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INTRODUCTION

One of the main causes of technogenic accidents involving CTS used
in transportation, aviation, energy, and other fields remains operational
equipment failures. An analysis of the results of ship operations shows that
despite measures taken to ensure maritime safety, the number of accidents at
sea remains high. A primary reason for many of these accidents is the failure
of CTS. As a result, such systems are classified as critical application
systems.

Complex technical systems of critical application are hierarchical
structures with non-trivial internal organization, multifunctional subsystems,
components, and elements, interconnected with complex links and subject to
various failure states. A characteristic feature of CTS operation is
uncertainty, as well as incomplete information about the technical condition
of the systems.

Due to increasing demands for safety and reliability of expensive
maritime CTS, their efficiency depends significantly on extending
operational life and resource use. Enhanced efficiency can be achieved by
applying models and methods for diagnosing, assessing, and forecasting the
TC of complex systems and integrating them into intelligent information
systems. These IIS enable the evaluation and prediction of TC based on
diagnostic results. Existing diagnostic models and methods are widely used
in practice, but they do not always ensure comprehensive operational
efficiency of CTS. Additionally, current TC diagnostic models often account
only for full functional failures but overlook partial ones. Partial failures are
more diverse in their types and locations of manifestation compared to full
failures. Advanced diagnostic algorithms are required to meet efficiency
demands in decision-making while considering the continuation of CTS
operation.

Promising modeling methods for TC diagnostics include Bayesian
belief networks, which account for uncertainties and incomplete data of
modeled CTS, and cognitive simulation modeling methods, which
additionally evaluate the structural and functional vulnerabilities of system
equipment. However, cognitive simulation modeling requires improvements
due to its limitations: lack of universality regarding structural threats and
vulnerabilities in CTS, and insufficient consideration of the significance and
criticality of equipment for overall system functionality.

Known methods for assessing and predicting TC in complex systems
implemented in 1IS include case-based reasoning; analogies; systematic and
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heuristic methods for optimization tasks (e.g., genetic algorithms, artificial
immune networks, annealing methods, swarm intelligence methods
including ant algorithms); and structural representation methods based on
OWL ontology precedents. Some of these methods face challenges such as
high algorithmic and computational complexity, the necessity of intricate
preliminary data processing stages, and limited visualization capabilities for
interpreting results. A general drawback is the high dimensionality of
possible tasks during decision-making.

Improving the efficiency of CTS operation by applying diagnostic,
assessment, and forecasting models and methods that consider both partial
and full equipment failures is a critical scientific problem.

Research Aim.

The aim of this research is to enhance the operational efficiency of
CTS by developing models and methods for diagnosing, assessing, and
forecasting the TC of critical application complex systems.

Research Objectives.

To achieve this aim, the following tasks were identified and resolved:

Analysis of models, methods, and information systems for
diagnosing, assessing, and forecasting the TC of critical application CTS.

Development of stochastic models and a method for diagnosing the
TC of critical application CTS.

Research and analysis of stochastic models and the diagnostic
method for CTS.

Development of a method for assessing and forecasting the TC of
CTsS.

Creation of an IIS for diagnosing, assessing, and forecasting the TC
of CTS.

Research Object.

The processes of diagnosing, assessing, and forecasting the TC of
critical application CTS.

Research Subject.

The models and methods for diagnosing, assessing, and forecasting
the TC of critical application CTS.

Research Methods.

To achieve the research goals, mathematical, simulation, and
computer modeling methods were used, along with expert evaluation and
theories of information, control, decision-making, graphs, artificial
intelligence, cognitive analysis, literature content analysis, data processing,
diagnostics, and forecasting. Methods of theoretical, applied, and object-
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oriented programming were employed in developing conceptual stochastic
diagnostic models for CTS. Optimization theory methods were applied in
data transmission modeling, as well as in diagnosing, assessing, and
forecasting CTS.

Scientific Novelty.

