
5

DOI https://doi.org/10.36059/978-966-397-107-0/5-35

SOFTWARE TOOLS

Kyselov V. B.

1. Engineering interpretation of programming

Engineering (industrial) methods, although are not universal, are now

widespread in programming. They require a revision of the traditional

concepts and the development of new ones.

Let us consider, first of all, the evolution of the concept «Program».

Any computer while solving a specific problem works on a specific

program. In general, a computer program (P) is a record of an algorithm

for solving a problem in the form of a sequence of commands or operators

in a strictly formalized language accessible for the computer. This

definition of the program is to some extent abstract and not sufficiently

specific. It is used when we are not interested in the specific form of the

program, the language of presentation, the degree of completion
1
.

The program can be recorded on ordinary sheets of paper, on special

forms, on data carriers. It may be debugged or undebugged, ready for its

intended use, or may require some conversion before use. To make the idea

of the program more specific, epithets are added to the name of the

program, such as debugged (undebugged), object, controlling, etc. The

abstractness of the term «Program» creates great difficulty in

communicating of professionals, and in some cases is unacceptable.

Therefore, there is a need for additional terms and definitions.

Under, the software tool (ST) one understands a program or a set of

programs on data carriers with program documentation developed in

accordance with standards and other regulatory documents and suitable for

its intended purpose. The definition of the software emphasizes the

completeness of the product (the availability of software documentation)

and the readiness to use it directly for its intended purpose to solve a

specific problem on the computer (recording on a data carrier). But the

software may not be a commodity product, especially a product for

production and technical purpose. It may only be intended for use by the

1
 Antipensky V.E., Bilousko V.S., Chujdan T.I. Computing Machines and Programming: Workshop. Kyiv:

Higher School. Main issue, 1987. 245 p.

6

developer himself and is not used by others. In this regard, there is a need

to allocate a subset of software tools which have features of products that

are developed and manufactured to meet the needs of the national

economy, population and programs on data carriers with program

documentation developed and manufactured in accordance with standards

and other regulatory documents, having undergone state, inter-

departmental or departmental testing and technical control of the

manufacturer, provided with guarantees. A software product is a unit of

software production for technical purposes. It follows from the definition

that not every software tool is a software product.

The relation between programs, software tools and software products

can be established using the concept of sets. Let us suppose A = {P};

B = {ST}; C = {SP}. The following relations are established between the

sets A, B, C: And B C. So, any software product is a software tool, but

not the other way around. Accordingly, any software tool is a program, but

the reverse statement is not valid. The B\C difference is a subset of

software tools which are not software products; the A\B difference is a

subset of programs that are not software tools.

To get a software tool from a written program, it is necessary to insert

this program into the computer memory, compile, debug and compile

program documentation for it. This requires some labor costs, generally

exceeding the labor costs for initial writing the program text. In order to

obtain a software product from the software tool, it is necessary to more

fully anticipate possible application and requirements of potential users, as

well as to ensure that the previously stated requirements for SP are

fulfilled. Labor costs, which three times exceed labor costs to create ST,

may be needed for all that.

2. Software production specificity

Software production has features that should be taken into account at

all stages of the software tools’ lifecycle as well as in quality management.

The software production has a high scientific capacity and intellectual

content, it is created on the basis of intensive use of scientific knowledge

and promotes the dissemination and use of knowledge by creating banks of

this knowledge, information and expert systems, etc. Software tools

development almost always requires high mental stress, deep and accurate

knowledge. In ST development, besides programming specialists, highly

7

qualified specialists in a wide variety of subject areas (chemistry, physics,

control systems, technological processes, and the like) have to be involved

The narrow specialization and qualification of these specialists makes them

unique. The complications in the control of progress and quality of

development emerge. These difficulties are often subjective. High

scientific capacity causes the need for increased costs for research and

development work in the process of creating programs. This feature

complicates the use of engineering methods in the design and quality

management of ST

Software production is not expended and does not consume its

resources when used. It is known that industrial production is divided into

two main classes. The first are products expended when used (fuel, raw

materials, substances, etc.); the second are products that consume their

resources when used (machines, appliances, worktables, etc.).

The software production cannot be assigned to any of these classes of

industrial production on these grounds. It is not expended when used and

does not consume its resource. Moreover, with a well-established support

service, ST is improved by detecting and correcting errors, as well as

upgrading of methods, structure, and parameters. During the period of

storage and usage the data carrier, on which the program is recorded, loses

its features and may eventually become unusable. But by removing the

copies from the ST in advance, the influence of this factor can be

eliminated. The question of whether a copy of ST may be compared with

the original and whether a user has the legal right to make copies of ST

slightly impacts the nature and character of the features of the ST because

it does not cause major complications for a user.

This feature significantly affects the methods of assessing the

reliability of the ST and the possibility of extending the traditional

interpretation of the reliability of technical means to software products.

This is especially true of reliability indicators such as durability and

maintainability. The nature of the main indicator of reliability, infallibility,

is also changing.

2.1 Easy to manufacture

In most cases, manufacturing a software product on magnetic or paper

media involves a relatively simple operation of removing copies from the

product's sample-standart (original). However, no qualitative changes

8

occur. The identity of the copy with the original is easily controlled. It is

somewhat more complicated to make copies of a software product in a

permanent storage device. But this way of storing information is, firstly,

not widespread, and secondly, it is also easily controlled and automated.

This feature significantly affects the organization of quality control of

software production. The main difficulty of this control lies not in the

process of manufacturing the product, but the processes of development

and testing of the prototype. The high quality of the prototype with strict

adherence to the technology of rewriting guarantees the quality of the

copies made from it – new copies of software products. It should be noted

that the ease of manufacturing SP complicates the control over their

distribution.

2.2 Easy to make changes

Upgrading a software product requires knowledge of the structure of

the product being changed, a thorough analysis of the impact of the

changes. But the process itself is simple. All you need is a good editor

program. This feature, when skillfully used, is a significant advantage of

software. This advantage is vital in dynamic spheres of applications, such

as in automated control systems, where a constant search for the most

optimal control modes goes on, which leads to the need for continuous

improvement of the software. But the same feature easily becomes a

drawback if the flow of change becomes poorly managed and unbalanced.

The ease (sometimes it seems to exist) of modernization generates a

large number of relevant proposals, wishes, and sometimes insufficiently

justified orders.

Attempts to implement all these changes are often unbalanced

(uncoordinated) with real needs and opportunities. Under these conditions,

the text of the program and the interrelations between its elements are

confused; the program loses its consistency and accessibility for review;

the difficulties in maintaining program documentation emerge. After all, it

can accelerate the degradation of the ST to complete ineligibility. The ST

upgrade process should be subject to careful control and planning.

