THE EDUCATION 6G MODULS AND 2035 STRATEGIES FOR UNIVERSITIES IN UKRAINE AND VISEGRAD 4 COUNTRIES

Hoschek M.

e-Silk Road, NGO, Záhrebská 10, 811 07 Bratislava, Slovakia

The University of Oulu, Finland and Japan National Institute of Information and Communications Technology (NICT) have agreed to cooperate in technology field. NICT is Japan's leading national research institute on ICT, so its role is not only in Japan but also are globally important in 5G and 6G development. The mix of technologies the development in 6G requires more expertise. Next, there is co-operation program between The University of Tokyo, Faculty of Engineering and University of Oulu in Finland, an initiative focused on groundwork for future 6G standards.

1. The United Nations Sustainable Development Goals

The United Nations SDGs are a way to frame the opportunities and challenges of a desirable future world, covering a wide range of topics such as ending poverty, building gender equality, fighting climate change and developing smart cities. The relationships between these potentially mutually reinforcing forces are currently poorly defined.

Based on the 6G vision and megatrend review, mobile communications and a new link between 6G and the UN SDGs is proposed by combining the UN SDGs with existing indicators. This coordination is done through a work on a new set of 6G-related metrics to guide research on 6G systems. This new alliance will be 6Gs envisioned 3 tiers of

- 1) service providers to guide and support communities and countries towards the achievement of the UNs SDGs
- 2) data collection and measurement tools to support indicator reporting. build on one role. Hyper-local granularity
- 3) a new ecosystem enhancer based on his 6G network of 6G technology enablers and networks developed in line with the United Nations SDGs that incorporate future mobile communication technologies that will be available in 2030.

Related challenges have also been identified. The Action Plan is presented with prioritized focus areas in the technological and industry evolution of the mobile communications sector to best support the achievement of the UNs SDGs to identify megatrends that will impact 6G sustainable development.

Oolu University 6G Flagship research is organized into four interrelated strategic research areas that call for scientific breakthroughs in the development of the fundamental technical components of 6G systems:

1.1. Visions for 6G Wireless Intelligence

Developing products, services and vertical applications for a digitized society requires a multidisciplinary approach, and thinking of how data and services are created, delivered and consumed.

It covers many new terminology themes [Table: 1].

Table: 1

The terminology in 5G and 6G projects			
Chess RockEU2 –Europe-	CHAMPION – 5G	NextGEnergy – Next	
Two Robotic Coordination		Generation Power for	
Actions 5G	Heterogeneous Agile	Autonomous	
	Mobile Networks at the	Devices – Integrated Multi-	
	Pyeongchang Olympic	Source Energy Harvester	
	Winter Games		
LTCeramics – Cryogenic	Q -RAPIDS – Rapid,	TERRANOVA – Terabit/s	
Ceramic Applications	quality-conscious	wireless connectivity with	
	software development	innovative technology from	
	SaT5G – Satellite and	TeraHertz to bring the quality	
	terrestrial networks for 5G	of experience of optical	
		networks to systems beyond	
		5G	
SECREDAS – Cross-	CUTLER – Coastal Urban	CoM_n_Play-Science –	
Domain Reliable and		Learning science in a fun and	
Trustworthy Cybersecurity	Lens of Resilience	creative way 5G-Enhance –	
of Automated Systems		5G enhanced mobile	
		broadband access networks in	
		crowded environments	
CS-AWARE–	ARIADNE – 5G Artificial	NEUROPA – Non-Invasive	
Cybersecurity situational	Intelligence-Assisted D-	Dynamic Neural Control	
awareness and information	Band Networks for Long-	Rover with Laser-Based	
sharing solution for local	Term Evolution CSI-COP	Technology – Validated	
governments based on	 Citizen Scientists 	Wireless Body Centric	
advanced big data	Investigating GDPR	Trusted Technologies and	
analytics	Compliance for Cookies	Models for Transmission and	
	and Apps	Localization of Chameleon	