The scientific novelty of the obtained results includes:

For the first time:

A stochastic diagnostic model for CTS was proposed, which
simultaneously accounts for the presence of subsystems, components, and
elements, their interconnections, and the probabilities of partial or complete
functional failure. This led to the development of a diagnostic method based
on a Bayesian belief network for critical application CTS.

A data transmission and reception model for diagnosing, assessing,
and forecasting the TC of CTS was developed. It considers conflicting
requirements and competing criteria, enabling the identification of Pareto-
optimal solutions for effective data transmission and reception.

Further development was achieved in:

The diagnostic method for CTS based on a Bayesian belief network,
enabling the timely identification and visualization of structural and
functional wvulnerabilities, thus enhancing the operational efficiency of
critical application systems.

The case-based reasoning method, ensuring TC assessment and
prediction to improve the performance of CTS.

Improvements were made to:

The cognitive simulation model, incorporating simulation-impact
impulses, which allows for diagnosing equipment TC with consideration of
interdependencies and mutual influences.

Practical Significance.

The practical significance lies in the development of an IIS that
automates the processes of assessing and predicting the TC of critical
application CTS in various states of functionality.

An algorithm was created to detect failures in subsystems,
components, and elements, including their interconnections, based on risk
assessments of these failures.

This algorithm enables the implementation of a targeted 11S operation
strategy. A user interface for the knowledge base was developed, allowing
experts to review formalized data and make final risk assessments for
equipment failures in CTS.
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CHAPTER 1

ANALYSIS OF MODELS, METHODS, AND INFORMATION
SYSTEMS FOR DIAGNOSTICS, ASSESSMENT,
AND FORECASTING OF THE TECHNICAL CONDITION
OF COMPLEX SYSTEMS FOR CRITICAL APPLICATIONS

1.1 Analysis of Operational Challenges in Complex Technical
Systems for Critical Applications

1.1.1 Principles of Design and Characteristics of Complex
Technical Systems for Critical Applications

Modern CTS used in transportation, aviation, energy, and other
fields are hierarchical structures comprising multi-functional
subsystems, components, and elements with  nontrivial
interconnections. These systems operate in states of partial or
complete functional failure.

The structure of CTS reflects the overall picture of cause-and-
effect interactions among the system's subsystems, components, and
elements [1, 2].

The operation of CTS involves uncertainties that are challenging
to fully describe, understand, or predict. CTS exhibit properties such
as nonlinearity, adaptability, self-organization, and integrity [1, 2].
Adaptability refers to the system's ability to exist in multiple states.
Information components of CTS [1, 3, 4], equipped with artificial
intelligence elements, enable system adaptability.

The property of self-organization is demonstrated by the system’s
ability to modify its characteristics and return to its initial state when
displaced. The integrity of the system is expressed in its ability to
maintain systemic qualities.

CTS can be classified as probabilistic or deterministic (based on
the degree of functional predictability) and as well-organized or
poorly organized. Based on interaction with the environment, CTS
can be categorized as open or closed systems [1, 2].

Each component of a CTS is characterized by a set of attributes
whose values determine its condition. Changes in the properties of
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individual ~ subsystems, components, elements, and their
interconnections lead to changes in the properties of other
subsystems, components, and elements. The functioning of CTS is
based on systemic principles [1, 2]:

Functional alignment of elements within components, components
within subsystems, and subsystems within the CTS.

The system's properties are not reducible to the sum of the
properties of its constituent subsystems, components, and elements.

Typical examples of CTS include marine systems—complexes
comprising dozens of interdependent technical systems (mechanisms,
assemblies, devices, pipelines, etc.) designed to ensure the operation
of ships [3, 5]. An example of a CTS is a ship's power plant (SPP),
consisting of interrelated subsystems, components, and elements with
various functionalities. Figure 1.1 shows a graph representing the
structure of an SPP.

