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Abstract. Hierarchical classifiers play a crucial role in addressing complex 

classification tasks by breaking them down into smaller, more manageable sub-tasks. 

This paper focuses on the technical Ukrainian texts hierarchical classification, 

specifically the classification of repair works and spare parts used in automobile 

maintenance and servicing. We tackle the challenges posed by multilingual data 

inputs – specifically Ukrainian, Russian, and their hybrid – and the lack of standard 

data cleaning models for the Ukrainian language. We developed a novel 

classification algorithm, which employs TF-IDF vectorization with unigrams and 

bigrams, keyword selection, and cosine similarity for classification. Also this paper 

describes a method for training and evaluating a hierarchical classification model 

using parameter tuning for each node in a tree structure. The training process 

involves initializing weights for tokens in the class tree nodes and input strings, 

followed by iterative parameter tuning to optimize classification accuracy. Initial 

weights are assigned based on predefined rules, and the iterative process adjusts 

these weights to achieve optimal performance. The paper also addresses the 

challenge of interpreting multiple confidence scores from the classification process, 

proposing a machine learning approach to calculate a unified confidence score. This 

score helps assess the classification reliability, particularly for unlabeled data, by 

transforming input values, generating polynomial parameters, and using logarithmic 

transformations and scaling. The classifier is fine-tuned using hyperparameter 

optimization techniques, and the final model provides a robust confidence score for 

classification tasks, enabling the verification and classification results optimization 

across large datasets. Our experimental results demonstrate significant 

improvements in classification performance. Overall classification accuracy nearly 

doubled after training, reaching 92.38%. This research not only advances the 

theoretical framework of hierarchical classifiers but also provides practical 

solutions for processing large-scale, unlabeled datasets in the automotive industry. 

The developed methodology can enhance various applications, including automated 

customer support systems, predictive maintenance, and decision-making processes 

for stakeholders like insurance companies and service centers. Future work will 

extend this approach to more complex tasks, such as extracting and classifying 

information from extensive text sources like telephone call transcriptions. 

Keywords: NLP, tree-based classification, machine learning, data analysis, 

applied intelligent systems. 
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1. Introduction and literature review  
The field of tree-based data classification has gained increasing prominence due 

to its capacity to efficiently manage and categorize data with inherent hierarchical 

structures. This capability is essential for applications across diverse disciplines, 

such as phylogenetic tree analysis in biology [1], file system organization in 

computer science [2], and document categorization in information retrieval [3]. The 

primary strength of tree-based classification lies in its ability to structure data 

hierarchically, which facilitates efficient retrieval, analysis, and interpretation. 

In tree-based classification models, each node within a tree represents a category 

or class, with branches to child nodes denoting subcategories. The classification 

process involves assigning data points to appropriate nodes based on their attributes, 

following a set of predefined rules or models that guide their placement. While 

various methodologies – such as Decision Trees [4], Random Forests [5], Gradient 

Boosted Trees [6], and Hierarchical Clustering [7] – have been extensively 

developed and optimized for numerical and formal categorical attributes, a 

significant gap exists in their application to Natural Language Processing (NLP). 

Although some progress has been made in applying tree-based classification to 

NLP tasks like fake news detection [8], document clustering using summarization 

[9], and classification using Discriminative-Semantic Features [10], there is still a 

lack of robust frameworks for categorizing textual data into predefined hierarchical 

classes, particularly for less-resourced languages and specialized technical 

terminologies. Text mining remains a critical area of research due to its potential to 

produce concise textual representations of complex physical or technical phenomena. 

As scientific fields evolve and more sophisticated deep learning tools become 

available, the need for effective big data text analysis has expanded to various 

applications, such as medical diagnostics [11], where labeling algorithms can parse 

large-scale textual datasets, and information extraction in noisy environments [12]. 

Despite the wealth of data available, NLP systems still grapple with issues 

related to data incompleteness and errors [13, 14]. Inaccurate or incomplete training 

data can lead to biased or erroneous model outputs, affecting the reliability of NLP 

applications. Addressing these issues requires the development of more robust data 

curation and cleaning processes. However, many existing approaches do not account 

for the unique characteristics of specific languages, relying instead on generic 

toolkits that limit their efficacy in multilingual or domain-specific contexts. 

Consequently, research into NLP methods that incorporate language-specific 

features has gained considerable interest. Such methods have not only improved 

human-computer interactions but also broadened the applicability of NLP in various 

domains. Despite recent advancements, challenges persist, particularly in processing 

specialized scientific and technical texts that employ complex, domain-specific 

terminologies. Developing NLP models that can accurately interpret and generate 

content in these contexts demands further research, including domain-specific fine-

tuning and the construction of specialized lexicons. Furthermore, NLP models and 

libraries are disproportionately developed for major languages, leaving many 

languages underrepresented and limiting the accessibility of these technologies [15, 

16]. The problem is further compounded in multilingual settings, where shared 
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linguistic roots and overlapping vocabulary complicate accurate language processing 

[17]. Developing robust multilingual NLP models remains active research area. 

This study consolidates our previous research on addressing a complex Natural 

Language Processing (NLP) challenge, focusing on the classification of automotive 

repair parts and labor descriptions [18-20]. The data utilized for this research was 

derived from a Garage Management System (GMS).. The dataset is notable for its 

high variability, containing errors, technical abbreviations, and domain-specific 

jargon, with entries predominantly in Ukrainian and Russian, and occasionally a 

blend of the two, known as "Surzhik." Additionally, annotated data is available in the 

form of a hierarchical classifier for automotive service jobs in both languages. 

The primary objective is to categorize each labor entity into predefined 

categories. To achieve this, we establish a comprehensive data cleansing and 

preprocessing pipeline, including tokenization (see Figure 1 and [21]), to convert 

raw text into a structured format suitable for classification. An essential step in this 

process is vocabulary normalization, which is crucial for managing computational 

resources and processing time [17]. This paper investigates tree-based classification 

methodologies for textual data, exploring theoretical foundations, algorithms, and 

applications, with a particular emphasis on classifying automotive service 

descriptions. Such methodologies are invaluable for automating processes within the 

automotive industry, ranging from quality monitoring in service centers to 

centralizing vehicle issue data for stakeholders like insurance companies and 

manufacturers.  

 
Figure 1. Typical data science process 

 

The classification of automotive labor entities falls under the broader category of 

unstructured data processing, a challenging area that requires a blend of natural 

language processing expertise and advanced data science techniques [22]. Given the 

hierarchical nature of the task directory, this problem is framed as a supervised 

machine learning task, facilitating the development and evaluation of classification 

models. As illustrated in Figure 1, typical data science workflows are divided into 

distinct phases: Problem Definition, Data Collection, Data Preprocessing, Data 

Modeling (encompassing Model Selection, Model Training, Model Evaluation, and 
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Model Tuning), and Deployment. These phases will be elaborated upon in 

subsequent sections of the paper. 

