

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

136

UDC 004.75

DISTRIBUTED MICROSERVICES-ORIENTED INFORMATION

SYSTEM FOR ASTRONOMICAL DATA PROCESSING USING

OPENAPI SPECIFICATION
Ph.D. S. Khlamov ORCID: 0000-0001-9434-1081

Kharkiv National University of Radio Electronics, Ukraine

E-mail: sergii.khlamov@gmail.com

 S. Orlov ORCID: 0009-0008-0680-206X

National Aerospace University – Kharkiv Aviation Institute, Ukraine,

E-mail: s.v.orlov@student.khai.edu

T. Trunova ORCID: 0000-0003-2689-2679

Kharkiv National University of Radio Electronics, Ukraine

E-mail: tetiana.trunova@nure.ua

Y. Bondar ORCID: 0009-0001-5309-0084

Kharkiv National University of Radio Electronics, Ukraine

E-mail: bndr@gmail.com

Y. Netrebin ORCID: 0009-0001-8778-3241

INTIVE Limited, O’Connell Bridge House, Ireland,

E-mail: yuriy.n.netrebin@gmail.com

Abstract. The chapter is devoted to the usage of OpenAPI specification in

distributed microservices-oriented information system for astronomical data

processing. A common goal of all scientific and technological algorithms and

methods is to automate as much as available processes without any human actions.

In general cases it can be done by the different astronomical distributed

microservices-oriented information system. In these pipelines the various data

mining and knowledge discovery in databases (KDD) tasks are used for speeding up

and optimizing the astronomical data processing. Suggested using of the OpenAPI

specification in a distributed microservices-oriented information system for

astronomical data processing significantly improves the system's interoperability,

scalability, and maintainability. The developed skeleton of the real example of

astronomical data-processing system is implemented using .Net Core framework and

C# programming language. Implementing Swagger in a microservices architecture

presents numerous benefits, significantly enhancing both the development and

maintenance phases of service-oriented applications. The developed skeleton and the

proposed approach will be useful for the different microservices-oriented

information system for astronomical data processing. It can be used for all kind of

processing astronomical images using the different mathematical methods and

algorithms implemented as a tool, module, or service. Another one good example of

application the proposed skeleton is a realization of the Virtual Observatory (VO)

concept or integration with CI/CD tools.

Keywords: Information system, client-server architecture, microservices-

oriented architecture, scalability, processing pipeline, data mining, knowledge

discovery in databases, astronomical observations, image processing, Solar System

objects, Swagger, OpenAPI, REST API, JSON, .NET, C#, RabbitMQ

mailto:yuriy.n.netrebin@gmail.com

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

137

1. Introduction

The asteroid-comet hazard becomes a huge potential problem in the XXI century

[1], which can cause the global destructions, collisions with geostationary artificial

satellites [2], space debris, etc. To avoid such situation the humanity is continuously

developing and improving mathematical methods [3] and algorithms for the

astronomical scientific direction like an astronomical image processing and

computer vision [4], which includes the background alignment [5], brightness

equalization [6], astrometric reduction [7], photometric reduction [8], detection of

moving objects in series of frames, or even discovery of the Solar System objects

(SSOs) [9], like comets, asteroids [10], small planets, galaxies, stars, etc.

All astronomical scientific observations are created by the charge-coupled

device (CCD) [11] that are used as a main equipment in telescopes or any other

optical system at the observatories. Such astronomical scientific observations are

collected during the specified observational period of the investigated small celestial

SSOs [12], as well as the artificial satellites. After performing the series of

observations of the investigated SSOs it is required to analyze the results of

observation, which can include the period and shape of rotations determining of such

investigated SSOs. It means that there are a lot of astronomical big data and to

process it we need to apply the different approaches of the information technologies.

The astronomical scientific information is also can be collected from the

different historical clusters, archives, Virtual Observatories [13], data clouds,

astronomical astrometric and photometric catalogues [14], different servers and other

storages. A common goal of all scientific and technological algorithms and methods

is to automate as much as available processes without any human actions. In general

cases it can be done by the different astronomical scientific information systems. In

these information systems the various data mining [15] and knowledge discovery in

databases (KDD) [16] tasks are used for speeding up and optimizing the

astronomical data processing. In case if the astronomical scientific information

system is a very complex and consists of the different mathematical modules and

libraries it becomes distributed microservices-oriented information system for

astronomical data processing. Microservices, also known as the microservice

architecture, is an architectural style that structures an application as a collection of

loosely coupled services, each of which implement business capabilities. The

microservice architecture enables the continuous delivery and deployment of large,

complex information systems. It also enables an organization to evolve its

technology stack, scale and be more resilient with time. Microservice architecture

advocates for developing a single information system into a collection of loosely

associated services. These units also enable the continuous delivery and deployment

of large, monolithic information systems with minimal need for centralization.

As microservices architecture [17] continues to grow in popularity, the

complexity of managing multiple, interrelated services increases. Documentation

becomes essential not just for external users but also for internal developers who

need to understand the APIs provided by each service. That's where Swagger comes

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

138

into play. Swagger, now known as the OpenAPI Specification, is a powerful tool for

describing, producing, consuming, and visualizing RESTful web services.

Swagger simplifies API development and maintenance by providing a language-

agnostic interface to REST APIs [18]. With Swagger, you can generate client

libraries, server stubs, and API documentation that facilitates clear communication

amongst your development team and beyond. It ensures that all microservices speak

the same 'language' when it comes to API endpoints, parameters, and data models.

This chapter aims to the analysis of main focuses and features of the OpenAPI

specification for the microservices-oriented information system development. Real

examples of astronomical data-processing system are implemented using .Net Core

framework and C# programming language, which is perfectly designed for the

developing of distributed microservices-oriented information system.

