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RESOLUTION METHODS AND APPLIED PROBLEMS  

OF GAME THEORY 
 

Medvediev M. H. 

 

1. Methods for Solving Matrix Games 

Let the game involve two parties A and B. The playing field is given 

by the payoff matrix (payment matrix – table 1): 

 

Table 1 

 
 

The strategy chosen by the party A, will be denoted as A1,A2,..., At; 

and side B strategy will be given as B1,B2,...,    ;   – probability of 

strategy use by the first party; xj – the probability of using the j trategy 

by the second party B. A vector is the first (second) player's mixed 

strategy 

 ̅  (       )  ̅  (       )  

for which 

∑      ∑          (     ̅̅ ̅̅ ̅̅ )      (     ̅̅ ̅̅̅) 
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Elements of the payoff matrix can be positive, negative, or equal to 

zero. If the element of the matrix is positive, then party B in a certain 

situation pays the party A a sum of money equal to the element of the 

matrix. 

If the element of the matrix is negative, then party A pays party B a 

um of money equal to the absolute value of the element. If the element is 

zero, no payment is made. 

We will consider zero-sum paired games
1
. 

These are games whose payment amount is zero, that is, the loss of 

one player is equal to the win of another. In this case, the average gain 

(loss) – a mathematical expectation is a function of mixed strategies  ̅  ̅: 

Function S (x, y) is called a payment function of the game with matrix 

[   ]   
. 

Strategies   ̅̅ ̅  (  
      

 )   ̅̅ ̅  (  
      

 ) are called optimal, if 

for the random strategies  ̅  (       )  ̅  (       ) these 

requirements are satisfied 

 ( ̅   ̅̅ ̅)   (  ̅̅ ̅   ̅̅ ̅)   (  ̅̅ ̅  ̅)                              (1) 

Using the optimal mixed strategies   ̅̅ ̅   ̅̅ ̅in game gives the first player 

a win no less than while using any other strategy  ̅ and gives the second 

player a loss no bigger than while using any other strategy  ̅  
The value of the payment function with optimal strategies determines 

the price of the game C, i.e    ( ̅   ̅ ) 
The combination of optimal strategies and the price of the game is the 

solution of the game. 

It is proved that in order for the number C to be the price of the game, 

and  ̅  and  ̅  to be optimal strategies, it is necessary and sufficient the 

inequalities to work 

∑    
 
     

   (     ̅̅ ̅̅̅)  ∑      
   (     ̅̅ ̅̅ ̅̅ ) 

            (2) 

In the future, for certainty, assume that      This can always be 

achieved by that the adding to all elements of the payoff matrix the same 

constant number d does not change the optimal strategies, but only 

increases the price of the game for d. 

 

                                                 
1
 Neumann D., Morgenstern O. Theory of Games and Economic behavior. Мoskow: Science, 1970, 708 p. 
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1.1 Reduction of problems of theory of games to problems of 

linear programming By dividing both parts of the first of inequalities 

(15) by C, we get the system in the expanded form
2
: 

{

     
       

         
    

     
       

         
    

                  
     

       
         

    

       (3) 

where   
  

  
 

 
(     ̅̅ ̅̅ ̅̅ )    

     

Using the last notation, condition ∑    
    

    can be written as 

∑    
   

 

 

 
    

As the first player tries to get the maximum win, he must provide a 

minimum value of 1/ C. With this in mind, determining the optimal 

strategy for the first player comes down to finding the minimum value of 

the function 

  ∑   
    

    
      

  
                                 (4) 

under conditions (16). 

Similar considerations show that determining the optimal second 

player's strategy comes down to finding the maximum value of the 

function 

  ∑   
    

    
      

  
                              (5) 

under conditions 

{
 
 

 
 

     
       

         
    

     
       

         
    

                  
     

       
         

    

  
    (     ̅̅ ̅̅ ̅)

 

where   
    

  ⁄ . 

Thus, in order to find the solution of the game given by this payment 

matrix (see table. 1), it is necessary to make dual (conjugated) linear 

programming problems and solve them. 

                                                 
2
 Akulich I.L. Mathematical programming in problem examples. Мoskow: Higher school, 1986, 318 p. 
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The straightforward problem is to find the maximum value of the 

function F, given by expression (5) under conditions (6). 

Dual (conjugate) problem is find the minimum value of 

function given by expression (4) under condition (3). 

Using a solution of a pair of dual problems 

   ̅̅ ̅̅  (  
       

  )   
  ̅̅ ̅̅  (  

      
  )                               (6) 

we get formulas for determining strategies and the price of the game: 

  
  

  
  

∑   
   

   
    

     
   

  
 

∑   
   

   
    

                              (7) 

  
 

∑   
   

   
 

 

∑   
   

   
.                                          (8) 

So, the process of finding a solution to the game using linear 

programming methods involves the following steps: 

1. Assembling of a pair of dual (conjugate) linear programming 

problems that are equivalent to such a matrix game. 

2. Determining optimal plans for dual problems. 

3. Finding a solution to the game, using the relationship between dual 

problems' plans, optimal strategies and the price of the game. 