2.3 The abstract materiality of the software

By its formal content, any ST is an information object. But the

information contained in the software is very specific. In general,

9

information reflects the object of knowledge. The information contained

in the command (operator) part of the program itself is obtained on the

basis of the study of a certain object of knowledge (such as knowledge of

a controlled object or process) and contains an order for the sequence of

transformation (processing) of data that reflects the state of the cognition,

to the required result. Information (data) is the object of processing in

human-machine systems. The application code is not subject to

processing. It itself contains data processing rules. This is the

fundamental difference between the program as an information object and

information (data) in general.

As part of the computing system, the ST manages the data conversion

process. Naturally, the question arises whether ST can be considered a

material object. The materiality of the ST, its components, the internal

mathematical support of computers or implemented in long-term storage

devices, is not questioned as they are susceptible to organoleptic

perception. The materiality of the ST implemented on magnetic data

carriers is questionable, since these ST carriers are not susceptible to

organoleptic perception. Physical embodiment, the materiality of the

software in this case are somewhat abstract. The absence of concepts of

tolerances and landings. Each element of the program has its size in bytes.

With hardware, program elements are easily moved within me
’
mory, which

greatly facilitates the build process of the programs. Therefore, in

programming there are practically no restrictions on the maximum

tolerances for the required dimensions when designing program elements.

3. Software production life cycle

3.1 The stage of research

Software production is science-intensive, so its life cycle begins with

the stage of research, which is carried out in the framework of research

work on this issue. The main result of the research is the draft Terms of

Reference (TOR) for development. TOR is the document that should be

guided by the team of developers when creating the software. It is

developed by the customer organization and agreed with the developer

organization. In some cases, on behalf of the customer, the project of TOR

is developed by the developer organization.

10

In the development of complicated software complexes on separate

components of the complex one creates private TOR
2
.

The TOR should include the following sections:name and scope; basis

for development; aim and purpose of development, scientific and technical

requirements; economic indicators; phases and stages of development; the

procedure of control and acceptance. It follows that the main attention in

the study should be given to the conditions of use and purpose of SP, the

justification of scientific and technical requirements and economic (socio-

economic) efficiency, which determine the level of quality and

performance characteristics of the product. In TOR for multifunctional ST,

besides the general requirements for ST in general, requirements for the

quality of implementation of each function, as well as the priority

(significance) of functions and information interaction between them,

should be defined. Such differentiation will allow more purposefully

influence the quality of the software tool being developed. A software

quality assurance plan should be attached to the TOR, which defines the

measures to ensure the required quality of the ST being developed, the

sequence of their implementation, the responsibility for carrying it out, the

objects and methods of control, the forms of recording data on quality and

reporting. The value of a thoroughly grounded and compiled TOR cannot

be underestimated. Such underestimation, especially on the part of the

customer and the contractor, leads to a delay in the development and

release of defective products. When implementing complex software

complexes, up to 70% of all emerging problems are directly related to the

imperfections of the requirements in the TOR and only 30% are the result

of errors in the development process.

The imperfection of the TOR for the development of SP is caused not

only by the misunderstanding of the TOR value, but also by such objective

difficulties as novelty of problems, lack of relevant experience, lack or

insufficient reliability of the initial data for the design, etc. In these cases,

the customer and the developer want to have good TOR, but cannot

develop it. In such a situation, preliminary (at the stage of research)

prototype of automated systems, data processing systems and processes

give good results. The essence of the prototype is as follows. The

developer, having received from the customer the most general information

2
 Antipensky V.E., Bilousko V.S., Chujdan T.I.. Computing Machines and Programming: Workshop. Kyiv:

Higher School. Main issue, 1987. 245 p.

11

about the purpose of SP, creates a prototype (simplified preliminary

sample) of SP on the basis of those computing and software tools that he

possesses. In doing so, he makes extensive use of unified software

modules-components and modules of software products-analogs.

At the same time, in the requirements implementation restrictions

when using the hardware interface and the equipment itself should be

specified. When conducting research it is necessary to predict the life cycle

of SP, trying to properly account possible changes in the conditions of use,

tasks performed, the direction of upgrades. Particular attention should be

paid to substantiating the requirements of SP resistance to various

distortions (failure of information sensors, operators' errors, errors in

communication channels and computing devices).

Many guidelines for the development of Software Requirements

Specifications (SRS) include the IEEE Guide to Software Requirements

Specifications standard.

The first section of the standard provides information about the SRS

environment, the characteristics of the «correct» SRS, and aspects

regarding the evolution of the SRS. The characteristics of the «correct»

SRS are of particular interest.

Such characteristics are: uniqueness of interpretations, completeness,

verification, possibility of citation, consistency, modification, clarity

(possibility of tracing), usefulness at the stages of operation and

maintenance.

It is considered that the SRS has the property of uniqueness of

interpretation only when each requirement contained therein permits a

single interpretation. SRS is complete if it has the following properties:

includes all the essential requirements related to the operation, method of

display, restrictions, equipment, attributes and external interfaces;

determines ST responses to various (correct and incorrect) types of input

information in different situations; meets some standard (individual

discrepancies must be specified); all pictures, charts and tables in it are

accompanied by detailed signatures and definitions of all terms and scales

of measurement. The SRS is true if its every claim is true. The SRS is

considered consistent if none of the requirements contained therein are in

conflict with each other. The SRS is modified if it is easy to make any

necessary changes in it without making any contradictions. The SRS has a

track record if the reasons for any requirements are obvious and if it

12

facilitates the process of justifying the requirements arising from the

development or improvement of the documentation. The SRS will be

useful at the operational and maintenance stage if it facilitates the use and

upgrade of the ST at this stage.

The second section of the standard addresses the basic ways of

expressing requirements (using I/O specifications, multiple examples, and

model specification); annotation (explanation and ranking) of

requirements, as well as the most common mistakes in the description of

requirements. It should be noted that none of the methods considered in the

standard is universal. The method of expressing requirements using I/O

specifications is only suitable if possible inputs and expected results are

available for review; the way of expressing using examples – if possible

system situations are available for review; the method of expressing using

model specification imposes restrictions on the construction of software

that contradicts the purpose of the SRS.

The third section of the standard sets out the overall structure of the

SRS. In particular, in the «General Questions» section, it is recommended

to display the product purpose, functions, user characteristic, general

constraints, assumptions, and dependencies (factors that influenced the

choice of the SRS requirements). Obviously, these issues should be

reflected in one way or another in the TOR for the development of the SP.

3.2 Development stage

This stage begins with the development (consistency and approval) of

the TOR and ends with the test of the prototype SP. In the general case, the

stage of development of SP consists of the following stages: the

development of SP, the development of technical proposals, sketchy

design, technical engineering, functional engineering, testing. The results

of the works for each stage respectively are: TOR, technical suggestions,

sketch project, technical project (algorithms for solving problems),

functional project (text of the program), test prototype. Let us consider the

content of the works at these stages.