Figure 1.1 — Structure of the Marine Power Plant

The graph vertices include: input component 1; manual control of
the main engine 2; subsystems for compressed air 3 and propulsion-
rudder complex (PRC) control 4; boiler plant 5; power station 6; fire

10
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protection system 7; main engine 8; subsystems for remote-
automated control 9 and ballast-drainage 10; power transmission
from the main engine to the propeller 11; emergency PRC drive 12;
PRC 13; subsystems for measuring instruments 14 and sanitary water
treatment 15; output component 16.

Thus, complex technical systems represent an organized set of
numerous functionally interconnected and interacting subsystems,
components, and elements, linked by nontrivial connections. These
connections often involve uncertainties in input data, making them
difficult or impossible to predict, and they exist in various states of
failure.

1.1.2 Analysis of Technogenic Accidents Caused by Failures in
Complex Technical Systems of Critical Application

One of the main causes of technogenic accidents associated with
the operation of CTS used in transport, aviation, energy, and other
fields remains the failure of their subsystems, components, and
elements [6]. This categorizes such CTS as systems of critical
application.

Theoretically, the reliability of the TC of complex systems is a
fundamental concept linked to the properties of systems recorded
under specific external environmental conditions at a particular
moment in time.

Changes in the TC during the operation of CTS (Figure 1.2)
necessitate the evaluation of system TC.

Reliability [7, 8, 9] is the property of maintaining parameter
values that characterize the functioning of CTS over a specific
period.

The key reliability indicators include: the probability (risk) of
failure-free operation, the distribution frequency and intensity of
failures, and the mean time between failures. The probability of
failure and the criticality level of CTS can be represented in the form
of a criticality matrix (Figure 1.3) [7].

11
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Working condition

Good condition

Faulty state

Failure

Limit state

Figure 1.2 - Diagram of the Technical State and Events During the

Operation of CTS
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Figure 1.3 - Qualitative Criticality Matrix for CTS Operation
(categories of failure risk: X — unacceptable; 1 — undesirable; 2 —
acceptable; 3 — insignificant)
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Failure in reliability theory is a random event involving partial or
total loss of functionality. The concept of partial failure is used as a
transitional state between functionality and complete failure. Partial
failure of the CTS refers to the inability to perform some functions
due to a partial loss of system performance efficiency. Such CTS are
considered systems with multiple states.

External influences increase the load on an individual subsystem,
component, or element of the CTS, which affects their ability to
perform their functions, decreases efficiency and reliability, and leads
to technological accidents. The causes of such accidents also include:
CTS failures due to manufacturing defects and violations of
operational modes; operator errors.

Among the sectors of the economy where higher requirements for
efficiency and reliability of critical application CTS are imposed,
maritime and river transport are included. Dozens of CTS installed
on ships affect their survivability, which is not ensured by
compliance with regulatory requirements at the design and
construction stages, as well as during ship operation [10, 11, 12].

The databases [13] provide information on maritime accidents and
incidents at sea. The Global Integrated Shipping Information System
(GISIS), maintained by the IMO, contains full similar information
[14] (Figures 1.4, 1.5).

force majeure

cwcumstances

1%

s

human factor %

Figure 1.4 - Analysis of accident factors
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Figure 1.5 - Vessel losses

Systematized statistical data on maritime incidents are also
presented by the European Maritime Safety Agency (EMSA) [15].
Statistics registered, for example, in the JTSB database within the
Japanese shipping zone for the period 2008-2023 indicate [16] that
the number of incidents shows a slight downward trend (Figures 1.6—
1.8). The issue of ensuring reliability remains relevant for both older
and newer vessels, particularly for large-tonnage ships equipped with
advanced control and communication systems, which consequently
have more vulnerable subsystems [17, 18, 19].
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Figure 1.6 - Trends in the overall accident rate of ships
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Total accident rate for the period 2008-2024
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Figure 1.8 - Breakdown of accidents by vessel type

The analysis of vessel operation results indicates that despite
measures taken to ensure maritime safety, the number of maritime
accidents remains high. One of the most frequent causes of ship
accidents is the failure of CTS.