According to these steps, we will solve the above-mentioned problem 

of supply of raw materials by linear programming methods. In this problem 

(game) the payment matrix is given in Table 2. In order for the price of 

game C to be greater than zero, we add the number d = 400 to all elements 

of this matrix. This, as mentioned above, will not change the optimal 

strategies, but will only increase the price of the game by d = 400. After 

that adding a payment matrix will look like 

  (

    
      
      
     

)  

According to the first stage, we make a pair of dual (conjugate) linear 

programming problems that are equivalent to a given matrix game. 

Direct problem (relations (5), (6)) is to find the maximum value of the 

function 

  ∑   
    

    
 (       ) 

                        (9) 
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with restrictions 

{
 
 

 
 

     
    

     
       

    

     
       

    

    
       

    

  
    

    

                                   (10) 

 

Dual (conjugate) problem (relations (16) and (17)) is to find the 

minimum value of the function 

  ∑   
    

    
    

    
  

                               (11) 

with restrictions 

Having solved the problems of linear programming (9) – (12) by the 

simplex method, we obtain 

  
        ⁄     

         ⁄              ⁄  

  
        

       
         ⁄    

         ⁄            ⁄   

Substituting these solutions into relations (20) and (21), we obtain the 

optimal strategies of the firm A: 

  
  

  
  

∑   
   

   

 
 

  
    

      
  

  
  

∑   
   

   

 
 

  
    

    

  
  

  
  

∑   
   

   

 

  
    
  

    

          
  

  
  

∑   
   

   

 

 
    
  

    

        

 

optimal strategies of the supplier company B: 

  
  

  
  

∑   
   

   

 

 
    
  

    

          
  

  
 

∑   
   

   

 

  
    
  

    

       

and the price of the game 

  
 

∑   
   

   

 
 

∑   
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Since adding to all elements of the payment matrix the number  

d = 400 has increased the price of the game by 400, the true price of the 

game of the initial problem (expected losses of the firm A) will be 

165.8 – 400 = -234.2 $ 

As it is easy to check, the optimal strategies and the price of the game 

found by linear programming methods are exactly the same as those found 

above using the graphical method. 

Unlike the graphical method that can be applied when either     or 

   , the linear programming method can be applied to arbitrary finite 

values mi n 

 

1.2 An iterative (approximate) method for solving the problems of 

game theory Two approaches to solving the problems of game theory 

have been considered above: graphic and reduction to linear 

programming problems. In both cases there is an exact solution to the 

problems of game theory – the price and optimal mixed strategies of 

players A and B. 
Let us now consider an approximate method for solving the problems 

of game theory, which reflects to some extent the real situation of the 

players' gradual accumulation of experience in adopting rational strategies 

as a result of many repetitions of conflict situations (games)
3
. 

This method allows you to simulate the process of training (behavior) 

of players during the repetition of the game, when each of them evaluates 

the behavior of the opponent and responds to it in the best way for 

themselves. Each time at the beginning of the game, they choose the most 

advantageous strategies for themselves, basing on the previous choices of 

the opponent. 

Let us solve, using this method, the previous problem with firms A 

and B, for which the payment matrix is given in Table 2 in the case when 

the game is antagonistic. 

On the first day after the conclusion of the contract, firms А and В 

accept random strategies, for example: firm А uses strategy  

А3 (–190, –250), firm В uses strategy В2 (–400, –300, –250, –200). 

Let us build a model that describes the rules for choosing the next 

«moves» by firms A and B. 
                                                 
3
 Kudryavtsev E.M. Research of operations in problems, algorithms and programs. Мoskow: Radio 

Communication, 1984, 184 p. 
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On the second day, the firm A chooses its strategy so that its win with 

the strategy B2 of the company B was the maximum, i.e the losses, taking 

into account the signs of payment, were minimal (–200). Obviously, this 

will be the strategy A4 (–330, –200). 

Firm В, taking into account the previous day, chooses the strategy В2 

again to inflict the firm А with the greatest losses (-250) when its strategy 

is А3. 

On the third day, the firm A chooses its strategy so that its 

accumulated (total) losses for the previous two days with the strategies B2 

of the firm B 

(   
    

    
    

)  (                   )   

 (                   )  (                   ) 

were minimal (they are highlighted). Obviously, this will be the 

strategy А4. FirmВ selects its strategy on the same day, based on 

information on the strategies of the firm А for the previous two days, so 

that the total losses of the firm А with its strategies А3 і  , 

(   
    

)  (         )  (         )  (         )  

were maximal (they are highlighted). This is    strategy 

On the fourth day, the situation is repeated. Firm А, Basing on the 

previous actions of the firm В, in three days chooses its strategy so that its 

total losses for these days with the strategies В2, В2, В1 of the firm В, 

(   
    

    
    

)  (                   )   

 (                   )  (                   )  

were minimal. This is strategy A3. 

Firm В, whose purpose is to maximize the losses of the firm А with its 

strategies А3, Аа,А4, 

(   
    

)  (         )  (         )  (         )  

chooses the strategy B1. 

In the following days, the situation is repeated, the behavior of the 

choice of strategies by firms A and B does not change, its results are shown 

in table 2: 
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where n denote the number of days elapsed after the conclusion of the 
contract, or a pair of successive strategies («moves») of the firms A and B; 

i denotes the strategy number selected by the company A; 

   

    

 - denote accumulated (common) losses of the firm A for the 

first n 
days using the strategies В1, В2 of the company В; 
  

 - maximum average losses of the firm A, which are equal to the 
maximum accumulated losses for the first n days divided by the number of 
these days; 

j – denote the strategy number selected by B. 