3.3 Technical Suggestions and Developments

SP should include a justification for the feasibility of the proposed

variant of the structure selected on the basis of the analysis of the TOR and

the various options for possible solutions.

13

The technical proposals list all the fundamental issues to be addressed

in the engineering process with a preliminary assessment of their

feasibility. For example, technical proposals for the development of ACS

software should reflect the following issues: the degree of system

automation; the composition of the general algorithm; previous structure

and scope of the algorithm; determination of the structure and scheme of

information of flows between computers, information sources and

managed objects; preliminary estimation of the temporal diagram of data

exchange between the computer and the objects of the system being

automated; development of quality assessment criteria and methodological

bases for their verification (control) during development; identification of

problems that require preliminary modeling; determining the scope,

methods and tools of modeling; preliminary selection and evaluation of

methods for solving major problems; preliminary elaboration of principles

and methods of ensuring the stability and reliability of management;

working out the issues of development organization, as well as providing

developers with general-purpose hardware and software.

The technical suggestions are the starting point for the development of

the sketch project. In justified cases, both of these stages can be combined.

The sketchy design should include fundamental solutions that give a

general idea of the structure of the SP, the designation of its components,

the organization of relationships between these parts, data exchange and

dynamic distribution of computer resources, as well as programming

technologies. As a result of sketchy design, a preliminary estimate of the

computer system (CS) resources required for the development and

operation of SP is given. While developing of sketchy design, the problem

of choosing the optimal structure to be released, the manufacturability of

design, debugging and testing programs and the construction of a common

algorithm for solving the problem are solved.

If necessary, one develops structural diagrams of the general

algorithm at the level of its components, including databases; pre-connect

the components of SP on the time of execution, use of external computers

and information; sets the acceptable range of characteristics of the input

and output values for each component; make private TOR for the

development of the main components; simulates the operation of kernel

components in order to test the basic principles of data processing and

control; establishes basic principles of quality management of SP; identify

14

the critical ways and paths of the SP calculation; solves organizational

issues of work at the stage of technical design. At the stage of the sketch

project all the fundamental issues of technology creation of software

complex should be developed. The sketchy design is approved by the

customer organization. It serves as a guidance document for the

development of a technical project. In justified cases, it is decided to carry

out the task of sketch design in the framework of a technical project. The

reasons for this may be the experience of developing similar products or

their simplicity.

The SP technical project is a set of design documents that give a

complete picture of the algorithmic and information structure of the

product under development and contain all the source data for

programming. The language used to describe the algorithms for solving

problems in a technical project depends on the set programming

technology. In the traditional approach, the so-called linguistic-formula

descriptions and graphical schemes are used.

When describing algorithms, the developer uses any terms, concepts,

and designations that are understood by him (but not necessarily

understood by other developers). Mutual understanding between

developers of complex software systems is difficult, which leads to

unproductive spending of time and other resources. Therefore, in modern

programming technologies, much attention is paid to the strict regulation

of both the linguistic means of description and the design procedures

themselves. After the design process is completed, the functional design

stage begins. Functional design (FD) consists of three main stages: the

development of the program, the development of program documentation

and the testing of the SP prototype. The main content of the works on the

stage of FD of program complexes is programming and debugging of

components of the program complex, autonomous component testing,

assembling of the program complex, development of program documents,

development (alignment and approval) of the program and testing methods,

conducting of all types of tests, adjustment of programs and program

documents according to the results.

Production of SP. Production is a set of works to ensure the

production of the required amount of SP in a set period; it includes the

following types of work: studying the demand for this type of SP;

production planning and production management; organization of

15

technological preparation and maintenance of production, logistics; storage

and delivery. The stage of production of products for one-time orders has a

hidden (implicit) character. It lies in making the required number of copies

of the SP, including the program documentation.

Thus, in a single production, the SP developer combines the functions

of the SP manufacturer and supplier.

3.4 Maintenance of SP

This stage consists of collecting information about the quality of SP

during operation, modifying the product and notifying users of changes

made. Maintenance functions are usually performed by the SP vendor.

Practice shows that the initial stage of SP operation the developer's

involvement in SP maintenance is very useful, and sometimes necessary.

As the user and the supplier master the SP, this need is gradually

eliminated. The maintenance stage is conditioned by the need to perform

such tasks as the inclusion of new features in the SP, change of functions,

modification and replacement of equipment in data processing systems,

error detection and correction. The stages of operation and maintenance

proceed in time paralleled. At the same time, the production of new SP can

be carried out.

The reasons for the end of the SP life cycle may be different: no need

for further use; replacement by new, more advanced SP; incompatibility

with new equipment; dissatisfaction with the results of usage, etc. Due to

the mentioned specificity of software production, the problems of

evaluating its non-compliance with its purpose and utilization differ

significantly from the corresponding problems of evaluating technical

production. These differences are basically the following:

1. The difficulty of identifying non-compliant products as a result of

uncontrolled upgrading of product units by users. In these circumstances,

individual non-compliant units of products can be brought to compliance

by users and, vice versa, compliant units to non-compliant ones. In general,

regarding the appearance of software production, the assessment of its

conformity becomes ambiguous;

2. The complexity of identifying inappropriate types of products

causes the complexity of their isolation, i.e. separation from products that

meet the requirements;

16

3. Non-compliant software products are generally not suitable for any

use without further refinement and processing, so they should not be

disposed (used for any other purpose). Their use should be completely

excluded.

Separation and clear delineation of the phases and stages of the SP

lifecycle, defining the necessary relations between the stages contribute to

a clearer organization of certain types of work – ways to create

appropriate technologies and technological tools, including methods and

means of quality control both within and after the stage. When forming

stages, it is very important to define clear links between them, to identify

control points and decision making, which should facilitate a more

accurate transition of information from one stage to another and

ultimately reduce the development timeframe and improve the quality of

the developed SP. The SP life cycle is not strictly consistent. It is

iterative. The terms of reference, the sketch and the technical projects of

the SP after their approval shall not remain unchanged. In the

development of sufficiently complex SP it is impossible to achieve the

invariability of the life cycle in practice. Sometimes, some design

decisions made at previous stages of the life cycle have to be modified or

refined and revisited. The reasons for this are different. Basically, they

exist because the customer at an early stage of development does not

quite clearly imagine and formulate system requirements, and the

developer does not always immediately find the best solutions.

4. Software Tools Classification

The penetration of computer technology in all spheres of human

activity, the desire to solve with the help of this technique a set of

completely different problems extremely diversify software products by

purpose, application, nature of production and maintenance, level of

complexity, etc. Each type of ST has its characteristics that can

significantly affect the methods of their development and quality

management. Ignoring these features leads to problems of interaction,

different kinds of misunderstandings and contradictions. Requirements for

quality indicators depend on the type of ST: high requirements for one or

another indicator for one ST may not be necessary for another
3
.

