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SECTION 8. 

METHOD FOR IDENTIFICATION AND FORECASTING  
THE STATE OF ECONOMIC DYNAMIC SYSTEMS 

 

Dymova H. O. 

 

INTRODUCTION 

The analysis of economic processes involves two approaches – 

fundamental and technical. The fundamental approach is to build a hypothesis 

about the possibility of the influence of a number of changed conditions on 

the economic indicator in the future. Knowing what significance the factor 

will take in the future, it is possible to predict this process. The technical 

approach is to study the change in indicator as a function of time. Here the 

hypothesis is accepted that the trends of the past will be repeated in the future. 

In this case, factors affecting the process is neglected. 

In modern economic and analytical activities, dynamic models, which 

include both approaches to forecasting, are increasingly used. The 

development of economic policy at both the macro and micro levels requires 

solving problems that determine what impact the values of the controlled 

variables of the current period will have on the future values of economic 

indicators. 

The process of identifying and forecasting information data in economics 

is that it is necessary to define a model and identify it with a library of known 

models or signals. The described task can present significant difficulties if 

information data is subjected to large distortion. 

Information recovery problems for dynamic systems have been considered 

in many works and are represented by three tasks: 

1) an identification task, when, on the basis of known signals at the input 

and output of the system, a conclusion is made about the composition of the 

system and its characteristics; 

2) a control task when the characteristics of the system and the input 

signal are known and is determined the law of change of the signal at the 

output of the system or such an input signal that at the output brings the system 

to a given state; 

3) measurement task, when the output signal and the characteristics of the 

system are known, the characteristics of the input signal are determined. 

In many problems, there is no information about the input signal and the 

characteristics of the system, but the measured characteristics of the output 

process are known, therefore, it is necessary to study factorization algorithms. 

Regardless of any identification or assessment considerations, it is desirable 
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to find a model to describe the dynamics of process generation. Thus, there is 

a problem of determining the characteristics of the system and describing the 

dynamics of the input process. 

 

1. Presentation of random processes in the state variables 

To develop a method for identifying and forecasting the state of dynamic 

systems in economics, it is necessary to introduce the concept of specifying a 

random process in the form of a system with a variable state, which can be 

used to generate a process. 

A dynamical system that generates some random process in a linear 

representation can be specified by five matrices A(t), B(t), C(t), Q, Pi, a 

system of differential and algebraic equations, with given initial conditions: 

 

( ) ( ) ( ) ( ),  i

dx
t x t t u t T t

dt
= + A B                               (1) 

( ) ( ) ( ),  ,iy t t x t T t= C                                     (2) 

 

where ( )x t  – state vector with the dimension (n  1); ( )u t  – white arousal 

process with the dimension (р  1); ( )y t  – observable process with the 

dimension (m  1). 

Equation (1) is a linear equation of state, and (2) is an observation 

equation. The matrices A(t), B(t), C(t) have dimensions (n  n), (n  p), 

(m  n), respectively. 

The input process ( )u t  has a covariance function of the form 

 

( ) ( )  ( – )TE u t u t  =    Q                                  (3) 

 

The initial state vector is a random variable with a covariance matrix 

 

( ) ( ) ( , ) ,T

i i x i i iE x T x T T T  = =  K P                            (4) 

 

where Е – operator of mathematical expectation. 

Many results of the theory of random processes can be expressed in terms 

of the matrix of covariance functions 

 

( ) ( ), ( )T

y t, E y t y  =  K                                      (5) 
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To solve the problem of forecasting the state of dynamical systems it is 
necessary to create a signal library, that is the solution of the direct problem. 
Therefore, it is necessary to perform the search procedure for the covariance 
function of a random process by its representation in state variables. 

 
2 Determination of the covariance function of a random process  

by its description in state variables 

Definition of the covariance function of a random output process ( )y t  

from its description in state variables is given according to1, 2, 3 without proof 

and used it to solve the inverse problem – finding the state variables from a 

known covariance matrix. According to (2) ( )y t,K  is easily related to the 

covariance matrix of the state vector ( )tx : 
 

( , ) ( ) ( , ) ( ).T

y xt t t =  K C K C                                 (6) 

 

The covariance matrix x ( , )t K , in its turn, satisfies the differential 

equation4  
 

( , ) ( ) ( , ) ( , ) ( ) ( ) ( )T T

x x xt t t t t t t t t = + +K A K K A B Q B           (7) 
 

at the initial condition  ( , ) .x i i iT T =K P  

Since ( )u t  and ( )x t  are not correlated on the integration interval of the 

differential equation (7), obtain 
 

x

(  ) ( ), 
( , )

(  ) ( ), 

x

T

x

t, , t
t

t, t , t t

     
 = 

   

K
K

K
                                (8) 

 

where ( )t,    – transition matrix obtained from the differential equation5

0 0( ) ( ) ( )t, t t t, t = A , at the initial condition 0 0( )t , t = I , where I – identity 

matrix. 

