown in Fig. 4. Curves PR

and RS are indifference curves passing through the point P of the initial

stock. The RS curve is the geometric location of the Pareto optimum. The

path consisting of three exchanges (fromР and Е
1
, fromЕ

1
 and Е

2
, from Е2

to Е
0
, depicted by a polygonal chain . Each exchange increases

the satisfaction of both consumers. However, you can imagine many

different paths ending at any point of the curved line RS.

7. The Kernel in the Economy of Exchange

the Economy of Exchange is inherently a game because, under some

constraints, participants choose their own strategies, the combined action

of which ultimately leads them to reach some utility levels . It is difficult

to describe the primary actions of the exchangers: worries, offers,

counterproposals, etc. In the Economy of Exchange, the distributions are

determined by the levels of utility corresponding to the consumption

vectors. Now we can think directly on the basis of the set consisting of t

vectors , -. The general definitions that were given earlier can be easily

transferred to this case.

The coalition is a subset of C of the set t of consumers.

State is possible for coalition C if

 (14)

141

∑(
) (15)

Conditions (48) and (49) ensure that the achievement of
 is possible

for Coalition C members acting jointly and independently of other non-

coalition members. State is possible if it is possible for a coalition of all

members. is blocked by Coalition C, if there is a state E
1
, possible for C

such as

 (
) (

) (16)

with strict inequation for at least one member of C.Condition (50)

guarantees that
 is preferable to

 for members of C. The kernel of the

economy of exchange is obviously a set of possible states E, not blocked

by any coalition. It is contained in the set of all the optimum distribution,

but contains all the competitive equilibria. Let us graphically represent a

kernel for the case where there are two goods and two consumers (Fig. 5),

constructed on the basis of the Edgeworth diagram.

Fig. 5

142

It is known that the kernel is represented by a portion of the MN

curve, which is the geometric location of the distribution optimum, that is,

the points at which the indifference curves of two consumers touch each

other. The states depicted by external points with respect to the MN points

blocked by the coalition {1, 2}. In addition, states blocked by Coalition

{1} are the points located to the left of the indifference curve
 passing

through the point P, which is the initial distribution of resources between

consumers. The states blocked by coalition {2} are those points that are

located to the right of the indifference curve
 , passing through P. Thus,

the kernel is a part of the curve MN, extending from the intersection point

from
 to point of intersection with

 . We see that the competitive

equilibrium is М, where the common tangent to both indifference curves

passes through Р, belongs to the kernel. In the graph (see Fig. 5), the set of

states of stable distribution coincides with the kernel everywhere except

the boundary points Rand S.. An arbitrary non-kernel distribution

determines the state in which mediation is possible. Conversely, an

arbitrary kernel-owned state (except Rand S) is a stable distribution for

the specified economy, since the transition from the initial state P to the

state is made through favorable mediation and no mediation is possible,

after is reached. This attribute does not take place if there are more than

two participants. The reason for this is the difference of opinion on the

equilibrium establishment process.

Let us suppose there are two goods and three participants who initially

own the resources in quantities

 (

) (

) (

) (17)

We believe that the benefits of these consumers are the same and are

described by the following utility functions:

 () (18)

The following two exchanges determine the possible path that ends in

a sustainable distribution. Consumers 1 and 2 enter into an agreement that

the former gives the latter 3/2 of good 2 in exchange for 1/4 of good 1. The

pleasure of the first increases from 0 to 1/8, the pleasure of the second –

from 1 to 15/8. After sharing, everyone has the following goods:

 (⁄
 ⁄

) (⁄
 ⁄

) (

) (19)

143

Then the second and third parties enter into an agreement

whereby the third party gives the second the 1/4 of the good 1 in

exchange for the 1/2 of the good 2. The pleasure of the second

increases from 15/8 to 2, the pleasure of the third – from 1 to 9/8.

Ultimately, consumers will own the goods

 (⁄

 ⁄
)

 (

)

 (⁄
 ⁄

) (20)

It is easy to check that the obtained state is a stable distribution; this

is the optimal distribution to which prices p1 = 2, p2= 1 can be linked.

According to the definitions we adhere to, the state does not belong to

the kernel because it is blocked by a coalition consisting of the first and

third party.

By pooling their initial resources defined by vectors (51), they could

distribute

 (

 ⁄

)

 (
 ⁄

)

which, for them, is obviously better than the distribution shown by

vectors (54). As this example shows, the difference between the kernel and

the set of stable distributions does not lie in the difference of approaches

which use the central concepts of «arbitration» and «coalition»,

respectively.

Arbitration can be defined as an operation whereby a coalition moves

from one division to another, which is best for its members. The difference

lies in the description of the exchange implementation process.

The idea that the final distribution must belong to the kernel does in

fact implicitly imply non-kernel agreements, which could lead to the non-

kernel results, or similar agreements that have already been concluded and

may be terminated for the sake of others. To clarify this idea, Edgeworth

hypothesized that parties could freely renegotiate agreements, that is,

concluded contracts could always be canceled later, if a better contract is

possible.

The hypothesis that contracts are not considered conclusive before the

state inside the kernel is reached is very unrealistic. In addition, it should

not be taken literally. Rather, it means that the participants do not make the

final decisions before they evaluate the outcome of the various possible

contracts.

144

The ability to renegotiate contracts accepted by Edgeworth is

essentially similar to the Walras hypothesisaccording to which the

contracts are not concluded until the equilibrium prices are established. It

implies that there is a great deal of opportunity for contracts between the

parties and leads to a fairly accurate theory.