3
 Ivashchenko N. N. Automatic regulation. Theory and elements of systems. Textbook for universities.

Ed. 4th, rework. and ext. Moscow: Mechanical Engineering, 1978. 236 p.

17

Depending on the purpose, five subclasses of software are identified:

system ST, applications for scientific research, applications for designing,

applications for control of technical devices and technological processes,

applications for the solution of economic tasks.

The following breakdown into types of software can be considered

universally accepted: application, system, and tool software. We give the

following informal definition of these types. For a computer to do your job,

you need to create application software. For the computer to cope

effectively with many applications and to be well-adapted to the

environment, you need to create system software. To make it easier to

develop software, you need to create and use tool software. Application ST

are developed by experts who are well versed in the processes they

automate. System ST are usually more complex than application and tool

ones. They are developed by experts who know all the intricacies of

programming and operation of computer systems.

Examples of system software are operating systems, database

management systems, and the like. Instrumental ST are used at the stages

of program development and maintenance, including debugging and

testing. Typical examples of software tools are compilers, text editors, data

archivers, change analyzers, and the like. Instrumental ST are developed

by experts who are knowledgeable in programming technology as a whole

or in specific aspects (transmission, editing, debugging, testing, etc.).

All considered types of ST are classified by one attribute – purpose. But

when planning development, development management, quality management

of software products, it is necessary to consider not only the purpose of the

software, but also their other characteristic features. Such features include, for

example, the number of users. Of course, the ST that a specialist has

developed for himself and which he will use for himself, do not have the

requirements that apply to ST developed for thousands of users.

In the first case, the requirements for the ST are determined by the

developer at his discretion, and in the second they must be determined by

the customer, taking into account the possibility of using the ST in a wide

range of conditions. Even when developing software for your own use, the

frequency of use (one-time, daily, weekly, annually, etc.) is essential.

Problems that are of great importance for specific (consisting of

components) ST may be irrelevant to unspecified ST (that is, the

components themselves). The requirements for real-time ST differ

18

significantly from the requirements for ST that implement, for example,

basic computational tasks. The problem of comprehensive detailed

classification of software is extremely complex and has not yet been

resolved. Let us consider some classification methods that are important

for understanding software quality management issues. By the nature of

the manufacture one should distinguish between single and mass

production. The developer himself performs the functions of the

manufacturer and the supplier. He provides training for the customer

support staff, assists the user with the commissioning of the ST into

industrial operation, accompanies the ST.

The single nature of the manufacturing does not preclude the re-

production of ST for implementation at another enterprise (re-

introduction). In this case, the developer usually has to refine the software,

taking into account the specifics of use in the new conditions. Depending

on the scope of the revision, it may happen that the revised ST should be

considered as new ST. The batch type is characterized by periodic

production of batches of homogeneous software that is in high demand.

By nature of supply and use, software may be characterized by the

autonomy of supply and use, or the supply and use of PCS or an

automated technological complex (ATC). A distinctive feature of

autonomous ST is that it can be developed, manufactured, tested and

delivered (sold) autonomously An example of autonomous ST can be

almost any ST related to system ST. Distinctive features of the

ST supplied as part of PCS or ATC are the joint development,

manufacture and testing of ST and system being automated in which it is

delivered to the customer (user). Examples of such systems are the PCS.

In terms of the number of functions performed, all specified SP except the

software modules are multifunctional. For example, in the Logistics

Supply Subsystem (LSS) of ACS considered as SP, the following

functions (tasks) can be implemented: determining the need for materials,

determining the need for equipment, determining the need for spare parts,

developing a schedule for the supply of units, etc. Each of these features,

with the exception of the latter, has a specific purpose and therefore has

autonomy of use, i.e can be used independently. The LSS itself can be

considered as a multi-purpose system, although it has a general (global)

purpose. But multifunctional SP can be one and the same. These

SP include, for example, those SP that bring two managed objects,

19

moving in space, together. The goal here is one (approximation for a

given distance), but for approximation it is necessary to solve the

following problems: determine the position of each controlled object in

space at time (t+1); by extrapolation calculate the position of objects at

time (t+1); calculate the optimal approximation trajectories for each

object at time (t+1); to calculate the control actions corresponding to

these trajectories. It is clear that the successful solution of the general

convergence problem is possible with the correct solution of all partial

problems. Depending on the nature of the implementation process, the

following types of ST are distinguished: implemented as part of the

developed ACS; implemented in existing PSC (АТК); autonomous

implemented and self-relevant ones; software components that are built

into the software system. To determine the level of unification, ST and

their components belong to one of the following types: standard;

unified; original.

To standard one includes components of a specific ST that meet the

requirements of state, industry or national standards, which are referenced

in the design specifications. Unified ST include components of a specific

ST that can be used to solve the same problems in several software tools.

Unified ST are purchased, borrowed ST, as well as developed according to

the standards of given enterprise and used in various ST. Components of a

specific ST that are not made in the organization but purchased are called

acquired. Borrowed items include components of a specific ST that were

previously designed as original to other ST, used in given ST, and which

have developed program documentation.

Original ST include components of a specific ST developed for the

first time for this ST and used only in this particular ST. In practice,

original ST are often refined (unified) and thus transformed into unified

ST. ST is a complex product. The average software package contains

40–50 thousand source text operators.

Taking into account the existing semantic relationship of operators,

which needs to be known and recorded, the average ST is compared to the

locomotive, which has about 25 thousand details. Many materials basing

on ST quality and programming technology are difficult to use because it is

unclear to which class the ST they belong, and unreasonable

generalizations often make it difficult to create effective methods and tools

for evaluating ST quality.

20

5. Quality features of the ST

While identifying the terms «Software tool» and «program»,

sometimes the measure of its relevance to the original algorithm is

understood under the quality of ST. However, the following two mistakes

are made: the concepts of «program» and «software tool» are not identical;

errors in the original algorithm are no less likely than programming

(encoding) errors. Errors may also be contained in the program

documentation. Therefore, the full compliance of the program text with the

algorithm text cannot guarantee the suitability of the ST for its intended

purpose. The compliance of the ST algorithm is characterized not by the

quality of the ST as a product, but the quality of one of the main

technological processes in the creation of the ST- the quality of

programming. It is more common to define the quality of the ST as a

measure of compliance of the real characteristics of the ST with the

characteristics given in the TOR. Such interpretation of the ST quality is

acceptable only if the TOR has fully and uniquely defined all the consumer

properties that the developed ST must have. But this condition is not yet

feasible due to the lack of a common nomenclature of quality indicators,

methods of setting scientific and technical requirements for ST and lack of

experience in solving these problems.