 
1  Derusso, P., Roy, R., & Klouz, C. (1970). Prostranstvo sostoyaniy v teorii upravleniya 

[State space in control theory]. Nauka. 
2  Van Trees, G.L. (1972). Teoriya obnaruzheniya, otsenok i modulyatsii [The theory of 

detection, estimation and modulation] (Т. 1). Sovetskoye radio. 
3  Kamke, E. (1971). Spravochnik po obyknovennym differentsial’nym uravneniyam 

[Handbook of ordinary differential equations]. Nauka. 
4  Van Trees, G.L. (1972). Teoriya obnaruzheniya, otsenok i modulyatsii [The theory of 

detection, estimation and modulation] (Т. 1). Sovetskoye radio. 
5  Baggeroer, A.B. (1968). State Variables, the Fredholm Theory, and Optimal 

Communications. M.I.T. 
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The solution for the state vector ( )x t  at any moment of time has the form 

0 0( ) ( ) ( )x t t, t x t=  . Property (8) is valid for all processes represented by state 

variables in the form (1) – (5). For the stationary case, if the parameters of the 

system generating the process ( )y t  are constant, then the transition matrix is 

determined by the exponential factor 
( )( ) tt, e −  = A 6. 

In order for the matrix Kx(t, t+Δt) to be a function of only Δt, the matrix 

Kx(t, t) must, according to (8), be equated to a constant value P. This constant 

matrix is a stationary solution to equation (7). So, it is possible to simulate 

segments of a stationary process using systems with constant parameters and 

setting the covariance matrix of the initial state Pi equal to P. As shown in7, 

the stationary solution of equation (7) has the form 

 

-1 T 1

0 -

1
  [ ] [ ]

2

T

j

t t T

j

e e dt s s ds
j



−





= = − − −
 

A A
P B Q I A B Q B I A  

 

and the covariance matrix of the state vector 

 
- ,   0

( )
 ,  0

t

x t

e t
t, t t

e t









  
+ = 

 

A

A

P
K

P
 

 

And hence, according to the formula (6) 

 
-( ) ( ),   0

( ) ,
( ) ( ),  0

T

t T

y t T

t e t t
t, t t

t e t t









  
+ = 

 

A

A

C P C
K

C P C
                   (9) 

 

that is, the correlation function of the system output is expressed in terms of 

the system state variables. Consequently, on the contrary, there should be an 

inverse problem: knowing the correlation matrix of the output for given C(t) 

and P = const, determine the structure of the transfer function of the system, 

that is, solve the problem of partial identification and forecasting of the 

economic system. To solve this problem, it is advisable to use the method of 

factorization of covariance functions. 

 
6  Van Trees, G. L. (1975). Teoriya obnaruzheniya, otsenok i modulyatsii [The theory of 

detection, estimation and modulation] (Т. 2). Sovetskoye radio. 
7  Baggeroer, A.B. (1968). State Variables, the Fredholm Theory, and Optimal 

Communications. M.I.T. 
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3. Improvement of the factorization method of covariance functions 

Previously, it was assumed that there is a description of a random process 

in state variables, and a model for determining the covariance function 

(matrix) of this process was proposed. Now consider the situation when the 

covariance function of the process is known, and, based on this, can be present 

a model of describing the process in state variables. 

So, let there be the covariance matrix of the system output ( )y t  – Ky(t, ). 

It is built on the basis of observing a random output process ( )y t  measured 

by a device with an observation matrix C(t) on the interval Ti  t,   Tj. For 

the process ( )y t , under consideration, use its description in state variables 

(1) – (4) is used, for which it is necessary to find the matrices A(t), B(t), C(t), 

Q and Pi, that is, to solve the problem of factorization covariance function 

factorization. The factorization problem can be solved in the time domain or 

in the frequency domain. To solve the factorization problem in the frequency 

domain, it is necessary to find the Fourier transform from (9). Since the only 

way to take into account the possible non-stationarity of the system’s output 

process is factorization in the time domain, consider its capabilities. So, have 

 

x( ) (  ) ( ) ( ),    
( )

( ) ( ) ( ) ( ),  

T

y T T

x

t t, , t
t,  

t t, t ,t t

       
 = 

    

C K C
K

C K C
                    (10) 

 

From the properties of transition matrices8, 9, 10( 0 0( ) ( ) ( )t, t t t, t = A ),  

it can be concluded that the covariance function of the process ( )y t , generated 

by a system with an unknown structure, represented in the form of state 

variables, must have a separable (decomposed) form. 
 