Maritime accidents pose a serious threat to human life, vessels,
the environment, or coastal infrastructure [20, 21, 22]. For example,
the failure of the a SPP on a container ship led to a technogenic
accident in Baltimore in 2024 (Figure 1.9).
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According to the United Nations, the damages caused by man-
made disasters over the past 30 years have reached $200 billion per
year.

As a result, maritime organizations, such as flag states, port
authorities, and classification societies, have intensified their joint
efforts to ensure the reliability and safety of ships and their systems.
Currently, international requirements for maritime safety are
becoming stricter. The operation of SPPs highlights the critical need
to prioritize the safe functioning of such CTS.

Thus, the analysis of vessel operation results indicates that,
despite measures to enhance maritime safety, the number of maritime
accidents remains high.

An analysis of the distribution of accidents based on ship tonnage
and age shows that the failure of CTS is one of the most frequent
causes of ship accidents.

With increasing safety requirements for expensive CTS, the
demands for their efficiency, which depends on time and resources
during their operation, are also growing. Ensuring the safe and
efficient operation of ship CTS remains a pressing scientific and
technical challenge.

16
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1.2 Analysis of Models and Methods for the Intelligent Diagnosis,
Assessment, and Prediction of the Technical Condition of
Complex Critical Systems

1.2.1 Comparative Analysis of Models and Methods for
Intelligent Diagnosis of the Technical Condition of Complex
Critical Systems

The effective operation of critical CTS largely depends on the
performance of their subsystems, components, elements, and their
interconnections. Regulatory documents establish [23] that ensuring
the uninterrupted operation of CTS requires monitoring the systems'
TC, including diagnostics, assessment, and prediction of the
performance of their equipment.

The methods and tools for TC diagnostics, implemented during
the design and operation of CTS, aim to ensure system efficiency and
reliability [1, 23, 24, 25, 26]. These measures allow for the timely
detection of equipment faults and their interconnections in CTS,
determining the degree of functionality under changing operating
conditions, reducing downtime and repair costs, and obtaining
necessary information for evaluating and predicting the system's TC.
Diagnostics should be performed without taking equipment out of
operation, avoiding its disassembly.

Diagnostics of TC is based on the theories of pattern recognition
and testability [6]. The first involves developing algorithms for
recognizing TC under limited information conditions, decision-
making rules, and diagnostic system models. The second includes
developing tools and methods for obtaining diagnostic information
and identifying faults. In TC recognition tasks, probabilistic and
deterministic approaches are used. The probabilistic approach
considers the system in one of its random states, while the
deterministic approach matches the TC diagnosis with a specific
domain in the feature space. Probabilistic methods are most
commonly applied but require a large amount of prior information.

A pressing issue for the safe operation of CTS is determining their
TC based on non-invasive diagnostics and non-destructive testing.

17



STOCHASTIC MODELS AND METHODS FOR DIAGNOSING,
ASSESSING, AND PREDICTING THE TECHNICAL CONDITION
OF COMPLEX CRITICAL APPLICATION SYSTEMS

Diagnostic theory relies on the relationship between the TC of a
complex system and its representation in diagnostic parameters.
Since diagnostics are performed under conditions of limited
information during operation, diagnostic models are critical in fault
recognition. Modeling CTS diagnostics is challenging due to the
complex interconnections between subsystems, components, and
elements, as well as interactions between the system and its
environment.

The numerical values of component parameters in diagnostic
models depend on numerous factors that are difficult to account for
during analysis. Additionally, since such models describe random
processes, researchers classify them as stochastic models. It is
assumed that the randomness of certain phenomena is expressed in
terms of probability. Diagnostic models of CTS are also conceptual,
defining the structure and properties of the modeled CTS under
conditions of uncertainty. In this case, the mathematical model of
CTS takes the following form [24, 25]:

Y(t)=F(X(t),U(t),V(t)), (1.1)

where X — vector of the system model's current state;
U — vector of control inputs;
V — vector of external influences;
Y — vector of model output signals.