Rejecting this possibility, the stable distributions obtained from a

given initial situation are very uncertain, especially in economies with a

large number of participants. Of course, we know that this distribution will

be optimum and that it is more preferable than the initial situation for all

participants. But with the help of general logical analysis nothing more

definite can be said. We have to choose between two theories: a less

restrictive but less accurate theory of stable distribution, and a more

restrictive but more accurate theory of kernel.

Again, if the number of participants in the exchange is large, then the

costs of information and communication can significantly complicate

finding the distribution belonging to the kernel To accept that the end

result lies within the kernel means to assume that the optimality problem,

which is the subject of a great part of microeconomic theory, is solved.

8. Closed Bid Simulation

In closed tenders, tenderers tend to announce their bids, usually once,

without informing each other. The lowest or highest bid is accepted

depending on the type of bidding.

An example of the first case may be a competition for the cheapest

project of an administrative building, an example of the second case is the

rent offer for the right to use the parking lot by the firms.

Before deciding on bidding and setting a bid, it is necessary to

estimate the costs associated with the object of the auction. Typically, a

rate that exceeds these costs is set, and if accepted, the difference is the

amount of profit.

In the case of closed bidding, only the winning bid is often announced.

For certainty, we will consider the case when the lowest bid is accepted.

Then we can have cost estimates and minimum rates for cases when

contracts are not concluded. Let us suppose that based on the accumulated

statistics of the ratio

x = Lowest Bid / Cost Estimate

145

has a normal distribution with mathematical expectation c and a

variance of . The task of bidders is to set a bid that maximizes expected

profit.

Let own costs according the certain contract be equal to c and the

tenderer has set a price of p. Then its profit is p-c, when this price was the

lowest, and equals to 0 otherwise.

The probability that this participant has set the lowest price is equal to

the probability that the ratio p/c will be less than a random variable that has

a normal distribution with a mathematical expectation ц and a variance .

This probability is equal to (⁄), where

 ()

√
∫

()

Therefore, the expected profit is

 () (

)

We need to maximize P by, If we find the first derivative of the last

expression by p and equate it to zero, we obtain

 (

) () (

)

We denote

 , then

 () () ()

If we put , then

 ()

√
∫

 ()

√

and to find t it is necessary to solve the equation

√
∫

 ()

√

The values of the integral and the exponents can be found in the tables

of normal distribution and the equation can be solved by the approximate

(graphical) method (Fig. 6):

146

Fig. 6

where the curves 1 and 2 are the graphs of the functions y1(t) and

y2(t),which are respectively in the left and right parts of the equation. If the

solution of the last equation, then the optimal rate that maximizes expected

profit,

 ().

The foregoing calculations implicitly assumed that the winning bid

distributions did not change with any change in the behavior of one of the

bidders. Such an assumption holds for a short period of time when a large

number of independently operating firms are involved in the auction.

9. Modeling of auction bidding

Let u suppose that two objects are offered for sale one by one at the

auction, and there are two buyers A and B, own $100 and $140

respectively. It is assumed that the known prices at which the purchased

objects can then be sold: the first object is priced at $75, the second is

$125. Consider the problem of defining buyer strategies to maximize their

profits
2
.

If an item of value of $75 is initially offered for sale, then the buyer A

will raise the bid as long as its profit in the case of acquisition of the item

for $75 is not equal to its profit in the case of purchase of the object for

$125. If B is able to buy an object worth $75 for $x, then he will have

2
 Akof R., Sasiena M. Fundamentals of Operations Research. Мoskow: World, 2007, 2010 p.

147

$140 – $x and Ashould purchase an object worth $125 for an amount that is

a bit higher than the 140 – х provided .

If A acquires the first object for $x, then his profit will be $75 – x, and

if the first object at the same price is acquired by B, then the profit A will

be equal to 125-(140-x). Therefore A will raise the price until the condition

is fulfilled

75 – x = 125 – (140 – x) = x – 15,

whence x = 45.

The buyer B understands that he could purchase both objects. If he can

buy the first object for less than $40, then he will for sure buy the second

for a price of just over $100. Thus, if B is able to get the first object for the

sum of y < 40, then its total profit will be

However, if the first object is for A the sum y, then B will receive the

second one for the sum $100 – y, and therefore, its profit will be equal

125 – (100 – y) = 25 + y.

As a result, B will raise the price for the first item until the condition is

fulfilled

100 – y = 25 + y,

whence y = 37.5.

Assuming that both participants of the auction made these

calculations, then the buyer B will reach the following conclusions: the

maximum price he can offer for the first object, when he intends to pay for

both, is $37.5; the buyer A will never allow him (B) to acquire the first

object for less than $45, as otherwise the profit for A will be less than he

can afford if he raises the bid to this price; if A acquires the first object, the

more he pays for it, the cheaper the second item will be for B buy it.

It follows that the buyer B will force A to pay for the first object of

$45, and the second one will be sold to B for the price of $100 – $45 = $55.

The profit of A will be $75-$45=30 $, and the profit ofВ will be

$125-$55=$70.

Note that when the number of items being auctioned exceeds two, the

approach of finding the best strategies for buyers A and B becomes very

cumbersome and practically impossible to put into practice. In this case, it

148

is appropriate to consider such a problem as a dynamic programming

problem and solve it in stages.

Let us suppose that only one object is put up for auction and Aowns

the sum , a B has the sum . Both participants of the auction consider

that the value of the object is .