   

     

     

     

 are accumulated (general) losses of the firm A for the 

first days according to its strategies respectively A1, A2, A3,   ; 
  

 is the minimum average losses of the firm A, equal to the minimum 
accumulated losses for the first n days divided by the number of these days; 

  
̅̅ ̅denotes an average value of maximum (  

 ) and minimum 
(  

  )average losses of firm A; 
  - denotes real company A losses for each day; 
  - denotes actual accumulated losses of the firm A for n days; 
  ̅̅ ̅is the real average losses of the firm A in one day, which are added 

with the accumulated real losses for the first n days divided by the number 
of these days. 

Table 2 shows that with increasing n all three values: 

  
    

       
̅̅ ̅ approach the exact value of losses (price of the game) of 

the company A, which equals to $234,2. and were previously found by the 

graphical method (§1.2), but the average   
̅̅ ̅ coincides relatively faster 

since   
           

    
The mixed strategies of the firms A and B also increase with their 

exact values as they increase n (see §1.2, 1.4), respectively 

  ̅̅ ̅  (               )   ̅̅ ̅  (           ), but slowlier. 

For example, after n=19 repetitions of the game (days), the 
approximate values of losses of the firm А(the price of game)  

   
̅̅ ̅̅̅           , and the approximate values of mixed strategies of firms 
А і Вare often determined by their clean strategies: 

    (
 

  
 
 

  
 
  

  
 
 

  
)  (                       )  

    (
 

  
 
 

  
)  (           )  
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For comparison, the last three columns of table 13 provide real 

information about the course of the game (each game implementation), 

which shows that the model (algorithm) adequately reflects the behavior of 

the players (firms А and В) during the repetition of the game and allows 

them to determine their optimal strategies and the price of the game (losses 

of the company А). 

It can be seen from the above that the iterative method is practical and 

universal at the same time. Using it, you can easily find an approximate 

solution to any matrix game. The volume and complexity of calculations 

increase relatively slowly as the matrix game size increases. 

 

1.3 Direct Solution of Matrix Games 

In principle, any matrix game can be solved by inequalities (15). But it 

requires a lot of calculations, which increases with the increment of 

number of players. Therefore, if possible, reduce the number of clearplayer 

strategies using the «dominance principle» that is as follows
4
. 

If the elements of some row of the payoff matrix are smaller than the 

corresponding elements of some other row of the same matrix, then the last 

row dominate the first. The first row is removed from the matrix. The case 

with columns is similar, only the column with larger elements is removed. 

Further we have to check the inequalities (15). If inequation (15) is 

fulfilled, then players have pure optimal strategies (the player has the pure 

maximin strategy and the player the pure minimax). And if not, at least one 

player's optimal strategies will be mixed. 

Let us consider the principle of dominance on the example of the 

problem of planning the production of by-products (antagonistic case). 

 

1.4 The problem of planning the production  

of by-products (antagonistic case)  

Let it be: in some city there are two enterprises, which in addition to their 

main products may produce some by-products of the same purpose for the 

population, but it may be different in design and convenience, etc. Let us 

suppose that enterprise А А1, А2, А3, А4, А5, and enterprise В produces 

byproducts of type В1, В2, B3, В4, В5. The cost and sales price of all products 

are the same. Demand forecasting sociologists have determined that 

N=1000 units will be sold; moreover, if the first enterprise A (player I) will 

                                                 
4
 Dyubin G. N., Suzdal V. G. Introduction to Applied Game Theory. Мoskow: Science, 1981, 336 p. 



105 

produce products of type   , and the second enterprise B (player II) – products 

of type   , then the city will find sales      of goods of type   and  

(     )   of goods of type            . The capacity of the 

enterprises is such that each of them can provide the city. Taking the profit 

from the sale of a unit of goods equal to one, and the usefulness of the player 

I equals its profit, the payoff matrix H of player I can be written as follows: 

  (     )         
        

 

Similarly, the payoff matrix of player II is written, whose element  

(i, j) is (     ) . Since in any situation the sum of profits of players I and 

II is equal to the same number       (     ) , an increase of player I 

winnings is equivalent to a decrease of player II winnings, i.e the interests of 

players are opposite. Therefore, player II, minimizing sales     of goods    

of player I, maximizes (     )  sales of his goods Bj Therefore, the game 

given by the matrix H, simulates an antagonistic game. 

The solution of the game determines the optimal strategies  ̅   ̅ for 

players I and II, respectively, as well as the mathematical expectation of 

winning of player I is equal to  ( ̅  ̅) In this game, the mathematical 

expectation of winning of player II is equal to   ( ̅  ̅). Since the sum of 

goods sold equals toN, the mathematical expectation of goods sold by the 

enterprise B equals to    ( ̅  ̅). 

Let us consider the solution of the game on a specific numerical 

example. Suppose that the estimated share of sales of enterprise A products 

is given in Table 3. 