( ) ( ) ,  
(  ) ,

( ) ( ) ,  

T

y T

t  t
t, 

t t

   
 = 

  

F G
K

G F
                              (11) 

 

where 1( ) ( ) ( ) T t t t, t= F C ; 1( ) ( ) ( ) ( ) T

xt t , t t, t t= G K C ; t1 – an arbitrary 

time variable in the domain of the process ( )y t  (take it equal to Ti). 

 
8  Van Trees, G.L. (1975). Teoriya obnaruzheniya, otsenok i modulyatsii [The theory of 

detection, estimation and modulation] (Т. 2). Sovetskoye radio. 
9  Derusso, P., Roy, R., & Klouz, C. (1970). Prostranstvo sostoyaniy v teorii 

upravleniya [State space in control theory]. Nauka. 
10  Eikhoff, P. (1975). Osnovy identifikatsii sistem upravleniya [Fundamentals 

identification of control systems]. Mir. 
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The dimensions F(t) and G(t) are related to the dimension of the output 

process ( ).y t  Therefore, the first step in a factorization problem is to find the 

(n  m)-dimensional matrices F(t) and G(t) by the given covariance functions. 

The second step is to develop an algorithm for obtaining A(t), B(t), C(t),  

Q and Pi from F(t) and G(t). Consider the case when no restriction is imposed 

on the minimality of n. In the case of non-minimal factorization, each element 

of the covariance matrix must have the form 
 

( ) ( ) ( )

[ ( )]

( ) ( ) ( )

n n
*

ij k i i j

k l

y ij n n
*

ij i k i j

k l

b k, l  f t  q  ,   T t T

t, 

b k, l  q t  f  ,   T t T

 

 


    


 = 

     





K  

 

The members of the series fk(t), 1  k  n, qi(), 1  l  n will be,  

for example, for n = 2, if 
 

1

2

1

2

 0
( )

0  

k t

y k t

e
t, 

e

− −

− −

 
 =  

  

P
K

P
, 

then 

1

2

1

2

( )

( )

-k t

-k t

f t e

f t e

=

=
   

1

2

1

2

( )

( )

k

k

q e

q e





 =

 =
   

1 1

2 2

11 1

22 2

12 21

( )  

( )  

( ) ( ) 0

k i

k i

b k, l

b k, l

b k, l b k, l

=  

=  

= =

P

P  

 

In general, column vectors 
 

1 1( ) ( )

( )  ,    ( )

( ) ( )n n

f t q t

f t  q t

f t q t

   
   

= =   
   
   

 

 

form systems of linearly independent functions. Each element of matrix (12) 

can be written as: 

 
1

1 1 1

(1, 1) (1, 2) (1, )

[ ( )] ( )   ( ) ( )  ( ) ,

( , 1) ( , )

* * *

ij ij ij

T T *

y ij ij

* *

ij ij

g g g n

t, f t q f t q

g n g n n

 
 

 =  =  
 
 

K G  

 

where *

ijG  – matrix of dimension n1  n1. 



140 

Using this representation, it is possible to decompose by factors, not 

necessarily of the minimum degree, the result is obtained in the form of 

matrices of dimension ((n1m)m): 

 

*

( ) 0 0

0 ( ) 0
( )    ,

0 0 ( )

f t

f t
t

f t

 
 
 

=  
 
 
 

F  

* * *

11 12 1

* *

* 21 22

* *

1

( ) ( ) ( )

( ) ( )
( )    .

( ) 0 ( )

n

m mn

q t q t q t

q t q t
t

q t q t

 
 
 =
 
 
  

G G G

G G
G

G G

 

 

A sufficient criterion for verifying that the matrices F*(t) and G*(t) are 

factors of the minimum degree is the positive definiteness of two matrices 

* *( ) ( ) ,

j

i

T

T

T

t t dt= F
M F F  

* *T( ) ( )  ,

j

i

T

T

t t dt= G
M G G  

 

that is, the rank of the matrices МF and МG is equal to the minimum dimension 

(n* = n1m). Since МF and МG are symmetric, positively semi-definite, they 

must be coordinated through non-degenerate transformations ТF and ТG in 

accordance with matrices – conditional mathematical expectations ЕF and ЕG. 