Let us denote by () the profit of A, and by () – the profit

of B.

If B has set the price x, then A, having increased it to the value ,

will purchase the object and receive a profit . If the object is

purchased by B, then A will not receive any profit. Therefore A will

increase the price provided that . In addition, since A has only the

sum a, condition must be satisfied. Obviously, B will think

similarly. The following conclusions can be drawn from here:

1) if and , then the object will be purchased by A at a

price that slightly exceeds and () , and () ;

2) if and , then the object will be purchased at the price

of and () () ;

3) if and ,, then the object will be purchased by A at a

price that slightly exceeds and () , and () .

Now let us suppose that the second object is being auctioned with

value c2, and it is being offered first. We denote by ()and

 ()the total profits of A and B, when two objects are auctioned.

If B has set the price x for c2, then A may give him a chance to

purchase this object and the total profit of A will be ().

However, A may raise the price a little more than x, in this case when B

gives way to it, the profit A will be equal to ().

If A has enough resources, then he will continue to raise the price until

conditions are met

 () () (21)

Similarly B will raise its rates as long as the conditions are met

 () () (22)

If you tabulate the values of the functions () and () at

different values of , it is easy to find the smallest values xunder which

these conditions begin to be violated. Let them respectively be equal to

() and

() Then we conclude that with respect to object c the

149

participant А of the auction will increase bids up to (
()), and

В – up to (
()). An object c2 will be bought by A provided

 (
()) (

()) (23)

When we know who acquired the object c2, we define (tabulate) the

functions ()and ().
Now let us suppose that the other object is being auctioned with value

 , and it is being offered first. Then A and B will raise prices as long as the

conditions are met

 () ()

for A and

 () ()

for B.

If

 (
()) (

())

then the object will be acquired by А, otherwise it will go to В.

Determining who purchases the object we find (tabulate) the functions

 ()and () – the total profits of А and В, when і objects were

auctioned.

Let n items be auctioned. Then sequentially giving to i the values 2,

3,..., n, we get to the object cn, which is put up for auction first. Analyzing

the ratio

 () ()

 () (),

as noted above, depending on whichever is greater (
()) or

 (
()), we determine who buys the object cn,, and the total profits

 () and () of the buyers A and B.. Putting

 , we find who buys objects and

profits from each.

Let's solve the above-mentioned problem with the method of dynamic

programming, when three objects worth
 are auctioned and buyers A and B have
and at their disposal

150

If one object is being auctioned, then it will be purchased by B at a

price slightly higher than () ()

Now let us suppose that two objects and are being put up for

auction, and c2 is being offered first. Let us determine who acquires object

c2 this time, and who – at different values of and ,

using the relation (21) – (23).

Let us consider the case when (is symmetrical, buyers A

and B change places).

Then

 () () {

 ()

 () {

 () ()

and conditions (55), (56) have the form

{

{

 (24)

{

{

 (25)

Put in them α=100,β=140. Then from (58) it follows

{

{

and
() .,

Since

 (
()) ()

 (
()) ()

then, under condition (57) (45> 37.5), object is acquired by the buyer

A at a price of $45. and his profit is ()

151

Buyer B will purchase the object at a price of $100-$45=$55. and his profit

will be ()
This solution is the same as the two-object solution obtained above by

the second method.

Using conditions (58), (59), similar to the above, we determine who

acquires object at . Knowing this, we calculate

(tabulate) functions (profits) (), () (Table 1).

Table 1

In the table, the top row is the value of function (), the bottom

row is the value of function ().
Now let us suppose that the third object is being auctioned with value

 , and it is being offered first. Then A and B will raise prices
as long as the conditions are met

 () ()

 () ()

Using the table 19, we easily find that whenx= 10

30 – 10 + 25> 35;
30 – 10 + 62 = 85,

that is,
() , and whenx = 14

30 – 14 + 21 ≈ 38;

30 – 14 + 62 <93,

152

that is
() Since

()
(), the object will be bought by

the buyer A at the price of $14. and his profit will be 30-14=$16.

After that, he has $100-$14=$86, and buyer B has $140. Using the

table 19 for these values we find the profits from the other two objects

and . Accordingly, they are $21 for A and $93 for B, and A acquires

object at the price of $54. (profit $75-$54=$21), and B will get the

object cx at a price of $32.

(profit $125-$32=$93).

Therefore, when three objects are auctioned at a cost of

 , , the buyer A, in order to

maximize his profit, will buy the objects and and his total profit will

be $16+$21=$37, and the buyer B will buy the object (the profit is $93).

REFERENCES

1. Malenvo E. Lectures on Microeconomic Analysis. Мoskow:

Science, 1985, 392 p.

2. Akof R., Sasiena M. Fundamentals of Operations Research.

Мoskow: World, 2007, 2010 p.

Information about the author:

Medvediev M. H.

Doctor of Technical Sciences, Professor,

Head at the General Engineering

and Thermal Power Engineering Department

of the V. I. Vernadsky Taurida National University

153

DOI https://doi.org/10.36059/978-966-397-107-0/153-176

MATRIX GAMES AND STATISTIC CRITERIA

Muliava O. M.

INTRODUCTION

Let us consider game situations in modeling of various aspects of

work of a really existing enterprise. This is a very difficult situation, as not

only the rules and customs that govern the contracting process, but also

some situations that give the individual or company the opportunity to

enter into an agreement on particularly favorable terms, play a role.

A common feature of different situations is that when making his/her

own decision, each participant must have an idea of the decisions made by

the other participant.