 

Table 3 
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It is necessary to determine the types of products produced by each 

enterprise. In this case, the player's I payoff matrix will look like this 

  

(

 
 

               
               
               
               
             )

 
 
  

Noting that it is enough to solve the game with a matrix of 

winnings    
 

   
   i.e 

   

(

 
 

     
     
     
     
     )

 
 
  

The game with the payoff matrix H 
1
 is called the subgame of the 

game with the matrix H. The set of pure strategies of each of the players in 

the game is contained in the set of its pure strategies in the game itself, 

from which it follows that the set of mixed strategies of each player in the 

subgame is contained in the set of the mixed strategies of the game. 

We apply the principle of dominance. It is easy to determine that the 

elements of the fifth row of the matrix H
1
 are not greater than the 

corresponding elements of the first row, and therefore the first strategy of 

player I dominates the fifth. In addition, the elements of the first and 

second columns are not less than the corresponding elements of the fourth 

column. Therefore, player's fourth strategy dominates his first and second 

strategy. According to the principle of dominance, we remove the fifth row 

and the first and second columns. Obtain a subgame of the game with the 

payoff matrix H 
1
, which in the matrix form is given by the matrix 

   (

   
   
   
   

). 

Note that the ith row of the matrix Н
2
 is corresponded by ith strategy, 

andjth column – (j + 2)-th strategy of the game   . Analysis of the 

matrix    shows that the third strategy of player II is dominated by a 
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mixed strategy that uses fourth and fifth strategies with the probabilities 

3/5 and 2/5 respectively. According to the principle of dominance, we 

remove the first column of the matrix    and get a subgame with a matrix 

   (

  
  
  
  

)  

any solution of which is the solution of the game H 
2
, and game    i H. 

From the analysis of the matrix H 
3
 it is easy to determine that the 

elements of the second row are not larger than the corresponding elements 

of the third row, and the elements of the fourth row are not greater than the 

corresponding elements of the first row. Therefore, the first and third 

strategies of player I dominate respectively the fourth and second strategies 

of player I. 

Again, using the dominance principle, we obtain a subgame with a 

matrix 

   (
  
  

)  

Let us see if the game has a solution in pure strategies, with optimal 

strategies of players I and II respectively being a pure maximin strategy 

and a pure minimax strategy. However, if the game with a payoff 

matrix    is not solved in pure strategies, then both players have only 

optimal strategies that use all their pure strategies with positive 

probabilities. 

The matrix    does not have saddle point, because the equation of 

elements is not satisfied 

   
 

   
 

       
 

   
 

    

matrix   , i.e the optimal strategies of the players are mixed. 

Let  ̅ – be a random mixed strategy of player I. If    is the probability 

of a player's choice of his first strategy in terms of  ̅, then the probability 

of him choosing a second strategy is     . Similarly, if  ̅ is a random 

mixed strategy of player II, then it looks like (       ). It is easy to 

prove that the optimal strategies of players I and II 

  ̅̅ ̅  (  
      

 )   ̅̅ ̅  (  
      

 ) 
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are calculated by the formulas 

  
  

       

               

   
  

       

               

  

and the payment function of the game is equal to 

 (   ̅̅ ̅̅   ̅̅ ̅)  
             

               

  

As a result of calculations we get 

  
    ⁄    

    ⁄   (   )     ⁄   

Strategies   ̅̅ ̅  (  ⁄    ⁄ )  and    ̅̅ ̅  (  ⁄    ⁄ )are consistent to 

strategies   ̅̅ ̅  (  ⁄          ⁄ )  and    ̅̅ ̅  (           ⁄⁄ ) 

of the initial game. The value of the game with the payoff matrix H is 

equal to 1100/3. 

The result means that the enterprise A selects the production    i 

   with probabilities that are equal to 2/3 and 1/3 respectively, and the 

enterprise B – production B4 and Band 5 with probabilities of 5/9 and 

4/9 respectively. Thus the mathematical expectation of the number of 

goods sold by enterprises A and B will be equal to 1100/3 and 

1900/3 respectively. 

 

2. Non-zero-sum bi-matrix games 

Above, the zero-sum paired games, which are entirely determined by 

one payment matrix, were considered (Table 12). The optimal strategies 

are the following strategies   ̅̅ ̅ and   ̅̅ ̅ respectively for the parties A and B, 

which satisfy the conditions (15), under which it is not advantageous to 

deviate from these strategies for any player. This is called the equilibrium 

situation. It proves that zero-sum games always have at least one optimal 

solution (  ̅̅ ̅   ̅̅ ̅), i.e at least one equilibrium point with the price of the 

game    (  ̅̅ ̅   ̅̅ ̅)  As a rule, such a solution is unique
5
. 

But, even when there are no such points of equilibrium, the price of 

the game is always the same and is equal to    (  
 ̅̅ ̅   

 ̅̅ ̅)(       ). 
Therefore, such equilibrium points are considered equivalent and in the 

general case one can assume that zero-sum games always have the only 

optimal solution. 

                                                 
5
 Zamkov OO, Tolstenko AV, Cheremnykh Yu.N. Mathematical Methods in Economics. Мoskow: DIS, 

1997, 368 p. 
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Unlike zero-sum games, there are non-zero-sum games where it is not 
necessary for one player to win and the other to lose; they can both win 
and lose at the same time. 