RESTORE – User-Centric	GRAGE – European Gray	NEWPACK – New
Smart Nanobiomaterial-	and GREEN: Urban	Competitive and Sustainable
Based 3D Matrix for	Elderly	Bio-Based
Cartilage Repair	Elderry	Bio-Based
5G!Drones – Advanced		
Testing Unmanned Aerial		
Vertical Applications with		
5G Facilities		AT TOTAL A.C
5G-RANGE – 5GRANGE		SLICES-SC – Scientific
5th generation remote area	Flying Rolling with-	Large Scale Infrastructure for
access network	snakE-aRm Contact	Computing/Communications
	Inspection Robot	
FUNCOMP –	GREENEDGE – Mobile	Together – Flagship of
Manufacturing functional	Network Environment	B5G/6G Vision and
components at room	with GREEN EDGE	Intelligent Fabric of
temperature HTx – Access	Computing Platform	Technology Enablers
to medical technology and	RESET – Equality and	Connecting Human, Physical
Next-Generation Medical	justice Hexa-X	and Digital Worlds
Technology Assessment to	Redesigning Academic	IDUNN – Cognitive
Support Patient-Centric,	Excellence	Detection Systems for Cyber-
Society-Oriented, Real-		Secure Operational
Time Decision-Making on		Technology
Reimbursement		
PRINCE – Readiness	ULTIMATE CERAMICS	P2P-Smart Test – Peer-to-
Response to CBRNE	Printed electroceramics	Peer Smart Energy
INCidEnts	with ultimate composition	Distribution Network (P2P-
Experimental Research –	Commercialization of 6G	SmartTest)
Initiating Communities	communication system	
Illusive – Fundamentals of	and UN Sustainable	
Perceptual Engineering	Development Goals (UN	
r creeptuar Engineering	SDGs) both target 2030	
DELIGHT – Device-	PRIME-VR2 –	FRACTAL – Cognitive
	Personalized Recovery	Fractal and Secure EDGE
Centric Low-Complexity	with Multi-User	
Radio-Frequency Network		Better Factory Based on
	Environments: Virtual	Proprietary Open-Safe-
	Reality for Rehabilitation	Reliable-Low Power
		Hardware Platform Nodes –
		IntelIoT to grow the
		manufacturing industry –
		Intelligent, decentralized,
		human-centered and
		trustworthy IoT environment
		FF2020 – Creating a spatial
		ecosystem for the 21st
		century

Source: prepared by author M. Hoschek

1.2. University of Oulu 6G Projects

The Lens Antenna Tuning for Telecommunications and Imaging Modes in Sub-THz Radio Systems Oolu research focus on sub-THz frequency radio systems operating in dual mode by adjusting the lens-antenna distance in either communication or imaging mode [1]. Signal transmission and imaging capabilities are demonstrated using continuous wave operating trans receiver with an operating frequency of 220-330 GHz that can be assigned a 6G wireless radio system.

A high-gain bullet-shaped lens antenna was investigated for imaging a natural object (*Bergenia leaf*) over a short-range line-of-sight radio link. The Barrett lens operated with a gain of 28 dB and a beam width of 1° across the frequency band. A demonstration of dual-mode operation placed Leaf in the centre of the radio link path and utilized inverse synthetic aperture radar techniques to synthesize images of it with his three lenses to the antenna distance.

It is possible to switch from high-gain low-resolution mode to low-gain high-resolution mode by changing the lens position in terms of the feed. It can be applied to systems. It is used to reveal new potential functions of future radios. 5th generation wireless networks have not yet been fully explored, but the vision and key elements of the 6th generation (6G) ecosystem have already been discussed. To contribute to these efforts and to illustrate the security and privacy aspects of 6G networks, we investigate how security affects a conceived 6G wireless system and present possible challenges and solutions.

While 5G is rolling out and the economy and society are beginning to reap the benefits that come with it, the R&D. Related 6G flagship Oolu University publications operate at platform-based business model for future mobile operator business. Sustainability and spectrum management in the 6G era Security landscape overview for virtual, The comprehensive specification of a first set of concrete use cases for his 6G jointly defined by industry and academia, including large-scale twinning, collaborative robots, and immersive telepresence.