However, unfortunately, game theory has proven to be inadequate to

address all of the problems posed by the need for organizations with many

participants. However, its application has made it much easier to

investigate some simple cases.

1. Problem statement

Consider the problem of supply of raw materials.

Suppose that a firm A entered into an agreement with another

company B for the supply of perishable raw materials, valued at $100 a

day.

If raw materials are not available during the day, the firm A incurs

losses of $400. from the downtime of the workers.

It can use her own transportation (an additional cost of $50), but

experience shows that in half of the cases, the transport returns empty.

It is possible to increase the likelihood of receiving raw materials up

to 80% if you first send your representative to the company B, but this

requires an additional cost of $40.

It is possible to order a daily rate of raw material from another

company at a price up to 50% higher, but in addition to transportation costs

($50), there may be additional costs of $30 associated with the overtime of

the teams that sell unnecessary raw materials if a centralized supply arrives

on the same day.

154

What strategy should firm A follow if it is not known in advance

whether a centralized supply of raw materials will occur or not?

To solve this problem, first of all, we will list the possible strategies of

the supplier (firm B):

 – delivery on time;

B2 – no delivery.

The company A, according to the condition of the problem, has four

strategies:

A1 – Take no further action;

Ag – send to company B own transport;

A3 – send to company B own representative and transport;

A4 – order additional raw materials from another company.

In the general case, if the first player (firm A) m has possible

strategies, and the second one – n, then always m, n possible situations are

created, each of which corresponds to a certain payment of one player to

the other.

There are a total of 8 situations that describe all combinations of four

firm strategies A and two company B strategies

These situations and their associated losses and costs are presented in

Table. 1.

Table 1

155

In many situations, table. 1 becomes cumbersome and

incomprehensible, it is more convenient to move from it to an additional

payment matrix A. It is a rectangular matrix and has t rows (by the number

of first player strategies) and n columns (by the number of second player

strategies).At the intersection of the irows and the jcolumns, the second

player's payment is placed first in the situation where the i strategy is

applied by the first player and j strategy by the second. If the second player

wins, the payment will have minus.

The payment matrix in the problem (game) under consideration has a

dimension of 4 x 2 and is shown in Table. 2. All payments have a negative

sign because in this task they determine the costs of the firm A.

Table 2

Payment Matrix A looks like

 (

).

The task of firm A is to find the optimal strategy that ensures the

minimum of expected losses in the conditions of uncertainty of the

supplier's behavior (firm B). Choosing a company behavior strategy A

under the conditions described in table.2, depends on the reliability of the

supplier, which is quantified in terms of probability. For example, let it be

40% (meaning that delivery is timely with a probability of 0.4). Then the

expected losses (negative gain) of the company A when applying the first

pure strategy A, are

 ()

and when applying the fourth one,

 ()

156

We see that costs have decreased. If you calculate losses when

applying other strategies, then the best strategy will be A3. In fact, using the

second strategy, the firm And will bear the losses,

 ()

and when using the third strategy, only

 ()

2. Geometric and economic interpretations

of game theory problem solving

Let us give a geometric interpretation of the game (problem) under

consideration
1
.

To do this, we draw the horizontal axis of the reliability of the supplier

(firm V), which is measured by probabilities in the range 0 – 1 and denote

it . The value of is thus the magnitude of unreliability of the

supplier.

The numbers and , which are equal to one, indicate the

probability that the supplier of pure strategies and are used in each

party. The set of strategies and , which have a probability estimate of

 and their implementation is called mixed strategy.

The points and in Fig. 1 correspond to the second and

first pure strategies of the firm B,, and all points on the

segment – to the mixed strategies. It is clear that there is an infinite number

of mixed strategies for each player.

Let us plot the graphics of the firm's A costs when applying its pure

strategies against the company's mixed strategy B. Let's start with the first

strategy. If the supplier is absolutely reliable (that is, always applies the

strategy and means), the costs of the firm A are equal in

accordance with the payment matrix – 100 USD.

Let us set a point with coordinates (1; – 100).

If the supplier is completely unreliable (that is, always applies the

strategy B2;), then the cost of the company A equals –

400 $. and it is necessary to set the point with coordinates (0; -400).

1
 Kofman A. Methods and models of operations research. Moscow: World, 1977, 432p.

1B

157

Fig. 1

If the reliability of the firm B then the daily expenses of

the firm A, which applies the first strategy against the mixed strategy of the

supplier, depend on the probability , and equal

 () () (1)

The graph of this function is a straight line, which is shown in

Fig. 1 .

Similarly, the graphs of the functions of the expected costs of the firm

A when applying each pure strategy against the mixed strategies of the

supplier company B:

 () () (2)

 () () (3)

 () () (4)

which are respectively indicated in pic. 1 as A2, A3, A4.

158

With the reliability of the supplier to the intersection with

the lines of functions of the expected costs of the company A we find out

that the strategy A3, that will provide the minimum cost –226 USD will be

optimal.

If the reliability of the provider is , it is better to use the

fourth strategy; with the reliability of the supplier

the optimal strategy will be A3, at , at

 , (see Fig. 1).

These critical reliability values are derived from the overall solution of

equations (1) – (4), which are in pairs: (3) and (4) – Point b, (2) and

(3) – dot с, (1) and (2) – dot d.

The following is a broken line аbссdе shows how the expenses of the

firm А when the supplier's reliability changes to 0 to 1 are changed.