As the interests of players in such games are not completely opposite, 
their behavior becomes more diverse. For example, if a zero-sum game 
made it unprofitable for each player to tell his or her strategy to the other 
(this could reduce his or her winnings), then in a non-zero-sum game, it 
becomes desirable to coordinate with or influence a partner in some way. 

Non-zero-sum games are also called bimatrix, as they are defined 
either by two matrices indicating the payments (winnings) of each party A 
and B: 

 

 
 

or by one block matrix whose elements are pairs or blocks (       ), 

 

 
 
There are two types of bimatrix games – non-cooperative games, that 

prohibit any co-operation of the parties, and cooperative games, that allow 
such cooperation. It is obvious that cooperative games are a more complex 
object of study (at least because forms of cooperation can be diverse). 

 

3. Non-cooperative games 
In most economic, industrial, military, political, environmental, and 

adaptive maintenanceadministrative-legal conflicts, the purpose of each 
participant is to obtain as much individual gain as possible. All participants 
in such conflicts, for example, can win at the same time. Therefore, the 
non-compliant interests of participants are not quite the opposite, which 
makes the conflict non-antagonistic. Such a conflict may be modeled by a 
non-cooperative game if it fulfills such conditions. 
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1. Conflict is determined by the non-antagonistic interaction of the 

participants. 

2. The parties of the conflict cannot (or have no right) to make 

mutually binding agreements. 

3. The parties' own actions are performed independently of each 

other, that is, each of them has no information about the actions taken by 

the other party; the results of these actions are estimated by the real 

numbers that determine the usefulness of the situation for each  

of the parties. 

4. Each of the parties of the conflict knows, both for themselves and 

for others, the usefulness of any possible situation that may result from 

their interaction. 

 

3.1 Situations (points) of equilibrium 

Let us take a closer look at non-cooperative games. In this case, an 

important role is played by situations of equilibrium, characterized by the 

fact that it is disadvantageous for none of the parties to violate them. and 

earlier, through   (       ),   (       )mixed strategies of 

players A and B. 

Then their average winnings will be accordingly equal to 

  ( ̅  ̅)  ∑ ∑    
 
   

 
           ( ̅  ̅)  ∑ ∑         

 
   

 
           (12) 

If among the common strategies there are  ̅̅ ̅  (  
      

 ) and 

  ̅  (  
      

 )that satisfy the conditions 

  ( ̅  
 ̅)    ( 

 ̅   ̅)    ( 
 ̅  ̅)    ( 

 ̅   ̅)                   (13) 

then using   ̅̅ ̅ ̅̅ ̅̅  and   ̅ creates an equilibrium situation. 

The theory holds that every non-cooperative bimatrix game has at 

least one equilibrium situation (point) determined by inequations (13). 

When such a point (pair) ( ̅  ̅) is unique, it can be considered as the 

optimal strategies   ̅̅ ̅and   ̅̅ ̅ of the sides A and B. 

Uncertainty arises when there is more than one equilibrium point that 

satisfies conditions (27). And, unlike zero-sum games, the winnings of the 

parties A and B in these points differ – they are not equivalent. 

Consider this situation using a simple example. 

Let the block payment matrix (Table 4) look like this 
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Table 4 

 
 

By a straightforward substitution of formula (12), it is easy to check 

that pure strategies are   ̅̅ ̅  (   )   ̅̅ ̅  (   ) and 

  ̅̅ ̅  (   )   ̅̅ ̅  (   )satisfy the equilibrium conditions. The 

winnings of the parties A and B at these points of equilibrium are 

respectively equal to 

  (  ̅̅ ̅    ̅̅ ̅ )       (  ̅̅ ̅    ̅̅ ̅ )     

  (  ̅̅ ̅    ̅̅ ̅ )       (  ̅̅ ̅    ̅̅ ̅ )     

Now let us check whether there are points of equilibrium among the 

mixed strategies of the parties A and B. 

Since 

                       

then from relations (13) and Table 15 it implies that the average 

winnings of the parties A and B are respectively equal to 

  ( ̅  ̅)                     (    )(    )   (14) 

  ( ̅  ̅)                     (    )(    )  

that is, SÀ and SB are functions from two variables    and  : 

  (     )         (    )(    )  

  (     )         (    )(    )  

The equilibrium situation is characterized by the fact that it is not 

profitable for the side A to change its strategy   , and for the side B – its 

strategy   , because this will reduce their average winnings. It follows that 

the equilibrium conditions in this case have the form 

{
 

 
   

   

      (    )    

   

   

      (    )    
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Solving this system of equations, we find the third equilibrium point 

among the mixed strategies for the sides A and B: 

  
        

              
         

             

that is 

 ̅ 
  (       )   ̅ 

  (       ) 

with the winnings calculated by the formulas (28): 

  ( ̅ 
   ̅ 

 )         ( ̅ 
   ̅ 

 )       

It is easy to check that the equilibrium conditions (27) are satisfied at 

this point: 

  ( ̅  ̅ 
 )           (    )            ( ̅ 

   ̅ 
 )  

  ( ̅ 
   ̅)           (    )            ( ̅ 

   ̅ 
 )  

Obviously, the first situation (point) of equilibrium is more favorable 

for the side A, the second – for the side B. In the third equilibrium point, 

the parties' gains are the same, but they are smaller than in the first and 

second points. In the end, it is difficult to understand what the outcome of 

the parties А та В may be and how they should behave. 