Section 2 presents the several technologies related to our work for solving of API

documentation task.

Section 3 elaborates the system architecture based on microservices architecture

style, presents the integration of Swagger OpenAPI specification in real microservice

implementation. Integrated data models for astronomical data-processing system are

also presented in this section as well as the result of execution is illustrated in it.

This section also aims to the discussions about advantages of the proposed usage of

OpenAPI specification in distributed microservices-oriented information system for

astronomical data processing.

Section 4 presents discussions panel with advantages and disadvantages, proc &

cons of the proposed components of the distributed microservices-oriented

information system for astronomical data processing and their analogues.

The chapter ends with a conclusion in section 4, which illustrates the conclusions

and outlines of the future work and research as well as possibilities for future

investigations and enhancements.

2. Literature review

Each SSO in a digital frame has a typical form of its image [19]. The common

methods for the image processing [20] and machine vision [21] are developed for

detection/recognition such images of SSOs and an estimation of their positional and

motion parameters [22]. Such methods are based on the analysis of only those pixels

that potentially belong to the investigated object. The disadvantages of such methods

are very low accuracies when the typical form of object has a different shape [23].

The methods for assessing the aperture brightness [24] of object’s images will

work only with a single image of each SSO. Any methods for the matched filtration

[25, 26] and high-frequency filtration [27], which are devoted to the improving the

quality of corrupted images are very resource consuming. The disadvantages of the

methods are the big complexity and low accuracy during the astronomical data

processing, when an object’s image has a several peaks of magnitude.

Methods for the Wavelet analysis [28] or even time series analysis [29] are not

so effective, because we do not have a big volume of the input data to be analyzed.

Also, the disadvantage of such algorithms is the corrupting of the general statistics

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

139

and possibility to process only clear measurements without any deviations in the

typical form of image. Any methods for the deep learning and pattern recognition

[30, 31] also require a big amount of astronomical data for training. The problem of

such methods that astronomical image has a lot of artifacts, so there are a lot of false

objects are detected in series of frames. In this case to work with resource consuming

mathematical algorithms, methods, and modules, which implement them, the

distributed microservices-oriented information system architecture for astronomical

data processing is required. And OpenAPI specifications is a good approach for such

purposes. There are several alternatives to Swagger for implementing OpenAPI

specifications, each offering unique features and benefits that might be more suitable

depending on your specific requirements. Here are some notable alternatives

mentioned below. Postman is a versatile tool for API development and testing [32].

Postman enables automated testing, team collaboration, and integration with various

CI/CD tools. It also includes features like mock servers and interactive API

documentation, making it a comprehensive solution for managing the API lifecycle.

Author describes microservice architecture as a scalable method for designing and

implementing online applications. Due to their network-based nature, microservice

applications require testing within a network environment. Automating these tests

involves generating artificial network traffic, typically in the form of HTTP requests

to APIs such as REST APIs. These topics are explored from the perspectives of test

design and implementation, alongside key features of microservice architecture and

automated testing in general. The core of this thesis details the process of designing

and implementing a test automation framework for Intel Insight as well as an

automatic image storage and photogrammetry processing platform built as a

microservice system. The Stoplight platform excels in the areas of API design,

documentation, and governance [33]. It features a user-friendly interface for creating

API specifications with OpenAPI or RAML, and includes capabilities such as

interactive documentation, code generation, and API governance tools. Notably,

Stoplight stands out for its strengths in visual API design and its integration with

development tools like GitHub and Jira. In the mentioned article author covers the

problem occurring during creation and maintaining of OpenAPI standards for REST

API testing. A special tool called Respector was introduced as a first technique to

employ static and symbolic program analysis to generate specifications for REST

APIs from their source code [34].

Provided experiments showed that Respector successfully detected numerous

missing endpoint methods, parameters, constraints, and responses, as well as

identified several discrepancies between developer-provided specifications and

actual API implementations. Moreover, Respector outperformed other techniques

that deduce specifications from API annotations or by invoking the APIs. With the

rise of object-oriented languages and the portability of Java APIs, the development

and utilization of reusable software components are becoming increasingly feasible

[35]. The effectiveness of component reuse relies heavily on the reliability of these

components, which is achieved through comprehensive testing. However, the

literature lacks practical approaches for generating inputs and verifying outputs for

the numerous test cases required. Author introduces the "Roast" tool and associated

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

140

techniques for testing Java APIs. The practicality and effectiveness of these methods

are demonstrated using two complex components, with quantitative results provided

to validate the different approaches.

Each of these papers describes different strengths, whether it's in collaboration,

integration, interactive documentation, or API management. Depending on the

astronomical project specific needs for astronomical data processing, one of these

alternatives might serve as a better fit than Swagger for implementing OpenAPI

specifications.

3. Distributed microservices-oriented information system for

astronomical data processing

Designing a HTTP API service related to astronomical data processing involves

creating endpoints that allow clients to interact with and retrieve data about celestial

objects, astronomical phenomena, and other relevant information. On the diagram

below high-level architecture of designed system is presented. It consists of multiple

architectural components including client applications, back-end API aggregators

and domain microservices. Microservices provides multiple communication channels

including asynchronous and synchronous ways.

Synchronous communication channel is implemented via exposing HTTP APIs

for reading data model. Any data model is performed in asynchronous way via

message bus (RabbitMQ in a current case). Since data fetching is performed via

HTTP request, we can see the importance of OpenAPI and Swagger instrument.

Once data is updated via message broker in asynchronous way, Swagger allows to

access HTTP REST API in synchronous way by making a direct HTTP call to the

microservice accessing the data storage and checking its saved information. The

provided diagram in Fig. 1 illustrates a high-level architecture for an astronomy-

related system using microservices.