As you can see from the graph, the increase of the supplier's reliability

does not automatically reduce the cost of the firm А. In fact, when the

provider's reliability grows from 0 to 0.263, the company costs А increase

from –200 to

 ()

The increase in costs is due to the fact that the raw material is

purchased from the second supplier, and the irregular deliveries of the

main supplier (with a probability of 0.263) lead to additional costs.

With the reliability of the supplier cost of the firm А

maximum of all possible at a reasonable choice of the firm А Their

strategies (this maximum depends on the values of the conditionally

selected costs (see table1)).

If the game was antagonistic, that is, the supplier wanted to inflict

maximum damage to the company А, its optimal reliability would have to

be equal to . At the same time, the company's А costs would

have been 234.2 and the optimal one would be the strategy А3 and ,

(point bis at the intersection of linesА3 and). In fact, substituting

 into the equation (3), (4), we get

 () ()

Due to the fact that the company-supplier seeks to inflict firm A

maximum damage, the latter can not choose any one of the net strategies

A3 or A4, for in this case, if the firm B will change the reliability of

deliveries in the lesser side of (in the case of the Strategy)

159

or in a bigger side (in the case of a strategy A4), losses will increase and be

greater than – 234,2$.

As in the antagonistic game the first and second strategies of the firm

Аare ineffective, consider the possibility of finding a mixed strategy А3 і

 , with such probabilities of application, in which the losses of firm А

would not be greater than $234.2 under any strategies of firm В. We will

construct the chart of expenses of the firm А, which applies its mixed

strategy, consisting of pure strategies А3 і against each clear strategy

і В2 of firm В (fig. 2).

Fig. 2

Using y3 let's denote the probability of application of strategy А3, and

using y4 – strategy (). From a graph constructed similarly

to the graph in Fig.1, it is seen that the optimal mixed strategy of the firm А

includes the strategies А3 and А4, which are applied with probabilitie

s3 = 0,685 and y4 = 0,315.

160

The optimal costs of firm A (called in the case of an antagonistic game

the price of the game) equal to the ordinates of the intersection point q.

Substituting y3 = 0,685 into any of the equations of the straight

 () () , we get the same cost

value – $234.2, which was previously calculated. Figure 2 shows that in an

antagonistic game firm D should not deviate from its optimal mixed

strategy y1 = y2 = 0; y3 = 0.685; y 4 = 0.315 as costs increase (in the

direction of the lines shown). When y3< 0,685 firm В will start to apply a

pure strategy when y3> 0,685 – a pure stategy В2 and will cause losses

to firmА greater than – 234,2 $.

Thus, if the game was antagonistic (i.e each player inflicts maximum

damage to the opponent), players should be recommend the following

optimal strategies:

to the firm ;

to the firm .

The cost of the game (i.e expected losses of the firm A) equals – 234.2$.

3. Statistical games and criteria for decision making

Production processes are managed by implementing a sequence of

solutions. In the absence of sufficiently complete information on the state

of the management object, uncertainty arises in decision making
2
.

The reasons for this may be different: the inability to obtain

information before the decision is made; very high information costs;

inability to eliminate uncertainty due to objective nature. For example, the

random nature of the demand for products makes it impossible to

accurately predict the volume of its output.

In order to mitigate the adverse effects in each case, the degree of risk

and the information available must be taken into account. In this case, the

decision-maker enters a game relationship with some abstract person who

can be conditionally called «nature».

In other words, the decision-maker must be able to find management

decisions when nature does not consciously choose its optimal strategies.

Any economic activity can be considered as a game with nature, about

whose conditions there are some probability characteristics.

Nature's indifference to the game (win) and the opportunity for the

decision-maker to obtain additional information about its condition

2
 Churchman W., Acof R., Arnoff L. Introduction to Operations Research. Moscow: Science, 1968, 488 p.

161

distinguish the game from nature from a regular matrix game involving

two conscious players.

Statistical games are the main model of decision theory in the context

of partial uncertainty.

Let's return to the problem again – games with firms A and B. Since

such a game is usually not antagonistic, its solution cannot be considered

optimal. In fact, the supplier company В does not want to cause the firm

Аmaximum damage and therefore its reliability may be any, not

necessarily the worst from the point of view of the company А (the worst

for the firm А – supplier reliability 0.263).

If, for example, the reliability of firm B and firm A continue

to apply the optimal mixed strategy for the antagonistic game, then the

expected costs of firm A do not decrease. Indeed,

 () () ()
 () ()

where () ()are determined by relations (3), (4).

In order to reduce costs for such reliability of the supplier, it is

necessary to abandon the optimal strategy and use, as shown above, the

pure third strategy A3 (see Fig. 1).

The costs are reduced to -226 USD.

Thus, the peculiarity of the solution of games with nature in the

conditions of certainty is that a mixed strategy of nature is given, that is, all

the probabilities of states are known:

 ∑

This allows for each i pure strategy of the active player to calculate

the mathematical expectation of his/her win against the known mixed

strategy of nature by the formula

 () ∑

where aij – element of the payment matrix, located at the intersection

of the i-th row and the j-th column:

162

(

)

.

The maximum element in the calculated column () of

mathematical expectations of winnings,

 ()

determines the most profitable strategy of the active player and

quantifies the maximum possible winnings.

If there are two or more maximum elements in this column, then the

respective strategies can be used, either purely or in any combination.

This approach to the solution of games against nature takes place only

when the probabilities of the states of nature are given. Often decisions are

made in the absence of information about such probabilities. Then,

knowing the possible list of states of nature, consider them equally

probable.