Thus, if there is more than one point (situation) of equilibrium, 

unambiguous recommendations for the choice of optimal strategies for the 

parties A and B cannot be given. In many cases, mutual contacts and 

agreements between the parties A and B make it possible. 

In general, non-cooperative games are examined on a case-by-case 

basis. 

 

3.2 The problem of planning the production  

of the by-product (non-antagonistic case)  

Let us consider the problem of planning the production of the by-

product (non-antagonistic case). 

Suppose that two enterprises can produce by-products in the same 

production conditions as in the antagonistic case, but the possibility of 

selling these products has changed. 

Now, according to sociologists, if the first enterprise (player I) will 

produce products of type   (     ), and the second (player II) – 

products of type   (     ), then the city will find sales aijof goods of 

type    and sales     of goods of type Вj . 
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Since the sale of products of any enterprise depends on what products 

the other enterprise produces, and each enterprise tries to maximize the 

volume of sales, we have a production-trade conflict. This conflict is 

modeled by the game of the same players I and II with the same 

respectively m and n strategies as in the antagonistic game. 

But this game is non-antagonistic, since the amount of products sold 

will now depend on the situation. 

Taking the profit from the sale of units of goods equal to one, and the 

utility of players I and II equal their income, we model this conflict by a bi-

matrix game given by a pair of matrices 

  (   )       
       

 і   (   )       
       

 

where    and     – wins of the players I and II respectively in the 

situation(i, j). 

Consider the solution of this game on a specific numerical example, 

assuming that companies I and II plan to produce by-products of types 

   (     ) and   (     ), respectively, and the expected profits from 

the sale of these products are given by the matrices: 

  (
      
      

)  і    (
       
       

)  

It is necessary to determine the type of products that make sense for 

each enterprise. 

Let us denote 

                              

                               

If     and    , then the game has a balance of mixed strategies, 

namely 

 ̅  (  
      

 )  ̅  (  
      

 ) 

where 

  
  

 

  
   

  
 

  
  

As a result of calculations we get 
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Therefore, the equilibrium situation is formed by vectors 

 ̅  (  ⁄    ⁄ )  ̅  (  ⁄    ⁄ ) 

and the mathematical expectation of the winnings of players I and II in 

the equilibrium situation will accordingly be 

  ( ̅
   ̅ )  (               )  

   
  (       )  

   

 (       )  
          

  ( ̅
   ̅ )  (               )  

   
  (       )  

   

 (       )  
          . 

The result means that the enterprise A selects the production of type А1 

and А2 with probabilities that are equal to 3/5 and 2/5 respectively, and the 

enterprise В – production of type В1 and В2 with probabilities of 2/3 and 

1/3 respectively. Thus the mathematical expectation of the number of 

goods sold by enterprises A and B will be equal to $500 and $1100 

respectively. 

 

4. Cooperative games 

 

4.1 Problem Statement 

Most non-antagonistic conflicts in the economy and related industries 

are characterized by the fact that their participants can join forces through 

cooperation. Cooperation between players results in a qualitatively new 

conflict compared to a non-cooperative case. 

As we have seen, in non-cooperative games, deviating one of the 

participants from the equilibrium situation does not give him any 

advantage. But if several players deviate, they can earn more than in the 

equilibrium situation. Therefore, in conditions where cooperation between 

players is possible, the principle of equilibrium does not come true. 

For example, let a non-antagonistic game be given by the following 

matrices: 

  (
  
   

)    (
   
  

)  

Here, the only equilibrium situation will be a situation (0,0) in which 

each player chooses his or her second pure strategy and wins a unit. 
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However, it is obvious that if players agree and choose their first pure 

strategies, then in the situation (1,1), each of them will win five units. 

However, it is clear that this situation, which may arise in the case of 

cooperation, is rather unstable, since each player, randomly changing his 

strategy, increases his winnings. 

 

4.2 By-Product Production Planning Problem (Cooperative Case)  

Let two enterprises produce by-products under production conditions 

adopted as in antagonistic case, but taking into account sales opportunities, 

as in a non-cooperative case. Then, as it was established, such a conflict is 

modeled by a finite game of two persons with a non-zero sum given by a 

pair of     matrices   (   ) and   (   ) elements of which are the 

winnings (in units of utility) of players I and II respectively, if they are 

chosen respectively by their i-th and j-th pure strategies. 

Now, in this game, given the nature of the conflict, it is allowed to 

cooperate without transferring utility from one player to another, that is, 

players can make agreements and choose a compatible strategy ̅. 

Obviously, 

 ̅  (               )      ∑      

   

 

where     – denotes the probability of choosing respectively 

compatible strategies (i, j) by players I and II. 

 

The mathematical expectation of winning, respectively, players I and 

II under the conditions of their strategy is naturally determined by the 

formulas 

  ( ̅)  ∑        

   

 

  ( ̅)  ∑        

   

 

The points (  ( ̅)   ( ̅)) form the valid set R. 