Software quality one should understand as a set of ST features that

determine their suitability to meet specific needs according to their

intended purpose. It is based on three key concepts: ST feature, need,

ability to meet needs. Let us consider these concepts
4
.

The existence of ST as a product of labor is an objective reality. As a

product, ST has many attributes – objective features that determine its

difference or similarity with other objects and are manifested in its creation

and operation. These attributes may be common to a given product class,

and specific to a particular type of software or specific ST. According to

the impact on the ST quality one should distinguish between essential

attributes and insignificant. Only the essential attributes are of interest. But

the measure of the impact of these attributes on the quality of specific ST is

also different. These differences need to be taken into account. ST

attributes are quantitatively and qualitatively characterized by quality

indicators.

4
 Miroshnik I.V. Automatic control theory. Linear systems. St. Petersburg: Peter, 2005. 336 p.: pic. (Training

Series).

21

The following main aspects of ST needs can be distinguished:

scientific, technical, economic social. The need for ST is established at the

beginning of its life cycle, usually at the stage of research (marketing). In

doing so, the following basic questions should be answered: field of usage;

solved tasks; expected effect from use (scientific, economic, social). In the

narrower sense, the need for accuracy of data conversion results, trouble-

free operation, ease of maintenance, ease of exploration, and the like are

established. In order to meet the needs, ST as a product of labor must

possess certain useful (consumer) attributes that collectively determine the

public usefulness of ST. Usually, each product has several useful features,

each of them satisfies one or more needs. ST quality is both a technical and

a socio-economic category. On the one hand, it is closely linked to features

that satisfy certain needs. But the attributes of the subject are not economic

categories, so a technical approach is promising from these positions on the

ST quality.

On the other hand, the ST quality is a concrete expression of the public

consumption value, so an economic approach should be applied to it.

Two characteristic features should be noted in the formation of

ST quality.

1. The quality of any industrial product on batch or mass production

depends largely on the manufacturing process. It cannot exceed the

technical level achieved in design. But it may be well below this level due

to non-compliance with manufacturing technology requirements.

Production of SP is often a simple technological operation of making a

copy from the sample-standard by rewriting from one data carrier to

another. However, no qualitative changes occur. The identity of the records

is easily controlled. Therefore, it is necessary to control and manage the ST

quality, not mainly while its production, but in the development, that is,

when the ST quality is formed.

2. SP during operation and maintenance, as a rule, are constantly

changing, modernized. Therefore, the maintenance process itself can be

called, for example, an extended development process. But any change in

the structure of the software production leads to a certain qualitative

change, so the quality control and management of the ST must occur not

only during their development, but also at the stage of operation

(maintenance).

22

Factors affecting the quality of the ST can be constant and variable,

direct, indirect and inverse. Quality factors should not be confused with

quality indicators. Quality factors characterize the conditions and elements

that influence the formation of quality.

Quality indicators, more precisely, denotation of quality indicators,

directly characterize the quality itself. Any management is a purposeful

action on a managed object to achieve specific, predetermined results.

Quality, as a set of consumer attributes of products and services, is a

specific management object and has significant features. The product

quality management itself differs from the management of the product

creation process in that not the organization of production, but the

regulation of the properties of the products produced is the object of

management here. These attributes are formed at the stages of the life cycle

under the influence of various conditions and factors. Quality management

(QM) is the process of acting on those conditions, factors and socio-

economic relationships that influence the formation and change of

consumer attributes of products.

To accomplish this process, a system of governance is created – a set

of interacting bodies, tools and methods of management. Software quality

management has organizational, methodological and socio-economic

aspects. The organizational and methodological side of SQM is expressed

in the development and application of advanced programming

technologies, consolidation of scientific and technical achievements in the

relevant standards and methodological documents, equipping the

developers with advanced technology, etc.

The socio-economic side of SQM is expressed in the creation of such

a system of socio-economic relations between all participants in

the development, which will ensure the creation and production of PP of

the required and guaranteed quality. This system shall cover: a) the

relationship of the administration of the developer organization with

the customer organizations; b) the relationship of the administration of the

organization with the staff of its units; c) the relationship between the

development units; d) the relationship of the managers of all units with its

individual executors.

At the same time, personal interest and responsibility of each manager
and contractor for the quality of the software under development should be

ensured at all levels. Users are most interested in the quality of the

23

software, but they are little interested in the ways in which the developer
achieves a certain level of ST quality. It is only important that this level

meets the actual needs. Actions aimed at assuring the user (customer) with
the confidence in the proper level of purchased products constitute the

External Quality Assurance. Such actions include, in particular, marketing,
drafting and mutual harmonization of specifications of requirements,

testing and maintenance of software. Elements of internal and external
quality assurance can generally overlap. Having a specification of

requirements contributes, for example, to confidence in achieving the
required level of quality both by the developer and the customer.

For a better understanding of the nature of software quality

management in the process of its development, let us consider the
conceptual model of management.

6. Conceptual model of software quality management

In general, management is an integral part of the functioning of
systems of organization of various nature: biological, technical, socio-

economic. In each of them there are objects that subordinate to others, and
therefore, and control them, forcing them to move in a certain direction,

perform the specified actions, organize their activities as a whole
5
.

Management of the project (object-system), its components and

processes, with the purpose of increasing the efficiency of the systems
functioning occurs at the stage of system design, creation, formation,

development, formation, functioning of the system. The effectiveness of

the management is determined by the adequacy of the control actions to the
object of the management.With regard to computer ST, the quality

management scheme is as follows. The object of management (action) is
the quality of the object of labor. The subject of labor, depending on the

stage of development, respectively, is the TOR, technical design,
functional design (program text), ST prototype. ST quality is mainly

formed at these stages, so quality management should start from the very
beginning of the software development process and be continuously

implemented throughout the process. In general, management actions can
affect not only object labor directly, but also labor and technological

processes, if they do not contribute to the management goal, as well as
factors affecting ST quality.

5
 Popovich M.G., Kovalchuk M.G. Automatic control theory: a textbook. 2nd edition, revised. and suppl.

Kyiv: Libid, 2007. 656 p.

24

Programming labor tools include compilers, downloaders, program

builders, documenters, automated debuggers, test data generators,

automated programmer jobs, including computers, etc. Technological

processes consist of certain technological operations for ST creation,

performed by means of labor under the control of programmers (operators)

or directly by programmers. In any case, the role of the person in the

technological process, its impact on the quality of the product is crucial.

The purpose of management is to provide the necessary level of ST

quality, which guarantees the expected socio-economic effect of the use of

this ST for its intended purpose. The main role in software quality

management is performed by software development, operation and

maintenance managers (depending on the life cycle stage), direct

developers or ST maintenance specialists, together with management tools.