At the same time, the maximum mathematical expectation of winning

(Laplace criterion) can be used to select the optimal strategy, but this

criterion can only be used for an even distribution of probabilities

 ⁄ ().

Let us consider the other criteria that are applied to solve the games

with nature under uncertainty conditions
3
.

4. Wald's Maximin Criterion.

In this case, such a solution is chosen that guarantees a win at least

With respect to the game under consideration, under any behavior of

the supplier firm B the firm A may choose any of its pure strategies. There

can be two consequences for each strategy. For guarantee, the company

And takes into account the one that gives the smallest winnings. Write it

down in the column of minimums of rows (tab. 3).

3
 Churchman W., Acof R., Arnoff L. Introduction to Operations Research. Moscow: Science, 2007, 2010 p.

163

Table 3

From these lines, you can choose the one with which this minimum

win will be the maximum (-250). This is the optimal strategy of firm A,

chosen in accordance with the Wald's criterion.

Table 3 also defines the minimax strategy of the firm B, for which the

maximum payout is selected from each column and such strategy is

accepted that gives the firm A the minimal of these maximal payoffs.

In this case, the strategy of the firm В. is the second one. Thus, the

maximin strategy А3of the firm А neutralizes the minimax strategy В2 of

the firm В.

Obviously, the Wald's criterion can be seen as extreme pessimism in

the assessment of circumstances. According to it, it is recommended to

choose one of the alternative strategies, the pessimistic assessment of

which is the best.

5. Maximin criterionCriterion

This criterion assumes that the state of nature will be most favorable

for us, so we must choose a solution that provides the maximax gain

among the maximum possible, i.e

Using the maximax criterion in the problem under consideration, we

obtain Sm= -$ 100. This is in line with strategy , that is, firm A should

not take any actions, assuming that the firm B will apply the most

favorable for itself strategy B1.

In contrast to the Wald's criterion, the maximax criterion can be

considered as extreme optimism in the assessment of the circumstances

while making the decision.

164

6. Hurwitz's (pessimism – optimism) Criterion

When choosing a solution instead of two extremes in the assessment

of the situation (optimism – pessimism) it becomes logical to adhere to

some intermediate position, which takes into account the possibility of

both the worst and the best behavior of nature. Such a compromise

criterion was suggested by Hurwitz.

In his opinion, we must determine the linear combination of the

minimum and maximum payoffs for each decision and choose the strategy

for which this value will be greatest:

[

 ()

]

where ()is the degree of optimism. When , the

Hurwitz criterion goes to the maximum Waldo criterion; at –

matches the maximax criterion. The choice of the degree of optimism is

influenced by the measure of responsibility: the greater the consequences

of wrong decisions, the greater the desire to insure, the closer to zero.

The influence of the degree of optimism on the choice of the solution

in the problem under consideration is given in Table 4.

Table 4

Note. The value Sr for each value a is marked with a *.

When ⁄ Hurwitz's criterion recommends to the firm А using

strategy А3, when ⁄ ⁄ – strategy А2, in other cases – .

7. Savage's minimax regret criterion

The essence of this criterion is to choose such a decision so as not to

allow excessively large losses, to which the wrong decision can lead.

165

For this purpose, a «risk matrix» is built, the elements of which show

how much damage we will bear if we do not choose the best solution for

each state of nature.

The risk of a player when choosing a solution (strategy) under the

conditions is the difference between the maximum win, available in

these conditions, and the win that the player will receive in the same

conditions using the strategy , Let us denote this value by rij.

If the player knew in advance the future state of nature , he would

choose a strategy that would correspond to the maximum element in the

specified column: max aij. Then, by definition, the risk is equal to

The risk matrix is constructed as follows:

1) the largest element is determined for each state of nature (column);

2) the risk matrix element is obtained by subtracting the correspon-

ding element of the payment matrix from the maximum element of this

column.

Savage's criterion recommends that in uncertainty conditions, one

should choose a solution that provides minimal rate of the maximum risk:

(

)

The risk matrix for the problem under consideration is given

in Table. 5.

Table 5

To the right of the risk matrix there is the maximum risk column for

each strategy ,. Minimax risk is reached when choosing

166

8. Bayes-Laplace criterion

Applying this criterion, they depart from the conditions of complete

uncertainty (lack of information about the state of nature), believing that a

certain probability of their occurrence can be used for the probable states

of nature.

In this case, determining the mathematical expectation of winning for

each decision, they choose the one that provides the highest value of the

win:

. (5)

The Bayes–Laplace principle can be applied if the states of nature

under study and the decisions made are many times repeated.

Then, for example, statistical methods, based on the frequency of

occurrence of certain states of nature in the past, can estimate the

likelihood of their occurrence in the future.

For single solutions that do not repeat, the Bayes–Laplace principle

cannot be applied even when the states of nature are repeated.

This is because such solutions violate the stationarity of the

probability distribution of nature.

Let us suppose that firm A, before making a decision, has analyzed

how accurately the supplier firm B had previously followed the delivery

deadlines, and has determined that in 25 cases out of 100 raw materials

were delayed. It follows that the state , can be assigned with the

probability Х1 = 0,75, and the state В2 – with the probability Х2 = 0,25.

Then, according to the Bayes-Laplace criterion, the solution (strategy)А1 is

optimal (Table 6).

Table 6





n

j

jij
i

БЛ XaS
1

max

167

The criteria listed do not draw out the full variety of decision selection

criteria under uncertainty, including the criteria for selecting the best

mixed strategies.