There is always a coordinate system in which random variables are 

uncorrelated11, and the new system is associated with an output linear 

transformation, that is 

 

 E   ,T =
F F F F

T T M  

 E  T =
G G G G

T T M  

 

and at this 

 
11  Bendat, J., & Pirsol, A. (1989). Prikladnoy analiz sluchaynykh dannykh [Applied 

Analysis of Random Data]. Mir. 
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( ) ( )1 * * 1 * * E  ( ) ( )   E  ( ) ( ) 0,

j

i

T
T

T

t t t t dt− −− − = F F F F F F
T T F F T T F F  

( ) ( )* * * * E  ( ) ( )   E  ( ) ( ) 0.

j

i

T
T

T

t t t t dt− −− − =
1 1

G G G G G G
T T G G T T G G  

 

As a result, get 

 
* -1 *( )  E   ( )  ,    i jt t T t T=  

F F F
F T T F  

* -1 *( ) E   ( )  ,    i jt t T t T=  
G G G

G T  T G  

* * * -1 -1 *

y ( ) ( ) ( ) (t)  E    E   ( )  ,   T T T Tt, t  t =  =   
F F F G G G

K F G F T T T T G  

 

To obtain the minimum degree multiplier for (11), let F(t) and G(t)  

be defined as follows: 
-1 *

1( )   ( ),t t=
F

F N T F  

-1 *

2( )   ( ),t t=
G

G N T G  

 

where the matrices N1 and N2, of dimension (nn*), satisfy the condi- 

tion 1 2 E    E  T T=
F F G G

T T N N , and the matrix E    ET

F F G G
T T  has, respectively, 

the dimension (n* n*). Now, having an algorithmic procedure for 

decomposition the covariance matrix Ky(t, ) into factors, it is necessary to 

determine the state matrices of the dynamic system A(t), B(t), C(t) and the 

covariance matrices Q and Pi on the basis of F(t) and G(t). Since the 

coordinate system of the state vector is not the only one and it follows from 

this that these matrices are deliberately not the only ones12, 13. 

Indeed, with the exception of its dimension, the matrix A(t) is essentially 

not set. 

First, consider an implementation with a triplet of matrices (0, B*(t), C*(t)), 

and then – the question of the transformation to coordinate systems with the 

desired properties (here ’’0’’ is the zero matrix A*(t)). The transition matrix 

associated with A*(t) = 0 is the identity matrix14. Therefore, according to (10), 

 

 
12  Derusso, P., Roy, R., & Klouz, C. (1970). Prostranstvo sostoyaniy v teorii uprav- 

leniya [State space in control theory]. Nauka. 
13  Gantmakher, F.R. (2004). Teoriya matrits [Matrix theory]. FIZMATLIT. 
14  Van Trees, G.L. (1975). Teoriya obnaruzheniya, otsenok i modulyatsii [The theory 

of detection, estimation and modulation] (Т. 2). Sovetskoye radio. 
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*

*

( ) ( ) ( ),  
( )

( ) (  ) ( ),  

T

x

y T

x *

t ,  t
t, 

t t, t t

 



     
 = 

  

C K C
K

C K C
                      (13) 

or 

* *( ) ( ) ,     ( )  ( ) ( )T T

xt t t t, t= = F C G K C . 

 

Note that (14) does not uniquely define Kх(t, t), because the matrix C*(t) 

has the dimension (m  n), and the matrix Kx(t, t) has the dimension (n  n). 

Using (7), it is possible to show the validity of the following two  

properties 

 

* * ( ) ( ) ( )x t, t t t =K B Q B , 

 

* * * * ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tt t t t t t t t− =F G G F C B Q B  C . 

 

It is known15that the covariance function of the derivative of a random 

vector ( )ty  is determined by the expression 

 
2

( )  ( )yt, t, 
t 


 = 

 
y

K K                                   (17) 

or 

( )

( ) ( ) ,   
( )

( ) ( ) ,  

( ) ( ) ( ) ( ) ( ).

T

y Т

T T

t  t
t, 

t t

t t t t t

    
 = + 

    

+ −  − 

F G
K

G F

F G G F

                         (18) 

 

If the process is differentiable in the root mean square, then the coefficient 

at the -function should be equal to zero16. Noting that Q can be considered 

positive definite without loss of generality, come to the conclusion that for a 

mean-square differentiable process 

 

* *( ) ( ) 0.t t =C B  

 

 
15  Bendat, J., & Pirsol, A. (1989). Prikladnoy analiz sluchaynykh dannykh [Applied 

Analysis of Random Data]. Mir. 
16  Ibid. 
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For a differentiable process, the expansion, according to (18), has  

the form 

 
T

* ( ) ( ) ( ),T t t t= =
y

F F C                                     (19) 

x *( ) ( ) ( ) ( ).Tt t t, t= = 
y

G G K C                              (20) 

 

From this it follows that the implementation for the derivative of the 

process would be the function (0, B*(t), C*(t)). The inference strategy is to 

repeat this differentiation procedure until 
( ) ( )ly t  is reached. 