The category of specialists involved in software quality management

will be referred to as developers. Developers have an effect on the state of

the ST either directly or through appropriate technological means (TM)

and technological processes (TP). These actions can be both positive

(coinciding with the purpose of management) and negative (not predictable

perturbations). Negative actions result in program errors. Sensors of

information about the status of the managed process and the quality of the

software depending on the stage of the software life cycle are either the

developers themselves (at the design and debugging stage), or experts of

the quality control groups (at the design stage), or testers (at the test

stages), or users (at stage of operation). Naturally, certain categories

(concepts) should be used to describe quality. First of all, it is necessary to

determine the consumer properties of the ST being developed, that is, those

attributes that the software must possess to be able to be used effectively

for its intended purpose. Each attribute or group of attributes is

quantitatively characterized by quality indicators. In order to manage

quality, it is necessary to know the acceptable rates of the quality

indicators as well as the criteria for quality assessment at each stage of the

ST life cycle. This information should be contained in the terms of

reference and specifications for specific ST or groups of homogeneous ST.

The actual rates of the Quality Score can only be set when the

ST development is completed. In the process of development, you can only

make predictions about the quality of the ST, controlling the presence or

absence of certain features in the project documentation and programs

25

when debugging. Monitoring the current state of the quality of software

being developed usually relies on special quality quality management

groups (QMG) that are independent from the developers. In order for the

QMG to perform its functions successfully, it must have a clear

understanding of the quality of the controlled ST analyzed at different

stages of the life cycle, of the methods for determining quality indicators

and quality criteria.

The conclusion about the current state of quality of the controlled

software is made by the ST QMG on the basis of examination of the

project documentation (if the program has not yet been written or has

not acquired the performance capability), or by analyzing the correctness

of the initial data (results) by comparing the actual data with the

expected ones (in the working program). In the first case, it should have

a methodology for conducting the examination, and in the second case

there should be clear signs of identification of correct (incorrect) results.

All ST quality information should be submitted to developers or

maintenance professionals who, basing on the analysis of the

information, make decisions about how to influence the management

object. Primary information about the quality of software in the

development stages is often symptomatic. Only external signs of design

errors, deviations of the data processing process (ST operation) from

normal mode, or lack of the required attribute in the ST are recorded. In

order to make a decision on the impact on a management object in order

to improve its quality, it is necessary to establish the reason for deviation

from the required quality level and the way to eliminate this cause.

When designing an impact, developers should consider the requirements

and capabilities of the programming technology used, the requirements

for ST from customers (users), the structure of the ST, the available

resources, as well as the relationship between the signs of errors, their

causes and ways to eliminate them.

The essence of managers' influence is to change the structure of the

program and program documentation (error correction, introduction of new

functions and procedures, improvement of methods of solving problems,

etc.) in the direction of its optimization according to the criteria specified

in the TOR. If necessary, labor tools and technological processes change.

Thus, ST quality management tasks are a variety of optimization tasks and

have the following components: defining the goal of quality management

26

(QM); knowledge of ST quality assessment criteria; knowledge of the

current position in relation to the purpose; knowledge of the microstructure

of ST and factors that affect the quality of ST; knowledge of limiting

conditions in terms of execution and resources; determining the best ways

to reach your goal. Under the products quality management system (QMS)

one understands a set of organizational, scientific, technical and economic

interrelated measures to establish, provide and maintain the required level

of ST quality in its development, production and operation. The ST QM

system is multilevel.

Previously, a quality management scheme for a single ST was

considered. But organizations that specialize in the development of

complex software solutions can simultaneously develop or prepare for the

development several ST. Taken together, these ST constitute software

produced by this organization. The governing bodies in this scheme form

the administrative and technological units of the organization. Direct

management objects are not software, but teams, software developers,

technological lines (TL) development and technological processes (TP).

The ultimate goal of management is the required quality level of software.

Information on the state of the software development process goes to the

Software Quality Control Service (SQCS) along with the QCG of the

ST being developed. To make decision about management actions it is

necessary to have an annual and perspective plans of software development

(thematic plan of research and development works); a list of requirements

for the quality of software by potential users; data on the current state of

quality of the developed software; data on available labor, material and

time resources; a list of organizational and economic mechanisms for

regulating the activities (OEMRA) of developers, including the rationing

of labor and resource costs, the promotion of high productivity and quality

of software; methods and means of technological preparation of

development (TPD), including formation of technological lines and

technological processes; data on the availability and characteristics of

technological programming modules, etc.

Having this data at its disposal, the governing body influences the

quality of the software created in the organization by beforehand and

purposeful technological preparation of the development of specific ST,

setting and correction of the ST QM goals for separate periods of time

depending basing the state of the developed ST, regulating the team of

27

developers, stimulating the creation of high quality software. It is

important to emphasize the special role of the latter factor, since an

individual in the system of SQM certainly plays a decisive role.

The quality of software is formed at all stages of its creation,

therefore, operational quality control is necessary for the operational

impact on quality. During the operation of the SQM system, there is a need

to collect, store and process large amounts of information. Naturally, the

SQM system should be as automated as possible. Like any automated

control system, it consists of the following elements: organizational,

methodological, technical, software and information providing. The model

under consideration contains the basic elements of the SQM system at the

level of the developer organization and the relationship between them.

On its basis, by further detailing, it is possible to determine the

composition of the necessary regulatory, methodological, information and

software tools for supporting the SQM systems, as well as the tasks and

overall structure of the quality system of the developer organization.

Three quality objectives, that the organization faces, have been

identified. These tasks can be interpreted as follows: the organization must

achieve and, in the case of support, maintain the quality of the software at a

level that ensures continuous satisfaction of the user set or offered

requirements; the organization must assure its management that the

required quality is achieved and maintained at the required level; the

organization should provide the user with the assurance that the required

quality of the delivered software is achieved or will be achieved.

If necessary, the user may require appropriate evidence to be provided.

Solving these tasks requires the introduction and definition of key terms

and definitions. Quality policy is the main directions, goals and objectives

of a quality organization, formally formulated by its senior management.

Overall quality management is an aspect of the overall management

function that defines and implements quality policy. General management

includes quality planning, resource allocation, evaluation and other

systematic quality actions.

A quality system is a set of organizational structure, responsibilities,

procedures, processes and resources that ensure the overall quality

management. As a condition of the contract, the customer may require

clear evidence of the use of certain elements of the system. Methods and

activities of an operational nature are used to meet the quality

28

requirements. In order to avoid confusion, it is advisable to add specific

references to narrower, specific concepts, such as «quality management in

the design process». Quality assurance is a set of planned and systematic

activities needed to create confidence that a product meets certain quality

requirements. The quality of software is formed at all stages and stages of

its life cycle. Therefore, the quality system functions simultaneously with

all other activities affecting quality. The quality loop of software has some

differences from the quality loop of other industrial products. These

differences are mainly due to the decisive role of the software prototype in

shaping the quality of the development stages rather than the production

stage, as is the case in industry.