 

2. Problem definition and data collection 
Automotive sector issues 

 
This work focuses on the technical Ukrainian texts hierarchical classification. 

The primary issue addressed in the study is the classification of repair works and 

spare parts used in the automobiles’ maintenance and servicing. 

This problem’s significance cannot be overstated. Out of approximately 1.5 

billion vehicles globally, only 20% have detailed, centrally collected, stored, and 

analyzed repair information [23] and [24]. This data pertains primarily to new 

vehicles, up to four years old, which are serviced at authorized service centers. 

Automotive manufacturers utilize specialized software in the original equipment 

service centers (OES), where all repairs and spare parts are accurately classified. 

This allows for the collection of precise statistical data on the individual components 

and assemblies reliability, their operational characteristics, warranty cases, and more 

[25]. Unfortunately, once a vehicle leaves the official service network, its subsequent 

repair and maintenance history becomes fragmented and often lost. Non-authorized 

service centers lack a unified classifier for repairs and spare parts, let alone a single 

information system. Furthermore, there are thousands of such systems worldwide, 

each with different languages and data formats. In Ukraine alone, dozens of similar 

programs are used. Figure 2 illustrates the automotive fleet structure and highlights 

the data problem concerning repairs. 

 
 

Figure 2. Global car park structure 

Repair data is valuable not only to automotive manufacturers but also to various 

other sectors. For example, insurance companies can benefit from this data to 

determine repair costs and residual vehicle values. Similarly, service centers and 

even car owners would find it beneficial to have information not only about the 

current repair costs but also about future expenses related to repair and maintenance. 
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Data collection and data structure 

Our research utilized anonymous data from an online garage management 

system, covering five years and 500 service stations, yielding over 1 million work 

records and 1.2 million spare parts records annually. Additionally, customer calls 

recorded via IP telephony and transcribed into text data contributed to a substantial 

dataset with hundreds of thousands of texts and tens of millions of data rows. 

Training and test sets were randomly drawn and manually labeled. The general 

objective is to develop an algorithm for extracting and further classifying texts using 

given tree-based classes sets. For this purpose, we have 4 types of datasets: 

1. Classes – two distinct trees for works (180 entries) and parts (1,600 

entries). 

2. Training – the class trees, augmented with manually labeled data (6,000 

entries). 

3. Test – additional labeled dataset (11,000 entries). 

4. Operational or Input Data – tens of millions of entries. 

Let us examine these types in greater detail. 

Car repair works are organized in a three-level tree structure as shown in the data 

extract in Table 1. 

Table 1 

Repair works classes data tree extract 

ID Parent  ID UA EN 

1000 0 Діагностичні роботи Diagnostic work 

1100 1000 Діагностика    Diagnostics 

1101 1100 Ручна діагностика       Manual diagnostics 

1102 1100 Комп'ютерна 
діагностика 

      Computer 
diagnostics 

1200 1000 Тестування       Testing 

2000 0 Загальні роботи General works 

2100 2000 Заміна    Replacement 

Car components are classified within a hierarchical four-level tree structure. The 

classification begins with the most general component types, such as mechanical and 

body parts, oils and fluids, wheels and tires. These broad categories are then divided 

into their corresponding systems, including filters, power transmission, braking, 

suspension, steering, engine, cooling, electric and electronic systems. Within each 

system, the classification is further refined into specific components. For example, 

the suspension is divided into subcategories such as damping, arms, wheel hubs, 

bearings, etc. Finally, the lowest classification tier consists of specific spare parts 

detailed lists, such as shock absorbers, struts, coil and leaf springs. The car parts data 

tree extract is presented in Table 2. The training and test datasets comprise combined 

repair works and parts lists. For example, an entry might be "Pneumatic damping 

diagnostics on shock-tester". These lists have been manually labeled specifically for 

this study. Operational data consists of arbitrary text, which may include information 

from garage management systems (GMS), phone calls transcriptions, messages from 

messengers, etc. The objective is to determine whether the input text contains 
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information related to car repairs and to correctly assign it to one of the predefined 

classes for works and parts. 

Table 2 

Car parts classes data tree extract 

ID PARENT ID UA EN 
1000000 0 Механічні деталі Mechanical parts 

1070000 1000000 Амортизація Suspension 
damping 

1070100 1070000 Амортизатори і стійки Shock absorbers & 

struts 

1070101 1070100 Амортизаторі підвіски Shock absorbers 

1070102 1070100 Стійки підвіски Struts 

1070105 1070100 Пневмо-амортизатори Pneumatic shocks 

1070300 1070000 Опори амортизаторів Strut mountings 

Classification Success Criteria 

A classification is deemed successful if:  

1. No less than 90% of car repair works are identified and extracted from the 

incoming unlabeled texts  

2. Of these, no less than 90% of works and parts are correctly assigned to 

their appropriate classes.  

For example, the text "Pneumatic damping diagnostics on shock-tester" should 

be accurately classified into class 1102 for works and 1070105 for parts  

For this study purposes, we simplify the task by assuming that the input text 

contains information about works and components. Therefore, only the second 

criterion of successful classification is considered. The task of extracting relevant 

information about repair works and automotive parts from arbitrary text will be 

addressed in future studies. 

In summary, this work aims to address the critical issue of technical texts 

hierarchical classification, focusing on the automotive industry. By improving the 

classification and analysis of repair and maintenance data, we can enhance this 

information's reliability and accessibility for multiple stakeholders, ultimately 

contributing to better decision-making and resource management in the automotive 

sector. 

 

3. Data preprocessing 

 
Classical NLP preprocessing pipeline contains some preliminary (sentence 

segmentation, word tokenization), frequent (stop word removal, stemming and 

lemmatization, removing digits/punctuation, lowercasing) and other steps 

(normalization, language detection, code mixing, transliteration) [17, 21]. 

In our data preprocessing pipeline, certain modifications were necessitated due to 

the origin of the data. Specifically, some conventional steps such as sentence 

segmentation were deemed unnecessary.  

Conversely, we introduced additional procedures tailored to the dataset's 

characteristics, which included language detection, specific Cyrillic characters 
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approach, the disassembling of compounded words and handling of specific 

shortcuts and abbreviations. 

Language Identification 

Language identification is accomplished through the utilization of two distinct 

approaches: 

1. Identification of Specific Characters: This approach involves the 

recognition of language-specific characters, such as "і," "ї," "є," and "ґ" for 

Ukrainian, as well as "ы," "ъ," "э," and "ё" for Russian. 

2. Word Counting in Dictionaries: A complementary method relies on 

counting the occurrences of words found in both Ukrainian and Russian dictionaries, 

as detailed in the "Lemmatization" chapter. 

Following the language identification process, all data undergo translation into 

Ukrainian. This translation is facilitated by two custom correspondence dictionaries, 

which are elaborated upon in the chapters titled "Translation of Tokens from Russian 

to Ukrainian" and "Synonyms". 