3.1. The Development Satellite and Terrestrial for 6G network

The 6G Drivers and UN SDGs 6G Research Visions led by Oulu University Commercialization of 6G communication systems and the United Nations Sustainable Development Goals (UN SDGs) are both targeted for 2030. 6G communications are expected to boost global growth and productivity, create new business models, and transform many aspects of society [4].

Here the SDGs for the United Nations are a way to frame the opportunities and challenges of a desirable future world, covering a wide range of topics such as ending poverty, building gender equality, fighting climate change and developing smart cities.

The relationships between these potentially mutually reinforcing forces are currently poorly defined. Based on the vision of 6G, and the review of megatrends, ongoing research on the relationship between mobile communications and the UNs SDGs and existing indicators, new links between 6G and the UN SDGs are proposed. This coordination is done through 6G-related metrics to guide research on 6G systems [6]. This new partnership will be her 6G envisioned as:

- 1) a service provider to guide and support communities and countries towards the achievement of the UN SDGs,
- 2) a data collection measurement tool to support indicator reporting. built on her three roles.
- 3) a new ecosystem enhancer based on 6G networks of 6G technology enablers and networks developed in line with the United Nations SDGs that incorporate future mobile communication technologies that will be available in 2030. Related challenges have also been identified [7]. The Action Plan is presented with prioritized focus areas in the technological and industry evolution of the mobile communications sector to best support the achievement of the UN SDGs.

Conclusion. As 5G enters the deployment phase, 6G Flagship will assist the global industry in completing the 5G standard, mainly through joint projects, trials and demonstrations. At the same time, Oulu University 6G flagship experts are already working hard on key technical components and solutions for the 2030 wireless era.

Wireless connectivity, device and circuit technology, distributed intelligence, and human-centric wireless services are his four interconnected strategic research areas within the 6G flagship. The main goal of 6G Flagship is to help enterprises conduct technology and system pilots to complete the 5G standard, develop the basic technical components required for 6G systems, accelerate the digitization of a robust and safe society.

Referencie:

 Ghavidel, A, Myllymäki, S, Kokkonen, M, Tervo, N, Jantunen, H. Lens antenna adjustment for telecommunication and imaging modes in a sub-THz radio system. Engineering Reports. 2022; 4(3):e12474. doi:10.1002/eng2.12474

- 2. https://doi.org/10.1002/eng2.12474
- 3. http://urn.fi/urn:nbn:fi-fe2021111755735
- P. Porambage, G. Gür, D. P. Moya Osorio, M. Livanage and M. Ylianttila, "6G Security Challenges and Potential Solutions," 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021, pp. 622–627, doi: 10.1109/EuCNC/6GSummit51104.2021.9482609 Published 9 May 2022

DOI https://doi.org/10.36059/978-966-397-278-7-19

PO3B'ЗУВАННЯ ТРАНСПОРТНОЇ ЗАДАЧІ В СЕРЕДОВИЩІ SMATH STUDIO CLOUD ТА ЇЇ МАТЕМАТИЧНА МОДЕЛЬ

Ананченко В. В.

здобувач ступеня вищої освіти доктора філософії Міжнародного економіко-гуманітарного університету імені академіка Степана Дем'янчука м. Рівне, Україна

Різні аспекти оптимізації займають важливе місце у бізнесі та діяльності сучасних організацій та підприємств. Проблеми оптимізації присутні у різноманітних процесах, які можна поділити на такі категорії: задачі з обладнанням, де потрібно знайти оптимальне розподілення асортименту виробів між окремими взаємопов'язаними машинами. Критерієм оптимальності цієї групи задач може бути прибуток, собівартість, кількість продукції, продуктивність праці тощо; задачі на суміші, де необхідно знайти оптимальну рецептуру різних сумішей.

Аналіз останніх досліджень і публікацій. Проблеми оптимізації та методи розв'язання задач лінійного програмування досить детально розглянуті в роботах Ашманова С., Романюка Т., Терещенко А. та ін.

Транспортна задача полягає у пошуку найбільш вигідного плану перевезення однорідного продукту з пунктів виробництва (чи зберігання) до пунктів споживання, тобто від постачальників до споживачів, ефективність якого будемо оцінювати за критерієм