7. Factors affecting the quality of software

The software quality depends on many factors. Let us consider the

main of them.The responsibility of the management in quality assurance is

determined by the presence in the organization of the quality system of the

following elements: documented policy in the field of quality, goals and

obligations; responsibility and interaction of the staff which affects quality;

means of inspection and specially trained personnel; representative of

management bearing personal responsibility for meeting product quality

requirements; periodic analysis of the effectiveness of the quality system

which runs in the organization, the quality of regulatory documents of the

software being developed, in the part of optimality and completeness of the

claims set in it.

Preparation of Terms of Reference (TOR) for ST development and

defining the main list of requirements therein is the first stage of ST

design. TOR must be composed both on software, supplies (software

complexes), which are standalone objects, and on program components.

When developing complex ST that have no analogues at the time of

design, direct assembly of the TOR is usually preceded by research work,

the purpose of which is to determine the purpose of the ST, areas and

features of its application, as well as to analyze the requirements of

potential users.

Efficiency of programming technologies. Technological

preparation of software development. The process of creating a PP is

costly and time consuming. Programming technology, management of the

software creation process should provide the maximum beneficial effect at

29

certain costs. Naturally, such an effect can only be achieved by using the

most advanced methods and tools to develop software. The technological

preparation of software development should be complete and timely.

Regularity and effectiveness of quality control of development.

The process of creating software should be under constant and careful

control. The technology for detecting and eliminating errors, as well as

temporary material resources for the implementation of this technology,

should be installed in advance. Practice shows that for the production of

high quality products, it is necessary to plan up to 60% of labor costs in

advance to ensure proper control, debugging and testing of programs, to

establish control procedures in advance, to create software and technical

means for debugging and testing. Regular use of inspection methods

prevents up to 60% errors in advance.

Developer Qualification. The quality of the created ST is determined

by the following properties of developers: the level of knowledge

(knowledge of problems, programming languages and computers,

engineering techniques, data processing principles), the availability of

practical skills (experience in creating similar programs and software

systems);) level of initiative (understanding of the tasks being solved and

their relationships, efficiency of working time use, the desire to bring each

task to a complete completion, maintaining working contacts with the co-

workers); level of responsibility (focus on the work being performed,

constant desire for self-improvement, healthy self-esteem).

Content and quality of software (instrumental) tools used in

development. The development of sophisticated software is associated

with the need to use various computer hardware and system software.

These tools serve as a kind of technological equipment for programmers.

Naturally, the quality of ST created depends on the reliability of this

equipment and the stability of technological operations. Also timely and

fully meeting the developers' need for these tools is important.

Stimulating the creation of high quality software. Despite

significant achievements in the field of programming industrialization,

the nature of programmers' work is also individual and largely dependent

on the personal abilities of the performers. The performance and quality

of programmers working under the same conditions can vary several

times. Therefore, an effective system of stimulating the creation of high

quality software must be introduced when creating programs, which

30

involves the remuneration programmers depending on the quantity and

quality of results. Development managers should always remember that,

with stimulation for quality work, developers will find effective ways to

achieve a set goal. Conversely, with the absence of stimulation, many

useful start-ups will be unfulfilled. This is one of the manifestations of the

human factor.

Formation and adherence to uniform principles of software

development. Based on the results of the study and analysis of the factors

affecting the quality of the software, taking into account the specificity and

experience of creating these products in each development organization,

the basic principles of software development should be formulated:

development management with the help of a project plan broken down into

stages, quality control throughout the development period, from the early

stages, ensuring strict control of compliance of the features of the original

software product with the requirements set out in the specifications; use of

advanced methods and programming tools; supporting a high sense of

responsibility for the quality of the programs being developed in each

project partner; use of the minimum number of highly qualified employees;

continuous improvement of methods, means and software development

organization. Another quality system is based on the following principle:

all stages of development are clearly distinguish At each stage, the outputs

and quantitative and qualitative criteria for their evaluation are determined.

Quality processes and output are standardized according to quality.

Outputs are monitored according to previously established criteria; special

attention is paid to the organization and quality control of the work of

autonomously working groups of programmers. Various methods of

software quality checking are considered, which are considered not an

optional occupation, but one of the most important elements of design
6
.

Marketing. The quality of a particular ST depends on the

effectiveness of the system of market research measures and the consumer

features of that ST (marketing effectiveness) throughout its life cycle under

different conditions of application. Marketing units should work closely

with the software support units, as the support team usually receives

information not only about ST errors found during their operation, but also

suggestions on ways to improve the software.

6
 Tsypkin Ya.Z. Fundamentals of automatic systems. Main Editing Physical and Mathematical Literature

Publishing "Science", Moscow, 1977, 56 p.

31

The clarity of the results of the quality control. For each software at

the earliest stages of development quite simple and clear criteria (signs) of

high quality and lack of design should be set. Information on the progress

of software development and the results of its monitoring should be clear

and publicly available. Software developers should always be prepared not

only to guarantee high quality ST, but also to demonstrate it convincingly.

Existence of a comprehensive quality assurance plan for the

software developed. The plan includes a set of measures to ensure and

maintain the required level of quality of software, distributed by

contractors, in time and by material resources. It is based on the

specification of the requirements for the software, the knowledge of the

quality factors, the specifics of the ST being developed, and the necessary

resources for implementation. The plan is developed at the same time with

the development of the TOR as an appendix to it. The listed quality factors

(first order factors) are common to all types of software products and to all

the attributes of these products. In addition to these factors, it is possible to

distinguish into separate groups such factors (second-order factors), which

most significantly influence the formation of a specific attribute or group

of software attributes. The specific attribute of the ST in this case can be

considered as a consequence of the actions of the selected factors.

8. Errors in software and ways to prevent them

Errors in the programs of automated process control systems lead to

the violation of technological regimes and the production of defective

products. Errors in automated organizational management systems lead to

irrational use of material resources and labor costs. In some cases, bugs in

the programs can have catastrophic consequences. In addition, bugs in the

software, poor quality, or lack of quality assurance for individual software

are reasons for poor implementation rates. With the implementation of

software containing gross errors, in tens or even hundreds of enterprises,

the negative effect will increase an appropriate number of times. This

effect is exacerbated by the need to involve in the search and eliminate the

mistakes of many of the most qualified professionals who are doing the job

with the detriment of their kernel business. It is an admitted pattern that the

earlier a project error is detected, the easier it is to correct it. The

dependence of the relative cost of bug fixing on the time of its detection is

shown in table 1.