Text Lines Normalization 

Text line normalization encompassed a series of standardization procedures. 

These encompassed segregating numbers and punctuation symbols with spaces, 

uniformly converting all characters to lowercase, substituting backslashes ("\") with 

regular forward slashes ("/"), and replacing underscores ("_") with spaces. 

Additionally, our specific task demanded the normalization of various types of 

apostrophes into a singular format. This process also extended to the treatment of 

certain Cyrillic characters, such as transforming "ґ" to "г" and "ё" to "е". 

Furthermore, prior to the removal of stop words and special characters, common 

abbreviations featuring slashes or hyphens were substituted with their expanded 

counterparts, a feature particularly relevant to the context of garage repair texts (e.g., 

"к-т" denoting "комплект" (kit), "д/м" signifying "демонтаж / монтаж" (mounting / 

dismounting) and "о/р" representing "охолоджуюча рідина" (cooling fluid) among 

others). Subsequently, all special characters, with the exception of the apostrophe, 

which holds linguistic significance in the Ukrainian language, and designated stop 

words were eliminated from the text. 

Stopwords 

Our compilation of stopwords comprised a comprehensive set, encompassing 

both Ukrainian and Russian languages. Notably, certain stopwords present in the 

general set were excluded, given their relevance to our classification task. For 

instance, "ТО," an abbreviation for "технічне обслуговування" (technical 

maintenance), and "ніж," which could be interpreted as a noun (knife) and is 

pertinent to our directory, were retained. Conversely, additional stopwords were 

introduced that did not significantly contribute to the subsequent classification 

process. These included brand names of cars or parts, terms such as "auto," 

"automobile," "automotive," "service," and other highly generic words devoid of 

distinctive characteristics relevant to individual entities.  

Translation Of Tokens From Russian To Ukrainian 

Since we possess detailed classifiers containing Ukrainian and Russian versions 

of names, and since most names share an identical number and order of words in 
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both versions, we were able to automatically construct a correspondence dictionary 

between Russian and Ukrainian words. 

For each name in the dictionary, we iteratively compare Ukrainian and Russian 

name versions. 

1. Split both versions into token lists. 

2. If the lengths of the token lists are equal, iterate through the tokens and 

increment a "counter" by 1 for each corresponding Ukrainian-Russian token pair. If 

the number of tokens in the names is not the same, add the missing tokens to the 

"omitted" category, which is then manually checked. We also skip tokens that are 

identical in both versions. 

3. We obtain correspondence dictionaries where each Russian token 

corresponds to Ukrainian tokens that were found in the same position in the 

sentence, along with the number of such occurrences. We select the translation 

option that occurred most frequently as the most likely correct one. Consequently, 

we have a dictionary where each Russian token can be matched to its Ukrainian 

equivalent. 

4. Additional steps included manual verification of token translations that 

differed significantly according to the Jaro-Winkler metric [26], as well as the 

addition of translations for omitted names with differing token counts. 

Tokenization of "Concatenated" Tokens (with Missing Spaces) 

The algorithm takes as input a unique set of tokens derived from the data we 

intend to classify subsequently. It searches for concatenated tokens within this set. 

For each input token: 

1. Check whether it starts or ends with a token known to us. 

2. If so, separate it and add it to the "parts" list. 

3. Repeat steps 1-2 until we traverse the sorted list of known tokens. 

4. Anything that remains unprocessed is added to the list of parts. Remove all 

parts that are absent from the set of known tokens. 

5. If, after this process, more than one part is obtained, identify it as a 

concatenated token. Add both the original concatenated token and its decomposition 

to a "dictionary" of token decompositions, which is used later to replace such tokens 

in input strings. 

This token concatenation search is relatively basic in nature, as it can only break 

tokens that start or end with reference tokens without typographical errors. In the 

worst-case scenario, a token may not only be concatenated but also contain errors 

within its constituent parts, in which case the algorithm will fail to identify it. 

However, concatenated tokens themselves are relatively infrequent, and 

concatenated tokens with errors are even rarer. Developing a more complex 

algorithm to address such cases would entail significant computational costs. 

Therefore, we have chosen to implement this straightforward approach. 

Spelling Correction 

Spelling errors are identified within tokens that do not exist in reference 

dictionaries; otherwise, they are considered correct and skipped. Essentially, this 

process entails the search for the most similar words among those present in the 

token sets from reference dictionaries, including all their inflected forms found in 
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Ukrainian and Russian noun and adjective dictionaries. For input, we receive a 

unique set of tokens from the data that we plan to classify subsequently. 

Typographical errors are sought within this set. The error detection occurs in two 

stages. 

1. In the first stage, search for the nearest match for tokens that differ by no 

more than 2 characters from existing tokens. The match is found using the Jaro-

Winkler [27] similarity function and is accepted if the similarity value exceeds a 

predefined threshold. The Jaro-Winkler metric assigns greater weight to token 

"prefixes" (letters at the beginning of the token). 

2. In the second stage, the match is also sought using the same function but 

without a limit on the maximum of 2 character differences, hence, the threshold 

value is higher compared to the first stage. Therefore, in the first stage, we tolerate 

lower "similarity," as long as the token differs from existing ones by no more than 2 

characters, while in the second stage, greater dissimilarity is allowed, but the 

similarity value requirement is higher. 

In essence, during the first stage, the distance function allows for smaller 

"similarity," but tokens must differ from existing ones by no more than 2 characters. 

In the second stage, greater differences (more than 2 characters) are allowed, but the 

similarity requirement is stricter. 

Motivation For Choosing The Jaro-Winkler Metric 

The Jaro-Winkler Measure is a measure of similarity / distance between two text 

sequences. It uses the prefix scaling factor p, which provides a higher score to 

sequences that match at the beginning up to a specified prefix length l. The higher 

the Jaro-Winkler similarity measure, the more similar the two text sequences are. 

The score is normalized such that 0 indicates no similarity, and 1 indicates a perfect 

match. Similarity and distance are inversely related, and their correspondence is 

established by the formula distance = 1 - similarity. The Jaro-Winkler Measure is a 

modification of the Jaro measure. 

The Jaro similarity  of two text strings  and  is determined by the 

formula (1): 

 , (1) 

where:  – length of string  

m – number of matching characters 

t – number of transpositions. 

Two characters from    and  are considered a match if they are identical and 

located no more than p positions apart. If no matches are found, the algorithm stops 

and returns a similarity score of 0. If matches are found, the number of transpositions 

is then calculated. A transposition occurs when a corresponding (matching) character 

is not in its correct position, and the number of corresponding characters not in their 

correct position, divided by 2, yields the number of transpositions. 

The Jaro-Winkler similarity  of two text strings  and  is determined 

by the formula (2): 
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, (2) 

where:  – Jaro similarity of text strings  and   

l – length of the common prefix at the beginning of the string, maximum of 4 

characters 

p – a constant scaling coefficient that adjusts the estimate in the direction of 

increasing values in the presence of a common prefix: the standard value is 0.1. 