By agreement, players can get as a win a random vector of this set 

( ̅ ( ̅)  ̅ ( ̅)). 
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Obviously, with compatible actions, players I and II must win no less 

than the values as if playing the antagonistic game   ( ̅
   ̅ ) and 

  ( ̅   ̅ ), calculated by formula (26), which are players' winnings when 

they fail to reach an agreement. 

To find (  ̅( ̅)   ̅( ̅)) use the followingarbitration scheme. 

1. The beginning of coordinates is transferred to a point with 

coordinates   ( ̅
   ̅ ) and   ( ̅

   ̅ ), that is, this point is transferred to a 

point (0,0), where the set P becomes the set  . 

2.There is a single point with the coordinates   ̅
 ( ̅

   ̅ ) and 

  ̅
 ( ̅

   ̅ ) with    where   ̅
 ( ̅

   ̅ )    and   ̅
 ( ̅

   ̅ )     and 

  ̅
 ( ̅

   ̅ )  ̅
 ( ̅

   ̅ )is the maximum of all earnings 

  
 ( ̅

   ̅ )  
 ( ̅

   ̅ ). 

3. We find the arbitration solution by inverse transformation of utility 

relative to   ̅
 ( ̅

   ̅ ) and   ̅
 ( ̅

   ̅ ). 
Let us find an arbitration solution for specific data of the problem of 

planning the production of by-products in a non-cooperative case, that is, 

let a cooperative game without side payments be given by the following 

matrices: 

  (
      
      

) and   (
       
       

)  

In the non-cooperative case, the equilibrium vectors were vectors 

 ̅ = (3/5, 2/5),  ̅  = (2/3, 1/3). As it has been explored, in a non-

cooperative bimatrix game, where cooperation is neglected and players 

choose their strategies independently, the mathematical expectation of 

winning of the player I is equal to   ( ̅
   ̅ )      and player  

II -  ( ̅   ̅ )      . 

Now suppose that players can cooperate and choose a compatible 

mixed strategy without passing on utility to one another. 

We transform the coordinates by moving the origin to the point  

(500, 1100) by the formulas 

  ( ̅
   ̅ )    ( ̅)       

  ( ̅
   ̅ )    ( ̅)        

thus constructing the area  . 

Let us find the point with the coordinates   ̅
 ( ̅

   ̅ ) and 

  ̅
 ( ̅

   ̅ )that maximizes the function 
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    ̅

 ( ̅
   ̅ )  ̅

 ( ̅
   ̅ ) 

на множині    при   ̅
 ( ̅

   ̅ )    і   ̅
 ( ̅

   ̅ )   . 

The equation of the line passing through the points (-200, 900) and 

(400, -600) has the form 

  
 ( ̅   ̅ )   

 

 
  

 ( ̅
   ̅ )       

Substituting this into function   
  , we differentiate the result 

expression, equate the derivative to zero, solve the obtained equation with 

respect to   ̅
 ( ̅

   ̅ ), and find 

  ̅
 ( ̅

   ̅ )         ̅
 ( ̅   ̅ )       

Next, by inverse transformation, we find the arbitration solution for 

the original cooperative game: 

( ̅ ( ̅)       ̅ ( ̅)      )  

The arbitration award can be implemented by applying a compatible 

mixed strategy  ̅  (           ) The strategy j components are found 

from the formulas for calculations  ̅ ( ̅)  ̅ ( ̅), substituting   ( ̅)   
   ̅ ( ̅)   ( ̅)   ̅ ( ̅)  

In particular, we find        ⁄         ⁄ , according to which 

player I uses only the second strategy, and player II applies the first and 

second accordingly with probabilities 8/15 and 7/15. In this case, the 

agreement between the players leads to the fact that the mathematical 

expectation of winning players I and II will accordingly equal $580. 

($500 in non-cooperative case) and $1300 ($1100 in the non-cooperative 

case). 

Thus, cooperating in a non-antagonistic conflict increases the 

mathematical expectation of winning (in the sense of utility) of each 

player. 

 

5. Optimizing product quality control 

Let us consider, for example, using an example of the optimization of 

product quality control, the non-cooperative case and the case of players' 

cooperation
6
. 

 

                                                 
6
 Ivanilov Yu. P., Lotov A. V. Mathematical models in economics, Мoskow.: Science, 1979, 304 p.  
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5.1 Problem statement 

Let some products, manufactured by the supplier company A 
(raw materials for light industry, primary agricultural production, etc.), be 
supplied to the enterprise B for the recycling and manufacturing of finished 
products (clothing, shoes, food, etc.). Each enterprise is interested in 
increasing its profits. In this regard, the enterprise B controls the quality of 
the products of the enterprise A, and the enterprise A is not always 
interested in improving its quality. 

As the control frequency decreases, impunity for product suppliers 
increases, which in pursuit of quantitative indicators weaken attention to 
product quality. 

As the control frequency increases, the quality of the products of 
company В improves, but the cost of control increases. It is necessary to 
determine the optimal frequency of control over the quality of products of 
the enterprise A by enterprise B,, as well as the optimal enterprise A 
strategy to increase their profits. 