The solutions recommended by the considered criteria for the studied

task are given in Table. 7.

Table 7

The table shows that the optimal behavior depends largely on the

accepted optimization criterion. Therefore, the selection of the criterion is

the most important question in the study of operations.

Each choice of criterion leads to the approval of a decision, which

may differ from the decision made in accordance with another criterion.

However, the situation is never so uncertain that it is impossible to obtain

at least partial information on the probability of the distribution of the

states of nature in the situation being analyzed.

In this case, estimating the probability distribution of the states of

nature, they apply the Bayes-Laplace criterion or conduct an experiment to

clarify the behavior of nature.

9. Modeling Effectiveness of Information Retention Costs

under Uncertainty Conditions

In games with nature, making one or the other decision, we can not

find in advance in what state it is at the time of implementation of the

decision, even when we know the probability distribution of its states.

Therefore, the solution, that is the best for such a probability distribution

of the states of nature, will not be better than the state which nature will

truly take
4
.

4
 Akof R., Sasiena M. Fundamentals of Operations Research. Moscow: World, 2007, 2010 p.

168

It follows from the Bayes-Laplace criterion that the solution is the

player's strategy Ai, which provides the maximum average win. This

strategy is best in a situation where nature «chooses» its states by chance,

but with a known law of distribution.

However, the maximum average win is not the maximum attainable

win. Indeed, let us imagine a perfect case when we know the future state of

nature precisely before deciding. Then we can apply that pure strategy that

allows against this state of nature to get a maximum gain of

With a sufficiently large number of repetitions of the game in terms of

full prediction, the average maximum win will be equal to





n

J

jj XvS
1

 (6)

Since , the value (5) always does not exceed the value (6).

Then, the difference

 ∑ ∑

 (7)

is the magnitude of the additional average gain due to an accurate

knowledge of the future state of nature at the time of making the

decision.

Suppose that there is reliable information (an ideal experiment) that

accurately predicts the future state of nature. We estimate the expediency

of acquiring such information (conducting such an experiment) at the cost

of obtaining it p. Since the additional gain (excluding the cost of

information) is (1 – c, purchase is expedient when й – c> 0, i.e taking into

account (7) when

∑ ∑

 (8)

And if not, the acquiring of Information (experiment) has to be

abandoned and the strategy Аi, which provides the maximum average win.

Let us now return to the aforecited problem, when the reliability of the

supplier company B is, for example, 0,6, and the cost of reliable

information (ideal experiment) is $ 40 per day.

The table 8 shows the costs (benefits) of the company A.

169

Table 8

Obviously, if the delivery is timely (state), the best solution is A1

and the costs are equal to $100, if there is no supply (state B2), is the best

solution D, and the costs are $200.

The average maximum payout (minimum cost) of the firm A will be

 which is greater than the maxi-

mum average payout, which equals to $210, for –
As the information on timely delivery costs the company A the

amount of c = $40, it receives an additional gain of c = $70 – $40 = $30 a

day. Obviously, the acquisition of such information is appropriate.

The condition for the expediency of acquiring information

(experiment) (8) can be written as

 ∑ ()
 (9)

where is nothing but risk (see § 3.4) and the sum on

the left (9) is the average risk. Therefore, an acquisition (experiment) is

appropriate when the cost of obtaining it is less than the minimum

average risk:

∑

Above, the situation where we can accurately determine the future

state of nature has been considered. However, more often, additional

information can only clarify the a priori probability distribution of these

states. In this case, they are talking about clarifying information (a non-

ideal experiment). Now instead of a clear answer «Tomorrow the delivery

170

will happen» or «Tomorrow the delivery will not happen» we will most

likely receive answers that can be formulated as follows:

C1 – the supplier is more reliable than we think;

C2 – the supplier reliability is almost the same as we think;

С3– the supplier is less reliable than we think.
Each of these results comes with some probability, the distribution of

such probabilities depends on the states of nature, that is, on the conditions

in which information is obtained (an experiment is conducted). Let us

suppose that the multiple experiments that were conducted before, allowed

us to collect data on the conditional probabilities of the results of

experiments (⁄), which are given in Table 9.

Table 9

Knowing the conditional probabilities of the results (⁄) and

the probabilities of the states of nature , one can calculate the full

probabilities of the results () by the formulas

 () ∑ (⁄)

For probability they are:

 () ∑ (⁄)

 () ∑ (⁄)

171

 () ∑ (⁄)

and are given in the last column of the table 9. Knowing them, you

can determine the specified probabilities of the state of nature after the

experiment.

Bayes formulas serve to calculate the posterior (post-experimental) the

distribution of probabilities of the state of nature.

 ()
 (⁄)

 ()

We calculate this distribution if the result of the experiment was :

 ()
 (⁄)

 ()

 ()
 (⁄)

 ()

Now (after receiving the information, conducting the experiment) the

reliability of the supplier instead of 0.6 is estimated at 0.79. The best

strategy of the company A according to Bayes-Laplace criterion instead of

A2 will become A1 (table 10), which provides the minimum of costs – $163.

Table 10

Table 10 shows that without additional information (conducting the

experiment), the costs were in the amount of – $210, after that they

became – $163. The extra payoff is –163 – (–210) = $47. The cost of

obtaining information (conducting the experiment) is $40. But these

172

calculations are still not enough to conclude that it is advisable to acquire

information, since the result could have been different (C 2 or C3, see Table

9), and additional payoffs having these results are still unknown. Let us

calculate them.