By substituting formula (1) into the Jaro-Winkler similarity expression, we obtain 

formula (3): 

 

(3) 

 

There are many distance metrics, among others Levenshtein Distance, Indel 

(Insertion-Deletion) Distance, Hamming Distance. 

Levenshtein Distance. The minimum number of single-character operations 

(insertions, deletions, and substitutions) required to transform one text string into 

another [28]: 

– Insertion:  автообіль → автомобіль 

– Deletion:  автомиобіль → автомобіль 

– Substituion:  автомоьіль → автомобіль 

According to Levenshtein pair of редуктор → редукторний has a distance of 3 

(3 insertions) and pair of ремкомплект →  ремкмоплект has a distance of 2 (2 

substitutions).  

Indel (Insertion-Deletion) Distance. The minimum number of insertions and 

deletions of characters required to transform one text string into another. 

Substitutions are not allowed, but each substitution can be accomplished by a pair of 

a deletion and an insertion, making this distance equivalent to the Levenshtein 

distance with a substitution weight of 2. 

Hamming Distance. The number of positions where two strings of equal length 

differ. It represents the minimum number of substitutions required to transform one 

string into another and can only be applied to sequences of equal length. 

Jaro-Winkler Metric is more complex than simple distance algorithms based on 

counting basic character operations. It provides a real value between 0 and 1, making 

the distance values more informative and suitable for comparison and sorting. 

Additionally, it gives more significance to prefixes, which is a useful property when 

dealing with "typo searching". Spelling correction is used not for spelling errors only 

but as well for words with variations in their endings, sharing a common prefix. 

Giving more weight to prefixes increases the chances of correctly identifying such 

"typos". Table 3 shows comparative example using the Levenshtein distance and 

Jaro-Winkler metric, with short and long words. Differences in short sequences are 

more significant than in long sequences.  
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Therefore, the metric's value must depend not only on the number of basic 

operations but also on the length of the sequences, allowing for more accurate word 

comparisons. 

Table 3 

Levenshtein distance and Jaro-Winkler Metric Comparison 

COMPARABLE STRINGS LEVENSHTEIN 

DISTANCE 

JARO-WINKLER 

METRIC 
КОЖУХ – КОЖУХА 1 0.966 

САЙЛЕНТБЛОК – САЙЛЕНТБЛОКА 1 0.983 

КОЖУХ – КОЛЕСА 4 0.577 

САЙЛЕНТБЛОК – САЙЛЕТНБЛОКІВ 4 0.951 

The Levenshtein metric erroneously yields equivalent distances for the latter two 

comparisons, which stands in contradiction to the substantial dissimilarity in the 

lengths of the respective sequences. In stark contrast, the Jaro-Winkler metric aptly 

delineates the similarities among pairs 1, 2, and 4 while appropriately highlighting 

the substantial dissimilarity within pair 3. 

Lemmatization 

Given that we are working with Ukrainian and Russian languages, which have a 

vast number of word forms, and the unavailability of as sophisticated NLP libraries 

as for English, we implemented lemmatization independently using electronic 

dictionaries.  

The construction of dictionaries mapping word forms to their lemmas is 

performed by extracting data from electronic Ukrainian and Russian language 

dictionaries. During extraction, dictionaries of correspondences for specific word 

forms to certain lemma are created (for some word forms, multiple lemmas may 

exist). An inverse dictionary, mapping lemma to word forms, is also generated. 

Subsequently, for word forms with multiple corresponding lemmas, we choose a 

single lemma (usually the most frequently occurring one, or in the case of equal 

occurrences, the first in the list).  Word forms corresponding to all other lemmas are 

attributed to the chosen lemma. Although this approach may result in minor 

drawbacks when one word form belongs to different parts of speech (e.g., adjectives 

and nouns in our case), such situations are rare. This approach is preferred to a 

scenario in which some inflections are lemmatized into one lemma while others into 

a different one. After completing these steps, we establish a definitive dictionary of 

correspondences between noun cases and lemmas for use in preprocessing. 

Additionally, during lemmatization, another correspondence dictionary mapping 

Russian lemmas to their Ukrainian counterparts is generated. To achieve this, we 

traverse the Russian-Ukrainian translation dictionary, searching for lemmas from the 

form-lemma dictionary described earlier for each pair of words. If lemmas are found 

for both words, and they are not identical, these lemmas are added to the lemma 

translation dictionary. Table 5 presents a systematic exposition of the sequential 

evolution of the initial text as it undergoes the procedures of text cleansing, 

preprocessing, and lemmatization.  

Separation Of Common Prefixes In Compound Words 
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Prefixes such as "електро" (electro), "пневмо" (pneumo), "авто" (auto), and 

others, are separated from tokens to standardize different spellings (both combined 

and separate) of such words. This also enables the linkage of names containing 

suffixes of compound words written with and without such prefixes (e.g., 

"пневмонасос" (pneumopump) – which transforms to "пневмо насос" (pneumo 

pump) - and "насос" (pump) will be treated as similar tokens; otherwise, these two 

tokens would have been considered entirely different). 

Deciphering Abbreviations 

We created a file containing common word abbreviations / acronyms and their 

corresponding expansions. Abbreviations (including those with slashes and hyphens) 

were manually identified from a large dataset of job names. During preprocessing, 

tokens representing abbreviations are replaced with their expanded versions. 

Synonyms 

This is the specific aspect of the Ukrainian language – existence of “Surzhyk” 

(blending of Ukrainian and Russian words) and the abundance of synonyms. 

We compiled a file containing synonyms for words and word combinations. 

Synonyms were identified during data processing (including during the creation of 

translation dictionaries from a list of all encountered translations). Some synonyms 

were also added based on logical considerations. 

All synonym words are unified into a single form. 

Vocabulary Size Reduction 

As previously noted, the final token vocabulary size plays a pivotal role in 

determining the computational time and machine learning burden incurred in 

subsequent stages of the pipeline. Consequently, every step we undertake should 

exhibit a significant reduction in the volume of tokens. 

Table 4 illustrates the outcomes of the algorithm when applied to a dataset 

comprising 10,288 initial sentences. When commencing with an initial count of 

6,062 unique tokens, a sequence of preprocessing steps – including normalization, 

spell-checking, token disassembly, removal of stop-words, translation, 

lemmatization, and more – results in a reduction to 2,484 tokens, signifying a 

remarkable 59% decrease in the original vocabulary size. It is worth noting that since 

computational time exhibits exponential growth in relation to vocabulary size, this 

59% reduction in vocabulary size translates to an impressive 84% reduction in both 

computational time and computational load. 