( ) ( )ly t  is the 

higher-order derivative of the process ( )y t , which still exists in the root-mean-

square sense. The need for this procedure is that the decomposition of the 

process ( )y t  and all its derivatives up to and including
( ) ( )ly t  is necessary to 

determine the state matrices. In the general case, for the interval 1  k  l have 

 
( -1) ( ) ( -1) ( )( ) ( ) ( ) ( ) 0,k T k k T kt t t t− = F G G F                      (21) 

 
( -1)

* *( ) ( ) 0.k t t =C B                                       (22) 

 

The l-th order derivative has a realization (0, B*(t), 
( )

* ( )l tC ) and 

decomposition 
( )

* ( )l tC  and Kx(t, t) 
( )

* ( )l tC  for FT(t) and G(t), respectively. 

Equations (19), (20), (21), (22) contain the main results connecting the 

differentiability of the process with the derivatives of the factors F(t) and 

G(t). The algorithm for determining the state matrices (0, B*(t), C*(t)) can 

be reduced to the following sequence of operations17. Arrange the 

components Ky(t, ) in the reverse order of their differentiability, that is, the 

first r1 components have only derivatives of zero order, the second r2 

components have only derivatives of first order, etc. It is also assumed that 

the columns of the matrices F(t) and G(t) are respectively interchanged and 

that Q is an m – dimensional identity matrix. Next, partition the  

matrices B*(t) and C*(t) in accordance with the order of differentiability  

(r1, r2,…, rL): 

 

 * *1 *2 *( ) ( ) ( ) ( )  –  components,Lt t t t n=B B B B  

 
17  Baggeroer, A.B. (1968). State Variables, the Fredholm Theory, and Optimal 

Communications. M.I.T. 
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*1 1

*2 2

*

*

( )  strings

( )  strings
( )

( )  strings

           components

L L

t r

t r
t

t r

n

 
 
 =
 
 
 

С

С
С

С

 

 

Each component ( )Ly t  has a realization (0, B*(t), С*l (t)), which is (l – 1) – 

fold (not l-fold) differentiable in the mean square sense (Fig. 1)18. 
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Fig. 1. Structural scheme of the implementation of the output process  

in accordance with the its components differentiability19 

 

According to (15), the differential equation for the covariance function of 

the process is written in the form 

 

x * * * *

1

 ( ) ( ) ( ) ( ) ( )
L

T T

l l

l

t, t t t t t

=

= =K B B B B .                      (23) 

 

If (22) is applied to the corresponding components ( )iy t , then it follows 

from the indicated differentiability conditions that 

 
( )

* *( ) ( ) 0  при  0 1.k t t k l=   −C С                          (24) 

 

 
18  Van Trees, G.L. (1972). Teoriya obnaruzheniya, otsenok i modulyatsii [The theory 

of detection, estimation and modulation] (Т. 1). Sovetskoye radio. 
19  Ibid. 
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Split the F(t) and G(t) in the form 
 

 

 

1 2

1 2

1 2

( ) ( )     ( )          ( )  

                         
    ,

  columns columns    columns

( ) ( )    ( )        ( )

L

L

L

t t t t

r r r

t t t t

=

=

F F F F

G G G G

 

 

Now, as it is obvious from (13), (14), it is necessary to identify С*(t) with 

FТ(t), that is, 
 

* ( ) ( ),Tt t=С F                                           (25) 

* ( ) ( ).T

l lt t=С F                                           (26) 

 

According to this, it is possible to freely mutually replace the matrices F(t) 

and СТ(t) in the subsequent equations. Thus 

 

( )  ( ) ( )xt t, t t=G K F                                       (27) 

( )  ( ) ( )l x lt t, t t=G K F                                      (28) 

 

Differentiating (28), obtain 

 

* *( )  ( , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( , ) ( )T T

l x l x l *l x lt t t t t t t t t t t t t  = + = +G K F K F B B C K F  

 

If l = 1, then 
1 * * *1 x( )  ( ) ( ) ( ) ( , ) ( )T T

lt t t t t t t= +G B B C K F . 

If l ≠ 1, then taking into account (24) 
1( ) ( , ) ( )x lt t t t=G K F . 