Figure 1. High-level architecture for an astronomy-related system using

microservices

Here's a detailed description of each component and their interactions:

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

141

1. Client Apps:

a. WebApp: A traditional web application interface that interacts with the API

Gateway.

b. WebSPA: A Single Page Application (SPA) that provides a more dynamic

user experience, also interacting with the API Gateway.

2. API Gateways / BFF (Backend for Frontend):

a. OcelotApiGw: Ocelot is an API Gateway that handles requests from client

applications and routes them to the appropriate microservices. It provides

functionalities like authentication, authorization, request aggregation, and more.

b. Aggregator: This component aggregates data from multiple microservices

into a single response, optimizing the number of calls needed by client applications.

3. Microservices:

a. Distance.API: Handles operations related to astronomical distances. It uses

MongoDB for data storage, providing flexible and scalable storage of distance data.

b. Planets.API: Manages data related to planets. It leverages Redis, an in-

memory data store, to enhance the speed of data access and caching.

c. Scattered.API: Likely deals with scattered objects in space such as asteroids

or comets. It uses PostgreSQL, a powerful, open-source relational database.

d. Space.API: Manages general space-related data. It relies on SQL Server, a

robust relational database system from Microsoft.

4. RabbitMQ as a message broker used for asynchronous communication

between microservices. It enables event-driven architecture, where services can

publish and subscribe to events without tight coupling.

5. Additional Components:

a. WebStatus (HealthChecks): A service that monitors the health status of

various microservices, ensuring they are running optimally. It can provide insights

into service uptime and performance.

b. gRPC: A high-performance, open-source RPC framework that can be used

for communication between microservices, offering advantages such as language-

agnosticism, low latency, and efficient data serialization.

c. Polly: A .NET resilience and transient-fault-handling library that allows

developers to express policies such as Retry, Circuit Breaker, Timeout, Bulkhead

Isolation, and Fallback.

d. ELK Stack (Elasticsearch, Logstash, Kibana): A set of tools for logging,

searching, and visualizing data:

i. Elasticsearch: A search and analytics engine.

ii. Logstash: A data processing pipeline that ingests data from multiple sources,

transforms it, and then sends it to a stash like Elasticsearch.

iii. Kibana: A visualization tool used to explore data stored in Elasticsearch,

providing graphical representations and dashboards.

6. Data Flow:

a. Client Interaction: Users interact with the WebApp or WebSPA, which

sends requests to the OcelotApiGw.

b. API Gateway Routing: The API Gateway routes these requests to the

appropriate microservice (Distance.API, Planets.API, Scattered.API, Space.API).

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

142

c. Data Aggregation: For complex queries needing data from multiple sources,

the Aggregator compiles the necessary information.

d. Database Operations: Each microservice interacts with its respective

database (MongoDB, Redis, PostgreSQL, SQL Server) to perform CRUD

operations.

e. Asynchronous Communication: Microservices communicate

asynchronously through RabbitMQ, allowing for scalable and decoupled

architecture.

f. Health Monitoring: The WebStatus service continuously monitors the

health of all services.

g. Logging and Visualization: Logs and metrics are collected, processed, and

visualized using the ELK Stack, facilitating monitoring and debugging.

This architecture demonstrates a robust and scalable approach to managing an

astronomy-related system using microservices, an API Gateway, asynchronous

communication, and comprehensive health monitoring and logging capabilities. It

leverages modern technologies to ensure high performance, resilience, and

maintainability. As we can mention from the diagram above, Microservices

represented by API HTTP services provide OpenAPI documentation by exposing

Swagger endpoints. The provided OpenAPI specification describes an API for an

astronomy-related service with several endpoints for managing and retrieving data

about distances, planets, scattered disks, space, and reference stars [36]. Below is a

detailed breakdown of each part of the specification. Specification provided using

OpenAPI Version: 3.0.1. Specification is implemented via open-source tool called

Swagger UI and examples are provided below using that API tool.

The first section of the specification (/api/Distance) is related to astronomical

distance measurement. Existing HTTP endpoints accepts HTTP GET and POST

request to the service, allowing to enter a record regarding any distance as well as

fetch already existing information.

The OpenAPI specification can be found below:

 GET: Retrieves a list of distances.

o Tags: Distance

o Responses:

 200: Success returns an array of Distance objects in text/plain,

application/json, or text/json formats.

 POST: Creates a new distance entry.

o Tags: Distance

o Request Body: Accepts a Distance object in application/json, text/json, or

application/*+json formats.

o Responses:

 200: Success returns the created Distance object.

The Swagger specification (/api/Planets) is related to the planets in the universe

providing endpoints for accessing all the information including names, ordering and

planetary system. Existing contracts allows retrieve existing list of planets and record

a new planet entry which has been discovered recently.

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

143

The OpenAPI specification can be found below:

 GET: Retrieves a list of planets.

o Tags: Planets

o Responses:

 200: Success returns an array of strings representing planet names in

text/plain, application/json, or text/json formats.

 POST: Creates a new planet entry.

o Tags: Planets

o Request Body: Accepts a string in application/json, text/json, or

application/*+json formats.

o Responses:

 200: Success

The scattered disk is a distant region of the Solar System that extends beyond the

orbit of Neptune. It is populated by a group of small icy bodies known as scattered

disk objects (SDOs). These objects have highly elliptical orbits that take them far

from the Sun at their aphelion (the point in their orbit farthest from the Sun) and

closer to the Sun at their perihelion (the point in their orbit closest to the Sun). Key

characteristics of the scattered disk include orbital characteristics, origins,

composition, known Objects.