Table 4 

Step-by-step Vocabulary Size Reduction 

STEP STAGE NR. OF 

TOKENS 
1 Initial number of unique tokens 6 062 

2 After normalization 4 847 

3 Before lemmatization (after normalization, spell-checking, 
disassembling con-catenated tokens, stop-words, 

translation) 

3 991 

4 After lemmatization 2 484 
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4. Model selection 

The three simplest yet most popular algorithms for text data classification are 

Naive Bayes, k-Nearest Neighbors (kNN), and Logistic Regression [21]. Each of 

these algorithms possesses a unique set of strengths and weaknesses, especially when 

applied to Natural Language Processing (NLP) tasks. 

Naive Bayes 

Naive Bayes is an algorithm based on Bayes' theorem with the assumption of 

independence among input features. The probability that a text with given features 

belongs to specific class is calculated using the Bayes' formula [29]. 

The algorithm advantages include simplicity, efficiency, and the ability to 

compute multiple classes simultaneously. It is straightforward to understand and 

implement, performs reliably even with small training datasets (if the independence 

assumption holds), and is suitable for large datasets. However, the independence 

assumption often fails in real-world NLP tasks where words are contextually 

dependent. 

k-Nearest Neighbors (kNN) 

The kNN is one of the simplest yet effective classification algorithms. Its essence 

lies in calculating the distance from a given object to all others, with the object being 

classified as belonging to the most frequent class among its k neighbors. This 

method advantages include that it requires no training, making kNN a lazy learning 

algorithm. It can handle nonlinear data and easily adapts to various types of NLP 

tasks. However, kNN fully exhibits the curse of dimensionality in high-dimensional 

spaces, where distances between points become less meaningful. Moreover, its speed 

drastically decreases as the dataset size grows, and the algorithm performs poorly 

with noisy data. 

Logistic Regression 

This classification algorithm is based on the logistic function [30]. The logistic 

or sigmoid function, which is S-shaped, transforms the linear combination of input 

parameters into a probability in the interval from 0 to 1. 

 Unlike classical regression, logistic regression is used not for prediction tasks 

but for classification and probability estimation. In addition to calculating 

probabilities that can be useful in estimating the classification results confidence, 

logistic regression advantages include easy scaling to large datasets and the 

possibility of regularization to avoid overfitting. On the other hand, logistic 

regression operates under the assumption of a linear relationship between input 

parameters, which mainly is far from true in NLP tasks. Moreover, it does not 

determine the importance of features as effectively as tree-based models. In the 

practical resolution of our task, the k-Nearest Neighbors (kNN) algorithm was 

selected for the works classification. Regrettably, none of the implemented 

algorithms demonstrated adequate accuracy in classifying parts. The highest 

recorded accuracy was 81.55%, achieved by the kNN algorithm. This outcome 

necessitated the development, training, and evaluation of a bespoke algorithm 

tailored to the tree-like architecture of the input data. 

 



 

 
ADVANCES  

IN INFORMATION-CONTROL SYSTEMS AND TECHNOLOGIES 

 

301 

 

5. Classification 

 
Works Classification 

 Considering the fact that the works directory is relatively small, with each 

record consisting of 1-2 words (during preprocessing 180 initial rows / 358 initial 

tokens are transformed into 166 tokens), a slightly modified k-Nearest Neighbors 

(kNN) algorithm demonstrates good results. This algorithm does not have a training 

phase, so it belongs to lazy algorithms. Instead of training, works directory 

initialization is provided, which becomes a set of classes. Initialization includes two 

steps: 

1. Synonyms are added to each class name based on input data processing 

(during review, markup, classification error analysis). 

2. Key words are found for each name (initial and synonyms). Key words are 

those with minimal document frequency (DF) values in the corpus of all class names. 

In other words, these are words that occur least frequently among all others (usually 

only once). 

The modified algorithm consists of the following steps: 

– During classification, a list of preprocessed text strings of work names 

from the online GMS is input. 

– All text strings are transformed by a vectorizer into binary vectors set (1 - 

token present in the string, 0 - token absent). 

– The classifier finds the distances between the input names vectors and the 

nearest vectors of work class names using cosine similarity metric. 

– For each of the nearest work classes, an additional check is made to see if 

there is a match by keyword; if not, the option is discarded. 

– Among the classes with the minimum distance, the one whose token is 

closest to the beginning of the input name is selected. 

Cosine similarity was chosen because it is a widely used similarity measure for 

real-valued vectors, which is especially important for parts classification. 

Additionally, cosine has the nice property that it is 1.0 for identical and 0.0 for 

orthogonal vectors [31]. The cosine similarity [32] between vectors A and B is 

calculated by the formula (4): 

 (4) 

At the algorithm end, tokens corresponding to the selected master-work class 

name are removed from the input name to leave only tokens corresponding to the 

spare part name. The method returns a list of pairs ID – work name corresponding to 

the input names list, as well as a list of cleaned input names for further parts 

classification. 

Parts Classes And Training Sets Vectorization 

The parts catalog is significantly more complex than the master-works directory 

and encompasses approximately 1,600 entries across all levels. Unlike in works, 
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where we did not engage with a tree-like directory structure, the tree plays a crucial 

role in the parts classification.  

In preparation for training and classification, a class vectors tree is constructed. 

The foundation for this is the parts directory, wherein each tree vertex undergoes the 

following stages. 

Child nodes initialization, "full names" construction 

For each node, a set of names is constructed, which includes both the parent's 

and all the child names – the so-called "full name" (5):  

 

(5) 

Classes tree vectorization 

The classes tree nodes vectorization occurs through the TF-IDF method use, 

widely employed in text classification. TF (Term Frequency) represents the ratio of 

the number of occurrences of a chosen word to the total word count of the document, 

indicating the word's importance within the document. IDF (Inverse Document 

Frequency) inversely quantifies the frequency with which a word appears across a 

collection of documents. Utilizing IDF diminishes the weight of commonly used 

words. The TF-IDF metric [17] is calculated using the formula (6-8): 

 
(6) 

 
(7) 

where:  

                        – number of words in document d 

 
(8) 

where: N – total number of documents in the corpus, N = | D | 

    – number of documents, where term t appears, i.e.  TF (t, d) ≠ 0 

For each node in the class tree, a unique matrix is constructed. The matrix 

rows represent the corresponding TF-IDF values of each token from the child nodes 

of the given node. Herein, the text for TF calculation is the full name of the parent 

node, while the corpus for IDF calculation consists of the child nodes full names set. 

Tokens are considered to be unigrams, direct and inverted bigrams – as the simplest 

options for the augmented dataset. 

Selecting keywords and super keywords 

Subsequent steps involve selecting keywords and super keywords. During the 

training, these receive additional weight, significantly aiding in classification 

accuracy.  
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Keywords are identified based on the document frequency values of tokens in 

each of the child names. Keywords are those with a DF value of 1, meaning they 

occur in only one of the neighboring child classes.  

If a node's name consists of only two words, it automatically becomes a super 

keyword, receiving even greater weight. 