After l-fold differentiation 
 

( ) ( 1) ( )

* * *( )  ( ) ( ) ( ) ( , ) ( )l T l T l

l l x lt t t t t t t−

= +G B B C K F                 (29) 

( ) ( )( ) ( , ) ( ) ,   0 1k k

l x lt t t t k l=   −G K F                        (30) 

 

Perform term-by-term multiplication (29) by 
( 1)

* ( )l

l t−
C , putting 

( 1)

* ( )l

l t−
C  in 

front, and using the result of permutation (30), obtain the matrix equation of 

dimension (rl  rl) 

 

( ) ( )( 1) ( 1) ( 1) ( ) ( 1) ( )

* * * *( ) ( )  ( ) ( ) ( ) ( )  ( ) ( ) ( ) ,l T l T l Т l l T l

l l l l l l lt t t t t t t t t− − − −= − =C B B C F G G F D  

 

which defines the matrix system Dl (t). 
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Suppose that the matrix Ky(t, ) is positive definite. It follows from this 

assumption and the differentiability conditions that Dl (t) is also a positive 

definite matrix; so it has a positive definite square root20. The matrix 

( )( 1)

* *( ) ( )l

l t t−
C B  of dimension (rlm) can be expressed as 

 

( )
1
2( 1)

* *( ) ( ) 0 ( ) 0   ,       strings

                                      

l

l l l

l l l

t t t r

r r r

−  =
 

C B D
,       (31) 

 

Now substitute the transposed matrix (31) into the formula (29) 

 
1
2 ( ) ( )

* x( ) ( ) ( )  ( , ) ( ),
T

l l

l l l lt t t t t t
  = −
 

B D G K F  

 

from here 

 

( )
1
2( ) ( )

* x( ) ( )  ( , ) ( )  ( ) .
T

l l

l l l lt t t t t t
−


 = −
 

B G K F D               (32) 

 

Equation (32) determines the decomposition B*(t) through Kx(t, t), F(t) 

and G(t); however, Kx(t, t) remains unknown. Define the differential equation 

for Kx(t, t), substituting (32) into (23), obtain 

 









(1) (2)

1 2

(1) (2)

1 2

1

1

2 (1) (2)

1 2

(1) (2)

1 2

 ( )  ( ) ( ) ( )  

( , ) ( ) ( ) ( )

( ) 0 0

0 ( ) 0
  ( ) ( ) ( )

0 0 ( )

( , ) ( ) ( ) ( )  

(L)

x L

(L)

x L

(L)

L

L

(L)

x L

t, t t t t

t t t t t

t

t
t t t

t

t t t t t





−



 = − 

 −  

 
 
    −  
 
 

 −  

K G G G

K F F F

D

D
G G G

D

K F F F

    (33) 

 
20  Van der Waerden, B. L. (1976). Algebra [Algebra]. Nauka. 



147 

 

This is a Riccati type differential equation21. In order to show the existence 

of a completely definite solution, it is necessary, using a number of 

substitutions, to reduce it to an ordinary differential equation, denoting 

 
(1) (2)

1 2

(1) (2)

1 2

( ) ( ) ( )

( ) ( ) ( )

(L)

L

(L)

L

t t t

t t t

  = 

  = 

G G G G

F F F F
 

 

1

2

( ) 0 0

0 ( ) 0
  

0 0 ( )L

t

t

t

 
 
  =
 
 
 

D

D
D

D

 

 

equation is obtained 

 

( )T 2 T 2 ( , ) ( , )  ( , )x x xt t t t t t  = − + +K F F K D G F D F G K D G  

 

and introducing one more notation 

 

( )T T

2

 ( ) ;       ( ) ;

( ) ;           ( , ) ( )  ,x

f t q t

h t t t z t

= − + =

= =

F F D G F D F G

D G K
                 (34) 

obtain 

2 z(t) f(t) z (t)  q(t) z(t)  h(t)= + +                              (35) 

 

– the classical Riccati equation, which can be reduced by substituting 

( )exp(t) f zdt = −  into a nonzero solution of the linear differential equation 

 
2 0 f  (f  f q)   f h   − +  +  =                              (36) 

 

Conversely, since f ≠ 0, then each nonzero solution of equation (36) by the 

transformation 

 
21  Wilkinson, J.H. (1972). Algebraicheskaya problema sobstvennykh znacheniy 

[Algebraic eigenvalue problem]. Nauka. 
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 z(t)
f


=


                                                (37) 