Listed characteristics are covered by the OpenAPI specification

(/api/ScatteredDisk) listed below:

 GET: Retrieves a list of space-related objects.

o Tags: Space

o Responses:

 200: Success returns an array of strings in text/plain, application/json, or

text/json formats.

 POST: Creates a new space entry.

o Tags: Space

o Request Body: Accepts a string in application/json, text/json, or

application/*+json formats.

o Responses:

 200: Success

The Fig. 2 illustrates the effectiveness of Swagger usage in a context of

astronomical data processing. On the image below, we can see an example of

transforming OpenAPI JSON specification to user-friendly GUI via Swagger tool.

Data models define the structure of your data entities in C#. For an astronomy

API, these models represent celestial objects and their attributes. The purpose of the

following architecture component is to define domain model and main attributes are

required during the astronomical data processing. The following important attributes

should be defined inside the astronomical domain model of SSOs [37]: mass, radius,

identifier (name), etc.

Instances of these models are used throughout your application to represent and

manipulate data related to stars. The visual representation of the database models

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

144

highlights the different structures and technologies used for each microservice. The

following diagram in Fig. 3 showcases these models.

The visual representation of the database models highlights the different

structures and technologies used for each microservice. The following diagram

showcases these models.

Figure 2. Example of transforming OpenAPI JSON specification to user-friendly

GUI via Swagger tool

Figure 3. Data models for an astronomy-related system using microservices

Distance.API (MongoDB): A document collection with various fields for

distance data. This collection will store information about the distances between

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

145

different astronomical objects. Each document will represent a specific distance

measurement, including the source and destination of the measurement, the distance

value, and the unit of measurement.

Distance JSON model is represented by NoSQL (Document-Oriented) Database.

Database collection is called Distances, and it includes following set of fields.

{

 "distanceId": "60c72b2f4f1a4e3d5c8b4567",

 "source": "Earth",

 "destination": "Mars",

 "distance": 0.52,

 "unit": "AU"

}

Planets.API (Redis): In-memory data structures for storing planet data. In

Redis, each planet will be stored as a hash where the key is a unique identifier for the

planet (e.g., planet:1) and the value is a hash containing various attributes of the

planet such as name, mass, radius, orbital period, distance from the sun, and

atmosphere composition. Redis is used here for its fast read and write operations,

which are beneficial for frequently accessed data.

Planets JSON model is represented by NoSQL (Key-Value storage) Database.

Since it is a key-value storage, data should be stored via single string by hashing or

serializing into JSON string.

{

 "name": "Earth",

 "mass": 5.972e24,

 "radius": 6371,

 "orbitalPeriod": 365.25,

 "distanceFromSun": 1.00,

 "atmosphere": ["Nitrogen", "Oxygen", "Argon", "Carbon Dioxide"]

}

Scattered.API (PostgreSQL): A relational table with fields for scattered object

data. This table will store data about scattered astronomical objects like asteroids and

comets. Each row represents an object with attributes including its ID, name, type,

mass, radius, orbital period, and discovery date. PostgreSQL is chosen for its ACID

compliance and powerful querying capabilities.

Scattered objects are stored in relational SQL database with its unique identifier

as primary key for each scattered object and the list of related attributes.

CREATE TABLE ScatteredObjects (

 objectId UUID PRIMARY KEY,

 name VARCHAR(255),

 type VARCHAR(50),

 mass FLOAT,

 radius FLOAT,

 orbitalPeriod FLOAT,

 discoveryDate DATE

);

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

146

Space.API (SQL Server): A relational table for space entity data with

comprehensive fields for detailed information. This table will store general

information about various space entities such as stars, galaxies, and nebulas. Each

row represents an entity with attributes including its ID, name, type, mass, radius,

distance from Earth, and a description. SQL Server is used here for its enterprise

features and robust performance.

Space SQL model is represented as relational database table as well with

corresponding primary attribute and the list of attributes assigned.

CREATE TABLE SpaceEntities (

 entityId UNIQUEIDENTIFIER PRIMARY KEY,

 name NVARCHAR(255),

 type NVARCHAR(50),

 mass FLOAT,

 radius FLOAT,

 distanceFromEarth FLOAT,

 description NVARCHAR(MAX)

);

This architecture leverages the strengths of each database technology, ensuring

optimal performance, scalability, and flexibility for handling diverse data

requirements in an astronomy-related HTTP service.

A skeleton of the proposed OpenAPI specification in distributed microservices-

oriented information system for astronomical data processing was tested in scope of

the Lemur software of the Collection Light Technology (CoLiTec) project

(https://colitec.space) [38].

The specific modules and services related to the mathematical methods and

algorithms in the Lemur software are:

 automated frame calibration;

 cosmetic frame correction;

 track-and-stack feature;

 brightness equalization;

 background alignment [6];

 astronomical image filtering [5, 27];

 determining the contours of objects;

 image recognition [30, 31];

 typical shape formation [19];

 detection of the moving objects (with near-zero, normal, fast apparent

motion) [39];

 fully automated robust method of the astrometric reduction [7];

 fully automated robust method of the photometric reduction [40];

 support of the multi-threaded processing;

 transferring of astronomical data with intermediate storage;

More extended details about the Lemur software of the CoLiTec project are

presented in these papers [41, 42, 43] and research [44, 45].

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

147

The example of JSON data implemented in scope of the distributed

microservices-oriented information system for astronomical data processing for the

Lemur software represents a response for an API that provides distance-related

information between celestial bodies mentioned below.