Training data vectorization 

At this stage, for each input training string, a matrix is created using the same 

algorithm as for the class vectorizer.  

The matrix rows are the corresponding TF-IDF values of the input string on the 

specific class node text corpus.  

The augmented dataset set is created by tokenizing not only unigrams and 

bigrams but also bigram permutations. Such input string tokens bigram enrich the 

feature sets, as different word orders can have the same meaning but be found in 

different classes. For example, from "brake pads and discs," bigram permutations 

like "brake pads," "brake discs," "pads brake," "discs brake," "pads discs," "discs 

pads" are formed. 

Now, everything is prepared for initiating the training process. 

Parts classification algorithm  

Prior to commencing the model training, let us examine the classification 

algorithm itself. If the model construction occurred in a bottom-up fashion, with each 

parent node encompassing information about all its children, the classification 

process unfolds in a top-down manner. Initially, an appropriate class at the tree first 

level is selected, followed by selection among child nodes at the second level, and so 

forth. The classification foundation rests on finding the node with the nearest vector. 

The vectors compared are the weighted rows of the class node matrix and the 

corresponding input string matrix row. It is reminded that the rows of the class node 

matrix correspond to the weighted TF-IDF values of tokens from child nodes. Hence, 

the nearest row in the matrix corresponds to a specific child node, which will 

determine the next step in the classification. Similar to the works classification, the 

distance between vectors is determined using cosine similarity. This metric's 

capability to work with real numbers becomes particularly useful here. Moreover, 

the value calculated through cosine similarity can be interpreted as the probability of 

classifying the input string into that specific class, enabling a confidence score 

computation. The confidence score is calculated as the ratio between the most likely 

class probability, chosen as the classification result, and that of the second most 

probable class. If the second class probability is 0, meaning no matches were found 

in any of the child classes and they are all zeros, or a match was found only in one 

class and all others are zeros, then a confidence is assigned an arbitrarily high value, 

for example, 1000. 

 

6. Model training 

Our prior chapter delineated the comprehensive process of hierarchical 

classification for automotive works and parts. However, constraints on space 

precluded detailed discussions of the training and evaluation processes, despite their 
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critical importance in the classification algorithm, which significantly enhanced the 

classification accuracy. 

Additionally, the confidence scores computation and optimization were not 

thoroughly examined. Given that 99% of our data was unlabeled, the confidence 

issue was especially pivotal in our study. 

This paper addresses these omissions by providing a detailed training and 

scoring processes exposition in the subsequent two chapters. 

Following the tree construction and the initialization of the vectorizer and 

classifier for each node, a parameter tuning method for the tree is initiated, which in 

turn launches, in several threads, the parameter tuning method within each node, 

acting as potential sub-classifiers of our tree. 

Prior to the parameter tuning iterations commencement, several preparatory steps 

are undertaken: 

1. A training dataset is initialized, upon which each parameter values set will 

be evaluated at each iteration. This set includes input data – vectorized names from 

the sets comprising the full name of child nodes, as well as additional manually 

annotated names (which are given greater weight), and the output data – the 

corresponding child nodes and annotations classes. 

2. An initial parameter values set at the node is evaluated. The evaluation 

function launches a one-step training data classification on the node classifier and 

checks the accuracy percentage of the resulting classes against the true class values. 

The training occurs through the weights (parameters) optimization for the node's 

matrix tokens in the class tree, as well as weights (parameters) for the input 

(training) vector.  

Initially, all class node matrix elements are assigned preliminary weights 

according to the following rules: 

– Super keyword – 5.0, keyword – 2.5 

– Direct child tokens – 2.0 (direct descendants tokens are given more 

attention than those of further descendants) 

– Bigrams – 1.5,  

– The first token in the name – 1.5 

– Adjectives – 0.5 

– Others – 1.0 

The exact values for parameters during initialization are not critically important. 

What matters is that they are greater than 1 or less than 1, and subsequently, the 

iterative training algorithm will determine the optimal weights. 

As with the matrices for class tree nodes, initial weights are determined for the 

input strings matrices. However, different rules apply here: 

– Bigrams – 1.5  

– The first token in the name – 1.5 

– Tokens created from words in parentheses – 0.5 

– Bigrams created from words on the edge of parentheses from both sides – 

0.0 
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Parameter tuning iterative cycle then commences. If it does not conclude within 

20 iterations, it halts at the last result. At each iteration, a parameter tuning step is 

performed: 

1. For each parameter, its values are iterated from a possible values 

predefined set (for example, for most weights >1, parameters from 1 to 10 are 

iterated in steps of +0.5, and for weights < 1, parameters from 1 to 0 in steps of -

0.05). 

2. As we are changing parameter values, for each of the training rows, a re-

initialization of the weighting parameters is pre-launched, as well as a re-

vectorization of the input names (if the value of a parameter related to input 

vectorization was changed) or a re-initialization of the classifier (if parameters based 

on which the classifier vectors are built were changed). 

3. These values are then evaluated on the training data – through 

classification and calculating Accuracy – the matches percentage between found and 

real classes. 

4. The parameter and its value that achieve the maximum classification 

accuracy rating are selected. 

5. A check for value update is performed. 

– If a change in parameter value led to an increase in accuracy compared to 

the previous iteration, or accuracy remained the same but the parameter value 

became closer to 1 – update the node parameter values and proceed to the next 

iteration; 

– If the parameter values iteration did not find a better value for any of the 

parameters – stop the cycle. 

After completing the parameter tuning method on all nodes, the tree can be 

considered "trained" and used for further classification. 

 

7. Unified confidence score for labeled and unlabeled data 

Following classification, a pertinent question remains: how confident are we in 

its correctness? This is particularly relevant for unlabeled data, as well as for 

automated decision-making systems. 

As noted, the classification result provides us with a classes set along with their 

probabilities, and confidence scores for each node of the tree. The challenge arises in 

how to accurately interpret multiple confidence scores. Simple dimensionality 

reduction methods, such as arithmetic mean or root mean square, which might 

intuitively be considered, lose crucial information from the tree structure. 

In other words, is it better to have confidence closer to the tree's roots or its 

leaves? Which set provides greater overall confidence, (1000, 0.1, 0.1) or (0.1, 0.1, 

1000)? If we were classifying city names, moving through the tree from country to 

state/region to city, then the set (1000, 0.1, 0.1) would imply high confidence in the 

country but not in the specific city, whereas (0.1, 0.1, 1000) indicates that we 

correctly identified Odesa, but it's unclear where exactly – in Ukraine or Texas. 
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To address this issue, labeled data from the training set are used, on which 

traditional machine learning is conducted based on three confidence parameters 

using standard algorithms from the powerful Python library Scikit[33]. 

In our case, the machine learning process consisted of the following stages. 