 

is translated in a Riccati equation solution which, in turn, allows to estimate 

the state vector space ( )x t  and the matrices A(t), B(t), C(t). Denoting 
2

0 1 2 f a  ,   (f  f q) a  ,   f h a= + = = , write the Laplace transform, equations 

(36), in the form 
2

0 1 2 0(a  s a  s a ) − +  =  

2

1 1 0 2

1 2

0

4

2
,

a a  a  a
r

a

 −
=  

 

The general solution of equation (36) 21

1 2

r tr t
k e k e = + , and 

equation (35) according to (37) has the form 

 
1 2

1 2

1 1 2 2

1 1 2 2

 ( )
( ) 

r t r t

x r t r t T

k  r  e k  r  e
Z t, t

k  r  e k  r  e


+
= =

+
K

F F
 

 

and, based on formulas (6), (25), (34) 

 
1 2

1 2

1 2

1 2

1 1 2 2

* *

1 2

1 1 2 2

1 2

 ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) 

r t r t

T T

y x r t r t T

r t r t

T

r t r t T

k  r  e k  r  e
t, t t, t

k  e k  e

k  r  e k  r  e
t

k  e k  e

+
= = =

+

+
=

+

K C K C C C
 F F

F F
F F

τ τ τ τ

τ

  (38) 

 

To determine the initial conditions for the solution of the Riccati equation, 

it suffices to require that the initial condition Kx (Ti , Tj) be described by a 

nonnegative definite symmetric matrix, F(t) and G(t) and their derivatives 

were finite and continuous, the covariance function was determined by 

relation (11) and at 

 
(1) (2)

1 2

(1) (2)

1 2

( ) ( ) ( )

  ( ) ( ) ( )

(L)

L

(L)

L

t t t

t t t

 =  

 =  

F F F F

G G G G
 

 

was a positive definite matrix. 
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To determine the initial conditions, relation (30) can be expressed as a 

system of L matrix equations of dimension (n  n): 

 
0 0 0 0 0 0

1 2 1 2

1 1 1 1

2 2

( ) ( )   ( ) ( , ) ( ) ( )   ( )

   0     ( )   ( ) ( , )    0    ( )    ( )

                                                                    

L x L

L x L

t t t t t t t t

t t t t t t





   =   

   =   

G G G K F F F

G G K F F

1 1   0       0     ( ) ( , )    0      0       ( )L- L-

L x Lt t t t
   =   G K F

 (39) 

 

It is necessary to solve these equations for the time moment Ti and 

relatively Kx (Ti , Ti). It is possible in another way, using the method of 

pseudo-inversion of matrices to determine Kx (Ti, Ti)22, combining all 

equations (39) into an (n  n L)-dimensional system. Equation (31) at the 

given initial conditions simulates the sought solution for Kx(t, t), which, in 

its turn, determines B*(t) through (32), and С*(t) is determined directly using 

FТ(t). Now there is a procedure for describing state variables. It is desirable to 

have an implementation of the solution of the system with constant 

parameters. Let’s consider under what conditions this is possible. Let us 

introduce into consideration the matrix Т(t), which determines the linear one-

to-one differentiable transformation of the state vector ( )x t . 

 

( ) ( ) ( )x t t x t=T  

 

The state matrices for the transformed state vector are have the form: 

 

( ) -1( ) ( ) ( ) ( )   ( )t t t t t= +A T A T T                           (40) 

 

( ) ( ) ( )t t t=B T B                                           (41) 

 

-1( ) ( ) ( )t t t=C C T                                         (42) 
 

=Q Q                                                 (43) 
 

( ) ( )  ( )T

i i i it T T=P T P T                                   (44) 

 

Let us determine the conditions under which it is possible to carry out such 

a transformation so that all state matrices are constant, that is, find conditions 

 
22  Gantmakher, F.R. (2004). Teoriya matrits [Matrix theory]. FIZMATLIT. 
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when the matrices ( ),  ( ),  ( )t t tA B C  are constant, and the initial matrices are 

(0, B*(t), С*(t)). From (40) with A(t) = 0 and ( ) ct =A A  have 

 

( ) ( ),ct t=T A T                                           (45) 

 

where Ac – matrix to be determined. 