{

 "origin": {

 "name": "Earth",

 "type": "Planet",

 "coordinates": {

 "x": 0.0, "y": 0.0, "z": 0.0

 }

 },

 "destination": {

 "name": "Mars",

 "type": "Planet",

 "coordinates": {

 "x": 1.5, "y": 0.5, "z": 0.2

 }

 },

 "distance": {

 "unit": "AU",

 "value": 1.52

 },

 "travelTime": {

 "unit": "days",

 "value": 300

 },

 "path": [

 {

 "x": 0.0, "y": 0.0, "z": 0.0

 },

 {

 "x": 0.5, "y": 0.2, "z": 0.1

 },

 {

 "x": 1.0,

 "y": 0.4,

 "z": 0.15

 },

 {

 "x": 1.5,

 "y": 0.5,

 "z": 0.2

 }

],

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

148

 "metadata": {

 "requestTime": "2024-06-18T12:34:56Z",

 "responseTime": "2024-06-18T12:34:57Z",

 "service": "DistanceAPI"

 }

}

Presented JSON structure contains following valued information:

 origin: Information about the starting point of the distance calculation,

including the name, type (e.g., planet, star), and coordinates in a 3D space.

 destination: Information about the endpoint of the distance calculation,

similar to the origin.

 distance: The calculated distance between the origin and destination, along

with the unit of measurement (e.g., Astronomical Units - AU).

 travelTime: An estimated travel time to cover the distance, along with the

unit of measurement (e.g., days).

 path: An array of coordinates representing the path taken from the origin to

the destination.

 metadata: Additional information about the API request, including the

request and response times and the name of the service that provided the data.

This JSON structure is designed to be comprehensive and can be extended

further based on the specific requirements and additional attributes that might be

relevant for the Distance API in a microservices architecture.

4. Discussions

Implementing Swagger in a microservices architecture presents numerous

benefits, significantly enhancing both the development and maintenance phases of

service-oriented applications. Swagger, as an open-source framework, facilitates the

design, build, documentation, and consumption of RESTful web services. Its ability

to generate interactive API documentation from code annotations ensures that all

stakeholders have access to up-to-date and accurate API details, fostering better

communication and collaboration within development teams.

One of the primary advantages of using Swagger is the standardized

documentation it provides. This standardization ensures that each microservice

adheres to a consistent format, simplifying the understanding and usage of APIs

across different services. This consistency is crucial in a microservices architecture

where multiple services need to interact seamlessly, and developers might need to

work with various APIs concurrently.

Swagger's interactive documentation also enables developers to test APIs

directly from the documentation interface. This feature streamlines the development

and debugging process, allowing for quicker iterations and more efficient

troubleshooting. By providing a clear and interactive way to visualize and test API

endpoints, Swagger reduces the learning curve for new developers and enhances

productivity.

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

149

Moreover, Swagger supports automated code generation for API clients in

various programming languages, which accelerates the development of client-side

applications and services. This automation minimizes manual coding errors and

ensures that client implementations are aligned with the API specifications, further

promoting consistency and reliability across the system.

In a microservices ecosystem, where services are often developed, deployed, and

scaled independently, maintaining up-to-date documentation can be challenging.

Swagger addresses this by integrating directly with the codebase, ensuring that any

changes to the API are automatically reflected in the documentation. This integration

is particularly beneficial for continuous integration and continuous deployment

(CI/CD) pipelines, ensuring that API changes are documented and tested throughout

the development lifecycle.

The use of Swagger also enhances API discoverability and usability. With a

well-documented API, internal and external developers can easily explore available

endpoints, understand input and output requirements, and integrate services more

effectively. This discoverability is crucial for fostering innovation and enabling

developers to leverage existing services to build new functionalities.

Furthermore, Swagger's support for API versioning ensures that changes and

updates to APIs can be managed without disrupting existing consumers. This

capability is essential in a microservices architecture, where different services and

clients might depend on different versions of the same API. By clearly documenting

versioned endpoints, Swagger helps maintain backward compatibility and smooth

transitions during updates.

Overall, using Swagger in a microservices architecture streamlines development

workflows, improves API quality, and enhances collaboration among teams. Its

comprehensive documentation, interactive features, and automation capabilities

make it an indispensable tool for managing complex service ecosystems. By

ensuring that APIs are well-documented, easily testable, and consistently

implemented, Swagger contributes to the robustness, scalability, and maintainability

of microservices-based applications. In conclusion, integrating Swagger into a

microservices architecture is a strategic decision that can significantly improve both

the development experience and the operational efficiency of service-oriented

systems.

The provided JSON representation of the astronomical data processing system

demonstrates an effective and structured approach to delivering essential

astronomical data within a microservices architecture. By encapsulating origin and

destination details, including their coordinates and types, the API offers precise and

comprehensive information about celestial bodies. The inclusion of distance

measurements in Astronomical Units (AU) ensures that the data is scientifically

relevant and usable for various astronomical calculations and analyses. Additionally,

the estimated travel time between the celestial bodies, expressed in days, provides

valuable insights for planning hypothetical space missions or understanding relative

distances in the cosmos.

The path array, which details the coordinates from the origin to the destination,

adds another layer of utility, potentially aiding in the visualization of the journey

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

150

through space. This feature is particularly useful for educational tools, simulations,

and visual representations in applications that require a detailed trajectory of space

travel. Metadata encompassing request and response times, along with service

identification, enhances the API’s transparency and traceability. Such metadata is

crucial for monitoring and debugging purposes within a distributed system, ensuring

that the service remains reliable and maintainable.

In the context of a microservices architecture, this JSON structure exemplifies

how services can be designed to be modular and independently scalable, promoting

better resource utilization and simplified management. The use of well-defined

endpoints and clear data contracts makes the Distance API a robust component that

can seamlessly integrate with other microservices, such as those dealing with

planetary information or scattered disk objects.

This modular approach not only improves system resilience but also allows for

independent updates and scaling of individual services, enhancing overall system

performance and maintainability.