32

Table 1

The dependence of the relative cost of correcting

the error on the time of detection
Stage of the life cycle The relative cost of bug fixing

Development of the TOR 0,1…0,2

Sketch design 0,3

Technical engineering 0,5

Programming 1,0

Combined testing 2,0

Preliminary tests 3,0

Experimental operation 4,0

Acceptance Tests 5,0

Operation 20…30

Therefore, ST bug prevention measures in the early stages of design

should take a special place in software quality management systems in

development organizations (enterprises). In order to develop effective

measures to prevent software bugs, it is first of all necessary to establish

their nature, causes and symptoms. To understand the nature of bugs, it is

needed to consider the following characteristics: nature of the external

manifestation, physical essence, stages of introduction, nature of bugs,

their types and classification. Any program, after all, is a set of

instructions, the execution of which provides the conversion of the varied

initial data to the desired result. An error (a set of errors) in the program

leads to an incorrect result. This is the essence of the external

manifestation of bugs in the program. The physical essence of the software

product is a record of the program on a data carrier. Therefore, the physical

expression of the error is the incorrect entry of any element of the program

(commands, macros, elementary construction, operator, data set, etc.). The

error correction process in this case is a replacement the incorrect entry

with the correct one. Thus, an error in the software product from the end-

user perspective is the entry of a program element on a data carrier or in

the software documentation, which results in the wrong result being

sought. Note that this definition allows the correct result to be obtained in

the presence of errors in the program. This is possible indeed in cases

where program elements containing bugs are not used in specific

implementation conditions. The elements of the program can be not only

prescriptions for the order of conversion of the initial data into the desired

result, but also records of quantities, descriptions of variables, etc.

33

Therefore, the definition indicates the use, not execution of the program

element. Bugs in ST can be made at different stages and phases of their life

cycle. Accordingly, there are errors in the statement of the task, in

designing, in programming and in recording on the data carrier.

Errors in formulating a ST development task.The formulating a

ST development task is formulated in the form of terms of reference and

technical conditions. These documents define the consumer attributes of

the ST, which must take into account all requirements of potential users.

In turn, user requirements should be based on knowledge of the purpose

and conditions of use of the ST. Thus, to understand the tasks of

development means, first of all, to set the aim and purpose of

development, conditions of application, expected ranges of input data

and results. Misunderstanding of the problem being solved, inaccurate

knowledge of the initial data, conditions of operation and expected

results lead to errors in the formulation of the task, resource planning,

which may eventually make all further work of the designers

unnecessary. The requirements for the quality (specifications of quality)

of the ST should be an integral part of the general technical

requirements. Moreover, they must be comprehensive and well-

grounded. Otherwise, the ST will be disabled. There are situations in

which the TOR for development did not have the requirements for the

stability of ST ACS in the presence of distortive effects. Such ST had to

be radically modified immediately after experimental operation. If the

ST has the ability to be modified, then the problem of improving the

stability of the software will be solved. Otherwise, the design process

must be started from the beginning.

Design errors. Design errors include: errors in the choice of

methods for solving problems and parameters; inconsistency in the use

of data in time (in real time systems); neglect of correlation between

individual components, etc. All these errors can be qualified as the

inadequacy of mathematical models to real processes occurring in the

system, to researched processes. Design errors are sometimes referred to

as algorithmic errors because they are formally contained in problem

solving algorithms. All the errors that are not detected at the stage of

algorithm development are subsequently transformed into programming

errors.

34

Programming errors. Modern programming languages and

translators contain some set of tools for debugging and checking programs.

However, these tools are not enough to guarantee error-free programming.

Therefore, programming (encoding) is also a source of ST errors.

Software errors include errors in the choice of numerical methods of

implementation of algorithms for solving problems, schemes and

calculations; interpretation of algorithmic constructions (semantic errors);

coding (syntax errors); in conjunction of program modules and programs;

in the implementation of logical conditions; in the data description; in the

documentation.

Errors while recording on data carrier. Compiled program text must

be recorded to a specific data carrier before entering the computer. This work

is mostly done manually and can cause new errors. The percentages of these

errors are small because they are easily controlled and eliminated. ST errors

can also be introduced during operation and maintenance. Such errors are the

result of unqualified correction of predicted errors, unqualified ST

modification, negligent treatment of data carriers, etc.

The classification of errors considered is a priori. It is based on the

types of ST creation and operation work (at the stages of the ST life

cycle). This classification is useful for forecasting errors at different

stages, assessing the quality of work of teams specializing in the

performance of particular types of work, and making the necessary

decisions. For example, data input/output errors are symptomatic

because they have external characteristics (symptoms), which, however,

do not allow to explicitly identify the causes of these errors.

Computational errors usually directly indicate the true cause (error in

sign, index, etc.), but have no characteristic features.

Table 2 shows the distribution of errors by ordering the signs of

causes by frequency of occurrence. An attempt to establish the

interdependence of causes and signs of manifestation of errors was

made. The general pattern was not established, but it was possible to

identify the signs of errors that are most common in these projects.

These include: -bit grid overflow – 30.4%; incorrect management

transfer – 16.4%; incompatibility of programs with databases – 14.5%;

incompatibility of programs by the types of data being forwarded – 9%;

failure to perform additional functions by the program – 4,9%,

incompatibility of programs – 7%.

35

Table 2

Error distribution by frequency of occurrence

Type of an error
Error distribution,

% from total
quantity

Type of an error
Error distribution,

% from total
quantity

Calculations 7 Of interface 10

Logical 22
Database
initialization

6

I/O 10
In the
documentation

8

Data manipulation 15 Other 22

Collecting, processing error data, classifying errors, establishing their

causes and probabilities make it possible to do purposeful work on error

prevention and thus affect the quality of ST.

REFERENCES

1. Antipensky V.E., Bilousko V.S., Chujdan T.I. Computing Machines

and Programming: Workshop. Kyiv: Higher School. Main issue, 1987. 245 p.

2. Ivashchenko N.N. Automatic regulation. Theory and elements of

systems. Textbook for universities. Ed. 4th, rework. and ext. Moscow:

Mechanical Engineering, 1978. 236 p.

3. Miroshnik I.V. Automatic control theory. Linear systems.

St. Petersburg: Peter, 2005. 336 p.: pic. (Training Series).

4. Popovich M.G., Kovalchuk M.G. Automatic control theory: a

textbook. 2nd edition, revised. and suppl. Kyiv: Libid, 2007. 656 p.

5. Tsypkin Ya.Z. Fundamentals of automatic systems. Main Editing

Physical and Mathematical Literature Publishing "Science", Moscow,

1977, 56 p.

Information about the author:

Kyselov V. B.

Doctor of Technical Sciences, Professor,

Director of the Institute of Municipal Administration

and Urban Economics

of the V. I. Vernadsky Taurida National University