Parameters Engineering 

In many machine learning algorithms, transforming input values is a necessary 

condition without which the algorithm won't converge to an optimal result due to 

excessively extreme input values or too significant difference between feature 

magnitudes. Moreover, most machine learning models train better and faster on as 

standardized data as possible. 

– Clipping is performed (values less than a set minimum become the 

minimum, and those greater than a set maximum become the maximum) within a 

range from min=0.000001 to max=1000, to eliminate zero values and the most 

significant outliers over 1000. 

– To capture not only linear dependencies between input parameters and the 

predicted value but also potential nonlinear input data behaviors, as well as to 

account for interactions between different input parameters, polynomial parameters 

up to degree 3 are generated. For example, from input parameters x1, x2, x3, 

polynomial parameters x1, x1
2, x1

3, x1x2, x1x3, x1
2x2, x1

2x3, x1x2x3, x2, x2
2, x2

2x1, etc., 

are formed. 

– Logarithmic transformation of polynomial parameters is conducted to 

reduce the distribution positive skewness, where most values are relatively close to 

0, but some highest values reach up to 109, thereby having a long "tail" to the right, 

and to bring them to values closer to each other and closer to 0. 

– Values are standardized using a scaler. Typically, values are scaled relative 

to the mean and variance. In our case, RobustScaler from Scikit was chosen as the 

scaler, which is more resistant to outliers and uses the median and interquartile range 

instead of the usual mean and variance. 

Training 

GradientBoostingClassifier [34] was chosen as the classifier, which conducts 

classification based on boosted trees [35]. 

In practical applications, effectively deploying the GradientBoostingClassifier 

necessitates the careful adjustment of its hyperparameters, which play a critical role 

in shaping the model's accuracy and efficiency. This adjustment process typically 

involves empirical optimization, where methods such as grid search or random 

search are frequently employed to identify the most suitable hyperparameter settings. 

The hyperparameters selected were: 

– n_estimators – the simple models number (decision trees) that make up the 

ensemble 

– learning_rate – the value that indicates how significant the contribution of 

each model in the ensemble is to the overall result 

– max_depth – the maximum depth of the decision trees in the model 

– max_features – the maximum number of features considered during the 

tree nodes splits 
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– min_samples_split – the minimum number of data points in a node (node 

samples) required to split a node 

– subsample – the fraction of data (among all training data) taken for training 

each of the simple trees 

Hyperparameter tuning was performed using GridSearch, i.e., trying all possible 

parameters combinations among given values sets with cross-validation. 

The hyperparameters quality was assessed using BrierScoreLoss, which shows 

the average squared difference between the predicted class probability (value 

pred_proba of the model GradientBoostingClassifier, from 0 to 1, corresponding to 

how confident the model is that the outcome to which the obtained uncertainty 

scores correspond is correct) and the true accuracy (0 or 1, depending on the 

correctness of the classification on training data). 

Classification 

The GradientBoostingClassifier from the Scikit  library is a robust classification 

algorithm for machine learning tasks, based on the boosting technique. Boosting is 

an ensemble method that constructs a series of models sequentially, with each 

subsequent model aiming to correct its predecessors’ errors. 

Initially, a decision tree model is created, typically a simple one. This model is 

imperfect, with accuracy slightly better than a random choice. The first step is not 

crucial; the iterative process is expected to significantly enhance it. 

Next, a loss function is determined to evaluate the model's effectiveness. In this 

case, the function measures the discrepancy between predicted probabilities and 

actual class labels, specifically the deviation loss between them. 

Gradient boosting methodically enhances the model. At each new step, new 

models are created to rectify the existing ensemble deficiencies: 

– The loss function gradient based on the current model predictions is 

calculated. This gradient indicates the direction in which predictions should be 

altered to reduce loss. 

– A new decision tree is trained to forecast these gradients for each item in 

the training set. This tree aims to predict the previous model errors. 

– This new decision tree is added to the ensemble with a coefficient known 

as the learning rate. This coefficient controls the speed at which the model learns. 

The learning rate is a critically important hyperparameter in gradient boosting. It 

assesses and scales each tree contribution. If it is too high, the model may overfit; if 

too low, the model may require too many trees to converge to a satisfactory solution. 

– The algorithm continues to add trees until the specified number of trees 

(n_estimators) is reached or until no further improvement can be made on the 

training set. 

Boosted trees are prone to overfitting. Therefore, several regularization 

techniques are integrated into the GradientBoostingClassifier: 

– Limiting the depth of trees with max_depth 

– A fraction of the training data (subsample) is randomly selected to train 

each tree. This randomness enhances the model robustness. 
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– Learning rate reduction – the learning_rate parameter scales the 

contribution of each tree, lowering the overfitting risk by diminishing the updates. 

The data obtained after training allow for calculating a single confidence score 

for unlabeled data. The obtained confidence scores can be sorted from top to bottom. 

In doing so, homogenous names will have the same score and be located nearby, 

which is convenient for verifying the classification correctness. If the result is 

correct/incorrect for one name, it will be the same for all similar names. This allows 

for creating new classes or optimizing the algorithm immediately for a large number 

of input data. Table 5 shows the top and bottom five results of the parts 

classification, confidence scores by tree levels, and the final unified confidence. 

Table 5 

Top and bottom five parts classification results 

TESTING DATA 

SAMPLE 

LABEL

ED 

PREDIC

T. 

RES. CONFIDENCE BY 

LEVELS 

    L-1 L-2 L-3 Unif. 

заміна зовн. ручки і 

приводу замка чи 
двері 

2011300 2011300 True 36 119 97 99.9% 

зняття і установка 

консолі склоочисника 

1200500 1200500 True 66 146 73 99.8% 

замена сцепного 

шкворня 

1050900 1050900 True 31 670 100 99.8% 

установка 
обігрівального 

елементу сидіння 

2030200 2030200 True 21 1,16
9 

100 99.8% 

зняття та 
встановлення 

маховика інерційн. 

1080300 1080300 True 100 198 100 99.8% 

… … … … … … … … 
заміна 

газонаповнених 

амортизат. капота 

2010300 2011100 False 2 18 3 7.5% 

ремонт клапана 

привода передней 

двери 

2011300 1140400 False 6 5 15 5.5% 

ремонт пжд 1160900 1120000 False 156 1 1 5.3% 

замена клапана 

моторного тормоза 

1031600 1140400 False 376 4 17 4.4% 

проверка клапана 

моторного тормоза 

1031600 1140400 False 376 4 17 4.4% 

 

8. Results achieved and conclusions 

Based on proposed approach, a function library in Python was developed. The 

brief classification times – up to 125 ms for a single row and up to 56 seconds for 

eleven thousand rows – permit the use of the algorithm in an online mode for wide 

variety of problems.  Accelerations by more than an order of magnitude are achieved 
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for data comprising thousands of rows, thanks to powerful Python algorithms 

optimized for working with large matrices. The library we developed is also 

optimized for rapid computation of large data arrays and utilizes all built-in Python 

optimization techniques. The classification accuracy varied across different datasets 

from 85% to 98% for works and from 87% to 96% for parts names.  As shown in 

Table 6, the overall classification accuracy of the proposed algorithm nearly doubled 

after training, reaching 92.38%. The classification of works related to mechanical 

parts was most effective, while the classification of specialized tasks, such as 

transmission repair or truck repair works, was less accurate. The partial attribution of 

this variability to the incomplete directories for certain tasks points towards an 

potential enhancement area through the expansion and refinement of class 

directories. One of the significant ancillary benefits observed from our algorithm 

implementation is the missing terms identification that necessitate inclusion in the 

directories, thereby improving comprehensiveness and the classification system 

accuracy. This outcome also contributes valuable insights for domain-specific 

knowledge bases. 