Moreover, the JSON structure's extensibility ensures that the API can evolve

alongside the growing needs of its users, accommodating new data points and

features without disrupting existing functionality. This foresight in design supports

long-term sustainability and adaptability of the service. The detailed information

provided by the Distance API can serve various stakeholders, from researchers and

educators to space enthusiasts and developers, making it a versatile tool in the

domain of astronomy.

The structured data model aids in the creation of user-friendly interfaces and

intuitive visualizations, fostering greater engagement and understanding among

users. By adhering to best practices in API design, such as clear naming conventions

and consistent data formats, the Distance API sets a standard for other services

within the microservices architecture. This consistency ensures a cohesive user

experience and simplifies the development process for new features and services.

5. Conclusions

We presented the usage of OpenAPI specification in distributed microservices-

oriented information system for astronomical data processing. A common goal of all

scientific and technological algorithms and methods is to automate as much as

available processes without any human actions.

In general cases it can be done by the different astronomical distributed

microservices-oriented information system. In these pipelines the various data

mining and knowledge discovery in databases tasks are used for speeding up and

optimizing the astronomical data processing. Suggested using of the OpenAPI

specification in a distributed microservices-oriented information system for

astronomical data processing significantly improves the system's interoperability,

scalability, and maintainability.

The developed skeleton of the real example of astronomical data-processing

system is implemented using .Net Core framework and C# programming language.

Implementing Swagger in a microservices architecture presents numerous benefits,

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

151

significantly enhancing both the development and maintenance phases of service-

oriented applications.

The developed skeleton and the proposed approach will be useful for the

different microservices-oriented information system for astronomical data

processing. It can be used for all kind of processing astronomical images using the

different mathematical methods and algorithms implemented as a tool, module, or

service. Another one good example of application the proposed skeleton is a

realization of the Virtual Observatory (VO) concept.

The modern international astronomical astrometric and photometric catalogues

are available now in cloud, so any interactions with such data from them require

services integration for processing. The microservices-oriented architecture will be

also very helpful in the complex information systems for astronomical data

processing with integration of the Continuous Integration/Continuous Delivery

(CI/CD) principles.

The further research will be conducted on integrating proposed OpenAPI

specification in distributed microservices-oriented information system for

astronomical data processing in scope of the Lemur software of the Collection Light

Technology (CoLiTec) project [46].

6. Acknowledgements

The research was supported by the Ukrainian project of fundamental scientific

research “Development of computational methods for detecting objects with near-

zero and locally constant motion by optical-electronic devices” #0124U000259 in

2024-2026 years.

7. References

[1] L. Wheeler, et al., Risk assessment for asteroid impact threat scenarios, Acta

Astronautica, vol. 216, pp. 468–487, 2024, doi: 10.1016/j.actaastro.2023.12.049.

[2] V. Akhmetov, et al., Cloud computing analysis of Indian ASAT test on March

27, 2019, IEEE International Scientific-Practical Conference: Problems of

Infocommunications Science and Technology, pp. 315–318, 2019. doi:

10.1109/PICST47496.2019.9061243.

[3] V. Savanevych, et al., Mathematical methods for an accurate navigation of the

robotic telescopes, Mathematics, vol. 11, issue 10, 2246, 2023. doi:

10.3390/math11102246.

[4] R. Klette, Concise computer vision. An Introduction into Theory and Algorithms,

London: Springer, 233, 2014.

[5] V. Vlasenko, et al., Devising a procedure for the brightness alignment of

astronomical frames background by a high frequency filtration to improve accuracy

of the brightness estimation of objects, Eastern-European Journal of Enterprise

Technologies, vol. 2, issue 2-128, pp. 31–38, 2024. doi: 10.15587/1729-

4061.2024.301327.

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

152

[6] Š. Parimucha, et al., CoLiTecVS – A new tool for an automated reduction of

photometric observations, Contributions of the Astronomical Observatory Skalnate

Pleso, vol. 49, issue 2, pp. 151-153, 2019.

[7] V. Akhmetov, et al., Astrometric reduction of the wide-field images, Advances in

Intelligent Systems and Computing, vol. 1080, pp. 896–909, 2020. doi: 10.1007/978-

3-030-33695-0_58.

[8] V. Kudak, V. Epishev, V. Perig, and I. Neybauer, Determining the orientation

and spin period of TOPEX/Poseidon satellite by a photometric method,

Astrophysical Bulletin, vol. 72, issue 3, pp. 340-348, 2017. doi:

10.1134/S1990341317030233.

[9] S. Khlamov, and V. Savanevych, Big astronomical datasets and discovery of new

celestial bodies in the Solar System in automated mode by the CoLiTec software,

Knowledge Discovery in Big Data from Astronomy and Earth Observation,

Astrogeoinformatics, pp. 331–345, 2020. doi: 10.1016/B978-0-12-819154-

5.00030-8.

[10] V. Troianskyi, V. Godunova, A. Serebryanskiy, et al., Optical observations of

the potentially hazardous asteroid (4660) Nereus at opposition 2021, Icarus, vol. 420,

116146, 2024. doi: 10.1016/j.icarus.2024.116146.

[11] G. Adam, P. Kontaxis, L. Doulos, E.-N. Madias, C. Bouroussis, and F. Topalis,

Embedded Microcontroller with a CCD Camera as a Digital Lighting Control

System, Electronics, vol. 8, issue 1, 2019. doi: 10.3390/electronics8010033.

[12] D. Oszkiewicz, et al., Spins and shapes of basaltic asteroids and the missing

mantle problem. Icarus, 397, 115520, 2023. doi: 10.1016/j.icarus.2023.115520.