The general solution to equation (45) has the form23 

 
( )

( ) ( )c it -T

it e T=
A

T T                                        (46) 

 

By ( ) ct =B B  and *( ) ( )t t=B B , after substituting (46) into (41) and 

differentiating, the find that, to obtain a constant realization, it is necessary 

that the matrix B*(t) satisfies the equation 

 

( )-1

* * i * т *( )  ( ) ( ) ( )  ( ) ( ),i ct t T T t t= − = −B B T A T B A B             (47) 

 

where the matrix Aт is defined explicitly. Similarly, C*(t) can be found as 

 

( )-1

* * т( ) ( ) ( ) ( ) .i c it T T t= =C T A T C A                          (48) 

 

So for the existence of a realization of a system with constant (time 

independent) parameters, it is necessary and sufficient that there is a  

matrix Aт that satisfies equations (47) and (48). Then there is a realization 

through the transformation of the general solution (46). The triplet  

of the implementation matrices will take the form 

( )c ( ) - ( )-1 -1

* *( ) ( ) ,  ( ) ( ),  ( ) ( )i c it T t T

i c i i iT T T e t t e T
− −A A

T A T T B C T 24. 

Although equations (47) and (48) form a necessary and sufficient criterion 

for the existence of a realization with constant parameters, this criterion is 

rather difficult to use. 

For the created method for identifying and predicting the state of dynamical 

systems in time, a method has been developed for determining the matrices of a 

 
23  Van der Waerden, B. L. (1976). Algebra [Algebra]. Nauka. 
24  Dymova, H.O. (2020). Metody i modeli uporyadkuvannya eksperymental’noyi 

informatsiyi dlya identyfikatsiyi i prohnozuvannya stanu bezperervnykh protsesiv [Methods 

and models for ordering experimental information for identifying and forecasting the state 

of continuous processes]. Knyzhkove vydavnytstvo PP Vyshemyrskyy V.S. 
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dynamical system using the method of factorization covariance functions 

(solution of direct and inverse problems). The stages of the method for 

identifying and forecasting the state of dynamic systems are shown in Fig. 2. 

 

Start

System
initialization

Program loading 

Which type
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Calculation of the 
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Θ(t,τ )  
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Fig. 2. Stages of the method for identifying and forecasting  

the state of dynamic systems 

 

CONCLUSIONS 

The work has solved the urgent scientific problem of identifying economic 

processes to determine the structure of a dynamic object with an output signal, 

the structure of its operator based on the structural properties of linear 

operators. A model and a method are developed that are used to identify 

incompletely defined dynamical systems. 
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Methods for representing a random process in state variables and in the 

form of covariance functions are considered. The main difference between the 

method of specifying systems and random processes in state variables and the 

more common form of specifying them by the impulse transition function and 

the covariance function is that in the first case, the internal dynamics of the 

generating (modeling) system is determined, and not only the output process 

is described. It was shown how this internal form of the assignment can be 

used to define the characteristics of the output process. n many problems, such 

a representation in state variables is explicitly present in the problem 

statement. Then the opposite situation arises, when the covariance function of 

the process is specified, and its generation requires performance in state 

variables. This problem is called the problem of factoring the covariance 

function into factors (or the problem of factorizing the covariance function). 

The developed method for identifying and forecasting the state of dynamic 

systems with the improvement of the method of factorization of covariance 

functions, that is, the determination of the main matrices of a dynamic system 

using the Riccati equation. By the method of substitutions, this equation is 

reduced to a linear differential equation, the solution of which is transformed 

into a solution of the Riccati equation, with the help of the solution of which 

it is possible to determine the basic matrices of the dynamical system. 

The use of the state space method allows us to reduce the problem of 

identifying the structure of a dynamical system using additional information 

about the random process it generates to solving the Riccati equation. 

Based on one-to-one differential transformations of the state vector, the 

applied procedure makes it possible to reduce the problem of predicting the 

structure of a dynamic system to the problem of predicting the structure with 

constant matrices of the state space. 

 

SUMMARY 

There is a problem of identification, forecasting and data recovery in 

economic systems. The paper analyzes the problems of information recovery 

for dynamic systems. They are represented by three tasks: an identification 

task, a control task, and a measurement task. In these problems, only one of 

the components is unknown – either the characteristics of the system, or the 

output signal, or the input signal. In this paper, the task is set to determine the 

characteristics of the dynamic system and input data only from the output 

information. For this, a random process in state variables is presented and, 

according to its description, the covariance function of this process is 

determined. This procedure is a solution to the problem of forecasting the state 

of dynamic systems, that is, a solution to the direct problem, which is used to 

create signal libraries. To determine the partial identification of a dynamical 

system, a solution to the inverse problem was proposed using factorization 
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method of covariance functions. There has been developed a method for 

identifying and forecasting the state of dynamical systems with the 

improvement of the method for factorizing covariance functions. The 

improvement of the method lies in the fact that the determination of the main 

matrices of the dynamical system was carried out using the Riccati equation. 
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