The diversity of models and methods for diagnosing TC is
determined by their dependence on the informativeness of the
system's behavior, its complexity, and the variety of diagnostic tasks.
The more complex a system, the more complicated its TC diagnosis,
and the greater the risks of failures and emergencies during the
operation of CTS [8, 28, 29, 30, 31].

TC diagnosis includes: anomaly detection, fault localization, and
fault classification. To achieve these tasks, machine learning and
artificial intelligence methods are applied, such as support vector
machines [32], nearest neighbors [33], and decision trees [34].
During the design and operation of CTS, specialized diagnostic
methods and models are also used for TC diagnosis (Table 1.1)

18
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[35-45]. Standards [46, 47] recommend fault trees and Petri nets for
modeling TC diagnosis. However, fault trees cannot account for
common equipment failures in CTS. Petri nets are used, for instance,
in Monte Carlo simulation modeling, but these models are difficult to
use, especially for large systems.

From the analysis of literature sources, it is evident that existing
methods for modeling TC diagnostics of complex systems do not
provide reliable data that can be used for assessing and mitigating the
consequences of failures in systems or making necessary
management decisions. In this context, Bayesian belief networks
(BBNs), as artificial intelligence models, are a valuable tool for TC
diagnosis due to the following advantages [27, 48-51]:

High efficiency in solving problems for CTS with numerous
subsystems, components, and elements;

Simplicity of interpretation and visualization;

Logical explanation of fault propagation.

Table 1.1 Methods and models of TC diagnostics of folding

systems

Mathod MName

Failure Mode

and Effects

Deterministic

Analysis
(FMEA/FMECA)

3]

Monte Carlo
23]

Markew
Analysiz [24]

Probabilistic Event Tree
Analysis [ETA)

51

Description and
Application

Used to identify
failure modes of
components or
systems that lead
1o lois of

functionality.

Evaluates result
ranges and
frequency

distributions.

For repairable

systems where the
next state depends
only on the current

state.

Models, calculates,
and ranks incident

SCENAMNOS.

19

Advantages

Identifies failure types,

causes. and

consequences, Provides

input for monitaring

program development.

Adaptable to any data
distribution, Simpler

madels.

Caleulates probabilities
when analytical
methods fail. Handles
degradation and
recovery states.

Graphically réprésents
event progression.
Analyzes system
reSpanses and
evaluates mitigation
Etrategies.,

Disadvantages

Suitable only for
identifying individual
failures. not
combinations. Tirme-
consurming for

complex systems.

Cannot adequately
model rare events
with very high or low

probabilities.

Assumes constant
transition
probabdlities and
event independence,
Difficult to model
large systems.
Apphcable only for
binary system states

{functional/failure).
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Expert

Assessment

Fault Tree
Analysis (FTA)
[5]

Cause-and-
Effect Analysis

[5]

Bayesian
Networks

[25,26,27]

Logic-
Probability
Method [5]

Fuzzy Sets [28]

Hazard and
Operability
Study (HAZOP)
[5]

Decision Tree

Analysis [5]

Neural Network
Technologies

[5]

Identifies causes
and paths leading
to failure,
Quantifies failure

probabilities.

Combines fault and
event tree methods
to analyze critical
events and
subsystem

responses.

Uses observable
variables to infer
inaccessible ones.
Suitable for risk
prediction and

assessment,

Solves problems by
representing
systems as directed
graphs of events
with known
probabilities.

For scenarios with
uncertain
quantitative
descriptions or risk

factor interactions.

Structured analysis
of processes or

systems.

Sequentially
compares
alternatives with

uncertainties,

Enables systems to
compare sensor
data with reference

values,

20

Considers various
factors and their impact

on final outcomes,

Combines the
strengths of ETA and
FTA methods.

Requires only prior
knowledge. Supports
classification and

prediction.