If the result of the experiment is C2, the posterior probabilities of the

states of the firm B are

 ()
 (⁄)

 ()

 ()
 (⁄)

 ()

For reliability of the supplier company В average costs of the

company А are shown in table 10. It is seen that the solutions A, or A2 will

be optimal or any combination of these strategies, the win is $200

If the result of the experiment is C3, then

 ()
 (⁄)

 ()

 ()
 (⁄)

 ()

With the reliability of the company В 0,231 the minimum average cost

of the company A, which is equal to $230,1, is achieved when applying the

strategy .

Using the full probabilities of information obtaining results, we

calculate the average cost (gain) of the firm A:

-163 0.38 – 200 0.36 – 230.01 0.26 = -193.8 $

In the absence of additional information, they are -210u.o. The extra

payoff is –163 – (–210) = $47. Therefore, at the cost of additional

information $40 its acquisition is inappropriate.

10. Determining the optimal inventory of commercial companies

Let us by x denote the market demand for the products of a trading

firm for some fixed period of time (day, week, month, etc.), which is

unknown in advance. Units of products for sale can be both physical

(kilograms, liters, etc.) or monetary. Let us suppose that unrealized in this

173

period products lose their consumer qualities during storage and can not be

sold in the next period
5
.

Let us hereafter using C1 denote the sum of the prime cost and

additional costs of storage of a unit of production which was not realized in

the mentioned period of time due to the fact that the demand for it was less

than projected, and using C 2 we denote the loss of profit per unit of

production, which is caused by its absence, when the demand for it exceeds

its quantity d, which is available in the firm.

In view of the above designations, the loss of the firm is determined

by the function

 () {
 ()

 ()
 (10)

We will consider the demand for products x as a random variable with a

distribution function F (x), which can be determined on the basis of statistical

observations or other information. Then the losses of firm V (x, s),

determined by the ratio (10), are a function of the random value x (demand)

and the value of the product stock s, and the task of defining the optimal stock

of products of a trading company can be considered as a statistical game with

«nature». Player A is a trading company, player B is a certain conditional

customer (market) with a known distribution function F (x).

The purpose of the company is to find such a value of the inventory s,

that would minimize the mathematical expectation (average)

[()] ∫ () ()

 (11)

of its costs.

Substituting in (11) the function of losses (10), we obtain

 [()] ∫() () ∫()

()

 [∫ () ∫ ()

] [∫ () ∫ ()

]

 [() ∫ ()

]

5
 Degtyarev Yu.I. Operations Research. Moscow: Higher chool, 1986, 320 p.

174

 [∫ () ∫ () ∫ () (())

]

 [() ∫ ()

] [[] ∫ () (())

]

 () () () ∫ () []

where M[x] denotes the mathematical expectation of the random

variable x.

To find the minimum value of the mathematical

expectation [()], which is a function of the inventory t, we equate

the first derivative of this function to zero on the variable s:

 [()]

 ()[() ()] () ()

 () () (12)

where () (()

)denotes the probability density of demand

distribution at point s.

From relation (12), which is the equations, it implies that the optimal

value of the inventory of trading company 5 0, which minimizes its losses,

satisfies the condition

 ()

 (13)

By definition () (), i.e equality (13) means that the

optimal value of the inventory s0 should meet a requirement that the

probability that demand is less than s0 is equal to

.

A simple algorithm for determining s 0 follows from the latter. On the

basis of statistical observations a graph of the distribution function

(cumulative) is constructed. Graphically or from the analytic expression of

the distribution function F(x) we find the following value s 0, for which

equation (13) works. If the distribution is close to known, for example,

175

normal, the value can be determined from the tables of normal

distribution.

Let us consider how this is done in practice.

Suppose that the optimal value of inventory should be determined

when C 1 = 0,6, C 2 = 0,4 and we have the statistical observations of daily

demand for products over 31 days, which are shown as income (Table 11).

Table 11

Based on these data, we calculate frequencies, relative frequencies,

cumulative frequencies (cumulative line) and build a distribution graph

(Fig. 3) using known formulas from statistics.

Fig. 3

Next, by the formula (13) we calculate

 ()

176

and graphically determine $, where the needed optimal value of

the daily stock of products of a trading firm will be given in a value that

minimizes the mathematical expectation (average value) of its losses per

one day.

Similar to the above mentioned, calculations can be made to predict

the optimal stock of production of firms for any period of time.

REFERENCES

1. Kofman A. Methods and models of operations research. Moscow:

World, 1977, 432p.

2. Churchman W., Acof R., Arnoff L. Introduction to Operations

Research. Moscow: Science, 1968, 488 p.

3. Churchman W., Acof R., Arnoff L. Introduction to Operations

Research. Moscow: Science, 2007, 2010 p.

4. Akof R., Sasiena M. Fundamentals of Operations Research.

Moscow: World, 2007, 2010 p.

5. Degtyarev Yu. I. Operations Research. Moscow: Higher chool,

1986, 320 p.

Information about the author:

Muliava O. M.

Candidate of Physical and Mathematical Sciences, Associate

Professor, Deputy Dean of the National University of Food Technology

177

NOTES

178

NOTES

NOTES

Publishing house “Liha-Pres”

9 Kastelivka str., Lviv, 79012, Ukraine

44 Lubicka str., Toruń, 87-100, Poland

Printed by the publishing house “Liha-Pres”

Passed for printing: August 30, 2019.

A run of 150 copies.