[13] I. B. Vavilova, Y. S. Yatskiv, L. K. Pakuliak, et al., UkrVO astroinformatics

software and web-services, Proceedings of the International Astronomical Union,

vol. 12, issue S325, pp. 361-366, 2016. doi: 10.1017/S1743921317001661.

[14] V. Akhmetov, et al., Fast coordinate cross-match tool for large astronomical

catalogue. Advances in Intelligent Systems and Computing, vol. 871, pp. 3–16,

2019. doi: 10.1007/978-3-030-01069-0_1.

[15] K. D. Borne, Scientific data mining in astronomy, Next Generation of Data

Mining, Chapman and Hall/CRC, pp. 115-138, 2008.

[16] Y. Zhang, and Y. Zhao, Astronomy in the big data era, Data Science Journal,

vol. 14, 2015.

[17] N. Raychev, Test Automation in Microservice Architecture, IEEE Spectrum,

vol. 8, issue 7, 15 p., 2020.

[18] R. Huang, M. Motwani, I. Martinez, and A. Orso, Generating REST API

Specifications through Static Analysis, IEEE ACM 46th International Conference

On Software Engineering (ICSE), 107, pp. 1–13, 2024. doi:

10.1145/3597503.3639137.

[19] V. Savanevych, et al., Formation of a typical form of an object image in a series

of digital frames, Eastern-European Journal of Enterprise Technologies, vol. 6, issue

2-120, pp. 51–59, 2022. doi: 10.15587/1729-4061.2022.266988.

[20] W. Burger, and M. Burge, Principles of digital image processing: fundamental

techniques, NY: Springer, 2009.

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

153

[21] S. Khlamov, I. Tabakova, T. Trunova, and Z. Deineko, Machine Vision for

Astronomical Images Using the Canny Edge Detector, CEUR Workshop

Proceedings, vol. 3384, pp. 1–10, 2022.

[22] V. Troianskyi, P. Kankiewicz, and D. Oszkiewicz, Dynamical evolution of

basaltic asteroids outside the Vesta family in the inner main belt, Astronomy and

Astrophysics, vol. 672, A97, 2023. doi: 10.1051/0004-6361/202245678.

[23] D. Oszkiewicz, et al., Spin rates of V-type asteroids, Astronomy &

Astrophysics, vol. 643, A117, 2020. doi: 10.1051/0004-6361/202038062.

[24] V. Savanevych, et al., CoLiTecVS software for the automated reduction of

photometric observations in CCD-frames, Astronomy and Computing, vol. 40

(100605), 15 p., 2022. doi: 10.1016/j.ascom.2022.100605.

[25] S. Khlamov, V. Savanevych, V. Vlasenko, O. Briukhovetskyi, T. Trunova, I.

Levykin, V. Shvedun, I. Tabakova, Development of the matched filtration of a

blurred digital image using its typical form. Eastern-European Journal of Enterprise

Technologies, vol. 1, issue 9 (121), pp. 62-71, 2023. doi: 10.15587/1729-

4061.2023.273674.

[26] S. Khlamov, et al., Development of computational method for matched filtration

with analytic profile of the blurred digital image, Eastern-European Journal of

Enterprise Technologies, vol. 5, issue 4-119, pp. 24–32, 2022. doi: 10.15587/1729-

4061.2022.265309.

[27] C. A. Politsch, et al., Trend filtering–I. A modern statistical tool for time-

domain astronomy and astronomical spectroscopy, MNRAS, vol. 492, issue 3, pp.

4005-4018, 2020. doi: 10.1093/mnras/staa106.

[28] M. Dadkhah, et al., Methodology of wavelet analysis in research of dynamics of

phishing attacks, International Journal of Advanced Intelligence Paradigms, vol.

12(3-4), pp. 220-238, 2019. doi: 10.1504/IJAIP.2019.098561.

[29] L. Kirichenko, A.S.A. Alghawli, T. Radivilova, Generalized approach to

analysis of multifractal properties from short time series, International Journal of

Advanced Computer Science and Applications, vol. 11, issue 5, pp. 183–198, 2020.

doi: 10.14569/IJACSA.2020.0110527.

[30] S. Khlamov, et al., The astronomical object recognition and its near-zero motion

detection in series of images by in situ modeling, Proceedings of the 29th IEEE

International Conference on Systems, Signals, and Image Processing, IWSSIP 2022,

Sofia, Bulgaria, June 1st – 3rd, 4 p., 2022. doi:

10.1109/IWSSIP55020.2022.9854475.

[31] S. Khlamov, I. Tabakova, T. Trunova, Recognition of the astronomical images

using the Sobel filter. In Proceedings of the International Conference on Systems,

Signals, and Image Processing, 4 p., 2022. doi:

10.1109/IWSSIP55020.2022.9854425.

[32] D.N.N. da Costa, Guidelines for Testing Microservice-based Applications,

Dissertation for obtaining the master’s degree, 80 p., 2022.

[33] Stoplight. Available at: https://stoplight.io/solutions.

[34] A. Golmohammadi, M. Zhang, and A. Arcuri, Testing Restful Apis: A Survey,

ACM Transactions on Software Engineering and Methodology, vol. 33 (1), pp. 1-41,

2023.

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

154

[35] D. Hoffman, and P. Strooper, Tools and Techniques for Java API Testing,

Australian Software Engineering Conference, pp. 235-245, 2002. doi:

10.1109/ASWEC.2000.844580.

[36] S. Khlamov, et al., Automated data mining of the reference stars from

astronomical CCD frames, CEUR Workshop Proceedings, vol. 3668, pp. 83–97,

2024.