 

 

Fig. 1 

 
Let us enter the symbols: 

         - respectively the price and cost of quality products of the 
enterprise A; 

          – the corresponding price and cost of the defective products 
of the enterprise А; 

          ~ respectively the prices of defective and quality products of 
the enterprise В; 

   – cost of manufacturing of products by the enterprise В; 

  - cost of control for the enterprise B; 

Cш – the cost of the fine paid to the State bythe enterprise A in the case 

of finding a defect. 
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We present graphically the movement of products from the enterprise 

A to the enterprise B (Fig. 4). 

 

5.2 Non-cooperative case 

We use the theory of non-cooperative games to solve this problem. 

Let us denote by    the probability of producing quality products by the 

company A (strategy  ), and by    – defective ones (strategy A2), 

while       . Let us denote by хк the probability of production 

control of the enterprise В (strategy   ), and by хв – the probability of lack 

of control (strategy В2), хк + хв = 1. Let us draw up the matrix of wins 

(profits) for enterprises A and B respectively (Tables 5 and 6). 

 

                                 Table 5                                             Table 6 

 
 

Then their average profits (winnings) according to formulas (26) will 

be equal to 

   (       )     (       )      
 (          )     (       )      

   (             )     (          )      
 (             )     (          )      

Using the notation 

                         

we get 

    (       )  (   )[ (          )         ]   (15) 

    (              )   
 (   )[ (          )            ]  

The equilibrium situation in this problem is characterized by such an 

optimal pair (point) (y*, x*) – the optimal frequency (probability) of 

control x* of the enterprise А by the enterprise В and the optimal frequency 

(probability)у* of production of quality products by the enterprise А,, in 
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which it is unprofitable for the side В to change its strategy x*, and for the 

side А to change its strategy у*, as it will decrease the average profits 

(winnings). The equilibrium conditions are: 

   

  
         [ (          )         ]= 0; 

   

  
      (   )(          )     

Solving this system of equations we obtain 

     
  

          

       

  

  
      

  
  

       

  

     
  

       

          
                                    (16) 

  
      

    
       

          

 

It follows that for any non-zero control value    for enterprise B there 

is some optimum defective part for the enterprise A, which is equal to   
 . 

In order to reduce the critical control frequency   
  of the enterprise B, it is 

necessary to increase the value of the fine   . 

Substituting the obtained values    and   , calculated by the formulas 

(30), into the relation (29), we obtain the expected optimal profits (wins) of 

the enterprise A and B. 

  
  

          

       

(       )  
  

       

  

 [
       

          

(          )         ]   

  
  

          

       

(

           

   

       

          

)  
  

       

  

 [
       

          

(          )            ]   
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after simplification we have 

  
             

             
       

       
         (17) 

 

5.3 Cooperative Case 

The theory of non-cooperative games was used above to solve the 

problem, that is, the situation was considered when the enterprises А і В 

did not have any agreements (cooperation) about increasing own profits – 

each company operates at its own discretion. In this case, the total profit at 

their optimal strategies is equal to 

  
    

             
       

       
    

Now let us suppose that between the enterprises A and B there is an 

agreement to join their efforts in order to increase the total profit. In 

particular, this may be the case when an enterprise B absorbs an enterprise 

A. In this case, they have one goal – to increase the total profit – which 

corresponds with one payoff matrix (profit) equal to the sum of the payoff 

matrices separately for enterprises A and B (tables 5 and 6): 

 

Table 7 

 
 

Since the elements of the second column of this matrix (Table 7) are 

larger than the corresponding elements of the first column, then for 

arbitrary strategies of the enterprise А the second strategy of the enterprise 

В,, which is characterized by the lack of control over the products of the 

enterprise А (хк=0; хв=1), is optimal for increasing the overall profit of the 

enterprises А and В, which average (expected) value in this case is 

  
    (          )   (          )    

 (          )(    )  (          )                (18) 
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Due to the fact that the profit from the sale of quality products is 

higher than from the defective ones, 

                       

and unlike the first case, when an enterprise A works only for its own 

profit and it is profitable for it to produce some defective products y6*, in 

order to increase the total profit 5 *A+B it wants (is interested) to reduce this 

proportion. Whenb= 0, the total profit equals to 

  
                

We calculate how much greater the total profit of enterprises A and B 

are, when they work together, from the total profit when they work 

separately, each for its own result (see (31), (32)): 

      
    (  

    
 )  (          )(    )   

 (          )              
       

       

    

after simplifications 

     (               )   
       

       
             (19) 

Since the value of the expression in parentheses is always positive, the 

difference     is a linear descending function relative to   (the share of 

defective products of the enterprise A). Therefore, the maximum difference 

value looks like 

   
(   )

 
       

       

    

when      

Let enterprise A, working with company B, produce the same 

proportion of defective products yб* when it works independently. 

Substituting   
 , which is determined by relations (16), into 

expression (33), we obtain 

  
    (               )

  

       

 
       

       

    

after simplifications 

  
   

       

       
   



123 

which is obviously less than    
(   )- 

Finally, it is possible to calculate the share of the enterprise A 

defective products, at which.     From relation (33) we obtain 

  
  

       

(       )(               )
                          (20) 

that is, if the enterprise A works together with the enterprise B with 

this share of the defective products, then the total profit of the enterprises A 

and B does not increase, compared to the total, when they work separately, 

and the share of the enterprise A defective products is equal to   
 . 

Obviously,   
    

 . 
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