Provides weighted
values for elements,
helping assess their
significance to the

system.

Simplifies mathematical

maodels,

Applicable to 3 wide

range of systems and

[rocesses,

Clearly represents
decision details,
Supports optimal

solution identification.

Analyzes system
parameters
comprehensively for

failure prediction,

Static model; does
not account for time
dependence, Limited
to binary system
states.

More complex than
FTA and ETA for
scheme building and

dependency analysis.

Difficult to identify
interactions in
complex systems.
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BBN theory is based on probability and graph theories. Bayesian
rules rely on expert assessments as well as prior and posterior
observation data for solving diagnostic problems.

When diagnosing the TC of complex critical systems (CCS),
incomplete data are available for each subsystem, component, or
element at any given time. This indicates uncertainty, which is
addressed using probabilistic reasoning in BBN methods and
cognitive simulation models for diagnosing the TC of complex
systems [52].

BBNs leverage modern software technologies (Microsoft
Bayesian Network Editor, Bayes Net Toolbox for Matlab, GeNle,
Smile, AgenaRisk, Analytica, Bayes Server, Hugin Expert). There
are also ready-made libraries and modules for Python, C++, C#,
Matlab, R, and VB.NET, compatible with various operating systems
(Windows, Linux, macOS) [53-60]. A key product is GeNle
Modeler, which allows for the creation of models of any size and
complexity [28, 61, 62]. Well-known software packages for Matlab
(BNT — Bayes Net Toolbox) and R (gRain package) further expand
the capabilities of BBNs [63-65].

The content and methods of simulation modeling aim to create
cognitive simulation models (CSMs) for TC diagnosis by exploring a
wide range of potential alternatives. A simulation model can be
viewed as a set of rules that facilitate TS diagnosis [66], considering
their significance and criticality for the overall CTS operation. The
advantages of CSMs over analytical methods for TC diagnosis
include the ability to construct models of complex systems without
relying on analytical methods, using partially reliable and incomplete
data about the object being modeled. Theoretical foundations and a
wide range of software products, such as Arena, AutoMod,
AnyLogic, Extend, and GPSS World, facilitate the application of
CSMs.

Given the inherent uncertainty, incompleteness, and vagueness of
information about CTS, fuzzy logic is often used for TC diagnosis
[45]. This approach enables the diagnosis of the TC of complex
systems under extreme scenarios while minimizing computation
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time. Both functional interconnections and equipment interactions
within CTS are taken into account.

Combining CSMs with fuzzy modeling is particularly effective
for diagnosing the TC of complex systems, as it is supported by
algorithms and methods that accurately reflect system features [40,
67]. However, this approach requires further development for
diagnosing the TC of complex systems.

From the analysis of typical models and methods, it is evident that
there is no universal methodology for diagnosing the TC of CTS.
Existing methods have the following limitations:

They are applied only within narrow scopes due to the "rigidity"
of information processing schemes;

They do not account for the history of the TC;

They require significant modifications when the composition or
logic of CTS operation changes;

They fail to consider partial failures in the functionality of system
equipment and their interconnections.

From the analysis of literature sources related to partial failures of
functionality, it follows [36, 37, 38]:

The spectrum of possible partial failures in almost any technical
device is significantly broader than that of complete failures.

Detection and identification of partial failures involve more
complex recognition algorithms.

At present, there are no tools for a theoretical approach to the
development of diagnostic models for TC that account for partial
failures. This is due to the infrequent collection of statistics related to
such failures. The identification algorithms used do not distinguish
failures based on the criterion of partial or complete failure.

From the analysis of models and diagnostic methods for CS, it
follows that the operational strategy for CS should be preventive.
Enhancing the operational and maintenance strategies of CS is
achieved through a comprehensive approach to developing and
implementing appropriate diagnostic support.