[37] V. Troianskyi, V. Kashuba, O. Bazyey, et al., First reported observation of

asteroids 2017 AB8, 2017 QX33, and 2017 RV12, Contributions of the

Astronomical Observatory Skalnaté Pleso, vol. 53, pp. 5-15, 2023. doi:

10.31577/caosp.2023.53.2.5.

[38] S. Khlamov, et al., Machine vision for astronomical images using the modern

image processing algorithms implemented in the CoLiTec software, Measurements

and Instrumentation for Machine Vision, Chapter 12: CRC Press, Taylor & Francis

Group, pp. 269-310, 2024. doi: 10.1201/9781003343783-12.

[39] S. Khlamov, et al., Development of computational method for detection of the

object's near-zero apparent motion on the series of CCD–frames, EEJET, vol. 2,

issue 9(80), pp. 41-48, 2016. doi: 10.15587/1729-4061.2016.65999.

[40] I. Kudzej, et al., CoLiTecVS – A new tool for the automated reduction of

photometric observations, Astronomische Nachrichten, vol. 340, issue 1-3, pp. 68-

70, 2019. doi: 10.1002/asna.201913562.

[41] V. Savanevych, et al., A new method based on the subpixel Gaussian model for

accurate estimation of asteroid coordinates, MNRAS, vol. 451, issue 3, pp. 3287–

3298, 2015. doi: 10.1093/mnras/stv1124.

[42] L. Mykhailova, et al., Method of maximum likelihood estimation of compact

group objects location on CCD-frame, Eastern-European Journal of Enterprise

Technologies, vol. 5, issue 4, pp. 16-22, 2014. doi:10.15587/1729-4061.2014.28028.

[43] V. Savanevych, et al., A method of immediate detection of objects with a near-

zero apparent motion in series of CCD-frames. Astronomy & Astrophysics, 609,

A54: 11, 2018. doi: 10.1051/0004-6361/201630323.

[44] V. Shvedun, et al., Statistical modelling for determination of perspective

number of advertising legislation violations, Actual Problems of Economics, vol.

184, issue 10, pp. 389-396, 2016.

[45] V. Savanevych, et al., Comparative analysis of the positional accuracy of CCD

measurements of small bodies in the solar system software CoLiTec and

Astrometrica, Kinematics and Physics of Celestial Bodies, vol. 31, issue 6, pp. 302–

313, 2015.

[46] S. Khlamov, et al., Data Mining of the Astronomical Images by the CoLiTec

Software, CEUR Workshop Proceedings, vol. 3171, pp. 1043–1055, 2022.

ADVANCES

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES

155

РОЗПОДІЛЕНА МІКРОСЕРВІСНО-ОРІЄНТОВАНА

ІНФОРМАЦІЙНА СИСТЕМА ДЛЯ ОБРОБКИ

АСТРОНОМІЧНИХ ДАНИХ ЗА СПЕЦИФІКАЦІЄЮ OPENAPI
Ph.D. С. Хламов ORCID: 0000-0001-9434-1081

Харківський національний університет радіоелектроніки, Україна

E-mail: sergii.khlamov@gmail.com
С. Орлов ORCID: 0009-0008-0680-206X

Національний аерокосмічний університет – Харківський авіаційний інститут, Україна,

E-mail: s.v.orlov@student.khai.edu
Т. Трунова ORCID: 0000-0003-2689-2679

Харківський національний університет радіоелектроніки, Україна

E-mail: tetiana.trunova@nure.ua,
Ю. Бондар ORCID: 0009-0001-5309-0084

Харківський національний університет радіоелектроніки, Україна

E-mail: bndr@gmail.com
Ю. Нетребін ORCID: 0009-0001-8778-3241

INTIVE Limited, O’Connell Bridge House, Ірландія,
E-mail: yuriy.n.netrebin@gmail.com

Анотація.Розділ присвячено використанню специфікації OpenAPI в

розподіленій мікросервіс-орієнтованій інформаційній системі обробки

астрономічних даних. Загальна мета всіх наукових і технологічних алгоритмів

і методів – максимально автоматизувати доступні процеси без будь-яких дій

людини. У загальних випадках це можна зробити різними астрономічними

розподіленими мікросервісами, орієнтованими на інформаційні системи. У цих

конвеєрах різні завдання інтелектуального аналізу даних і виявлення знань у

базах даних (KDD) використовуються для прискорення й оптимізації обробки

астрономічних даних. Запропоноване використання специфікації OpenAPI в

розподіленій інформаційній системі, орієнтованій на мікросервіси, для обробки

астрономічних даних значно покращує сумісність, масштабованість і

зручність обслуговування системи. Розроблений скелет реального прикладу

системи обробки астрономічних даних реалізовано за допомогою фреймворку

.Net Core та мови програмування C#. Впровадження Swagger в архітектурі

мікросервісів дає численні переваги, значно покращуючи етапи розробки та

обслуговування сервіс-орієнтованих програм. Розроблений скелет і

запропонований підхід будуть корисні для різних мікросервісно-орієнтованих

інформаційних систем для обробки астрономічних даних. Його можна

використовувати для всіх видів обробки астрономічних зображень за

допомогою різних математичних методів і алгоритмів, реалізованих як

інструмент, модуль або сервіс. Ще одним гарним прикладом застосування

запропонованого скелета є реалізація концепції віртуальної обсерваторії (VO)

або інтеграція з інструментами CI/CD.

Ключові слова: інформаційна система, клієнт-серверна архітектура,

мікросервісно-орієнтована архітектура, масштабованість, конвеєр обробки,

інтелектуальний аналіз даних, відкриття знань у базах даних, астрономічні

спостереження, обробка зображень, об’єкти Сонячної системи, Swagger,

OpenAPI, REST API, JSON, .NET, C#, RabbitMQ

mailto:yuriy.n.netrebin@gmail.com