Table 5 

Top and bottom five parts classification results 

TESTING DATA 

SAMPLE 

LABEL

ED 

PREDIC

T. 

RES. CONFIDENCE BY 

LEVELS 

    L-1 L-2 L-3 Unif. 

заміна зовн. ручки і 
приводу замка чи 

двері 

2011300 2011300 True 36 119 97 99.9% 

зняття і установка 
консолі склоочисника 

1200500 1200500 True 66 146 73 99.8% 

замена сцепного 

шкворня 

1050900 1050900 True 31 670 100 99.8% 

установка 

обігрівального 

елементу сидіння 

2030200 2030200 True 21 1,16

9 

100 99.8% 

зняття та 

встановлення 

маховика інерційн. 

1080300 1080300 True 100 198 100 99.8% 

… … … … … … … … 

заміна 

газонаповнених 

амортизат. капота 

2010300 2011100 False 2 18 3 7.5% 

ремонт клапана 

привода передней 
двери 

2011300 1140400 False 6 5 15 5.5% 

ремонт пжд 1160900 1120000 False 156 1 1 5.3% 
замена клапана 

моторного тормоза 

1031600 1140400 False 376 4 17 4.4% 

проверка клапана 
моторного тормоза 

1031600 1140400 False 376 4 17 4.4% 
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The research presented in this paper has successfully demonstrated the 

application of tree-based classification methodologies to the domain of Ukrainian 

technical text analysis, specifically focusing on the automotive industry.  

Through the development of a Python function library, we have showcased our 

proposed approach capability to efficiently classify technical texts related to 

automotive repairs and parts, achieving classification times that support real-time 

application scenarios. This efficiency opens the algorithm up for a wide array of 

practical uses, from enhancing the call centers operational quality to the creation of 

automated chatbots and digital assistants for service advisors in automotive service 

stations. 

In conclusion, the research underscores the profound potential of tree-based 

classification in navigating the complexities of technical text analysis within the 

automotive sector. By bridging the gap between structured data classification and the 

nuanced realm of natural language processing, we pave the way for advanced 

applications that could significantly impact various stakeholders, including insurance 

companies, automobile manufacturers, and vehicle owners as shown on Figure 3. 

 

 
 

Figure 3. Practical implementation of automotive works and parts accurate 

classification 

 

The ability to accurately predict maintenance costs and reliability of vehicle 

components from aggregated, labeled big data represents a substantial stride towards 
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demystifying the vehicle ownership total cost, thereby empowering consumers and 

industry players alike with valuable, actionable insights.  

From the perspective of automotive manufacturers, this approach could 

substantially impact vehicle design, component reliability and safety, production 

processes, and warranty policies. Insurance companies may benefit from precise 

repair cost calculations and accurate assessments of residual vehicle value, leading to 

reduced expenses.  

Automotive repair shops can enhance their services by implementing automated 

chatbots and digital assistants for service managers. Additionally, car owners will be 

able to determine not only the purchase price of a vehicle but also the total cost of 

ownership for specific model. 

 

Table 6 

Parts names classification results 

MODEL TYPE VECTORIZATION ACCURACY, 

TRAINING 

DATA 

ACCURACY, 

TEST DATA 

custom model without weighting 
and training 

count vectors — 0.5174 
TF-IDF vectors — 0.6684 

main model with weighted 

parameters after training 

Count vectors 0.9365 0.9184 

TF-IDF vectors 0.9552 0.9238 

 

 Looking forward, we aim to extend our research to encompass more complex 

tasks, such as the extraction, identification, and classification of automotive-related 

works from extensive text bodies, including transcriptions of telephone calls. 
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Анотація. Ця стаття присвячена ієрархічній класифікації технічних 

українських текстів, зокрема класифікації ремонтних робіт і запасних 

частин, які використовуються для технічного обслуговування та 

обслуговування автомобілів. Ми вирішуємо проблеми, пов’язані з 

багатомовним введенням даних Розроблен новий алгоритм класифікації, який 

використовує векторизацію TF-IDF за допомогою уніграм і біграм, вибір 

ключових слів і косинусну подібність для класифікації. Описано метод 

навчання та оцінки моделі ієрархічної класифікації з використанням 

налаштування параметрів для кожного вузла в структурі дерева. Процес 

навчання передбачає ініціалізацію вагових коефіцієнтів для токенів у вузлах 

дерева класів і вхідних рядках з подальшим ітеративним налаштуванням 

параметрів для оптимізації точності класифікації. Початкові ваги 

призначаються на основі попередньо визначених правил, і ітераційний процес 

коригує ці ваги для досягнення оптимальної продуктивності. У документі 

також розглядається проблема інтерпретації кількох оцінок довіри з процесу 

класифікації, пропонуючи підхід машинного навчання для обчислення 

уніфікованої оцінки довіри. Ця оцінка допомагає оцінити надійність 

класифікації, особливо для немаркованих даних, шляхом перетворення вхідних 

значень, генерації поліноміальних параметрів і використання логарифмічних 

перетворень і масштабування. Класифікатор налаштовується за допомогою 

методів оптимізації гіперпараметрів, а остаточна модель забезпечує 

надійний показник достовірності для завдань класифікації, уможливлюючи 

перевірку та оптимізацію результатів класифікації для великих наборів даних. 

Експериментальні результати демонструють покращення ефективності 

класифікації. Загальна точність класифікації зросла майже вдвічі після 

навчання, досягнувши 92,38%. Це дослідження надає практичні рішення для 

обробки великомасштабних немаркованих наборів даних в автомобільній 

промисловості. Розроблена методологія може покращити різні додатки, 

включаючи автоматизовані системи підтримки клієнтів, прогнозне 

обслуговування та процеси прийняття рішень для зацікавлених сторін, таких 

як страхові компанії та сервісні центри. Майбутня робота поширить цей 

підхід на більш складні завдання, такі як вилучення та класифікація інформації 

з обширних текстових джерел, таких як розшифровка телефонних розмов. 

Ключові слова: NLP, деревовидна класифікація, машинне навчання, аналіз 

даних, прикладні інтелектуальні системи. 