When addressing tasks related to improving the efficiency of CS
operation, the role of methods based on modern diagnostic software
increases.
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Thus, for the effective operation of CS in critical systems, timely
diagnostics of both partial and complete equipment failures based on
conceptual stochastic models and diagnostic methods is crucial.

Diagnostics must consider incomplete data from CS equipment,
providing knowledge under uncertainty while ensuring the highest
accuracy of results.

1.2.2 Comparative Analysis of Models and Methods for
Intellectualizing the Evaluation and Prediction of the Technical
Condition of Complex Critical Systems

The development of conceptual models and methods for assessing
the TC of complex CS requires considering the possibility of
continued operation under partial failures with multiple scenarios for
their evolution [68, 69, 70, 71, 72, 73].

Such an approach improves CS efficiency by extending
productive operation until scheduled maintenance and recovery
activities.

The extent of technogenic accidents is measured by the risk of
equipment failure, with consequences determined by the level and
duration of CS operation [74, 75, 76].

Risk assessment involves identifying hazards and evaluating them
against acceptable failure risk criteria, producing gqualitative and
guantitative results, and converting hazards into measurable
categories [77, 78, 79].

When assessing the risk of CS failures, the following should be
considered:

The hierarchy, topology, and diversity of equipment differing in
physical principles, parameters, and operational modes.

Functional state and operating conditions under uncertainties.

Diagnostic results for TC.

Challenges in obtaining statistical and expert data on failures
[28, 29, 30, 78, 80, 81].

Available sources for failure risk statistics, such as for marine CS,
include the OREDA database [82] and maintenance methods with
safety assessments of CS [83, 84].
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Known methods for assessing CS failure risks differ in how
probabilities and losses from failures are obtained [85, 86, 87, 88,
89].

Risk assessments within the technocratic concept are performed
using methods classified as deterministic, probabilistic, expert-based
under uncertainty, or combined, based on TC diagnostics of complex
systems.

Advantages of the probabilistic method include:

Analysis of failure scenarios and consequences.

Explicit consideration of interdependencies between CS
equipment regarding failures.

Quantitative assessment of uncertainty impact on risk evaluations.

Ranking deficiencies and safety problems.

However, as noted in the literature [90], models based on
probabilistic approaches for assessing failure risks in marine CS are
used to a limited extent. They provide approximate failure risk
estimates without sufficient objective information.

Expert methods are the most widely used for evaluating failure
risk indicators [91]. However, these methods face limitations due to
the high complexity of selecting experts with the required
qualifications and the subjectivity of their assessments. The
significant advantages of Bayesian network methods (BNM) make
them promising for evaluating failure risks in CS. Risk assessment
models of equipment, considering its importance and criticality for
CS functionality, also employ cognitive simulation modeling
technology [67, 92, 93, 94, 95, 96].

To establish the relationship between the actual resource and the
probability of failure of CS, the fuzzy-probabilistic modeling method
is used [97, 98]. However, the existence of standards for fuzzy logic
does not resolve the issue of numerical risk assessment of CS
failures. This is because the standards provide criteria without the
models required for comparative analysis of CS failure risk
assessment options.

Failure risk rankings are performed using risk indices, but these
lack reliable models and input data. For example, a matrix of failure
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consequences and probabilities is used, which requires expert
assessments.

To rank failure risk assessments of CS, Harrington's generalized
desirability function [99] is recommended with risk levels and
consequences defined as follows:

0-0.2: Minimal (minimal impact that does not affect CS
operation).

0.2-0.37: Acceptable (minor impacts allowing CS operation
without repairs).

0.37-0.63: Maximum (significant impacts, CS operation is
possible with repairs).

0.63-1.0: Critical (catastrophic impacts, CS operation is not
allowed).

From the conducted analysis of models and methods, it follows
that despite their advantages, they cannot be applied in their original
form as conceptual models or methods for CS failure risk
assessments due to their narrow industry-specific focus. Most models
and methods are based on the assumption that CS equipment operates
under normal conditions, without considering partial failures of
functionality. However, leveraging advancements in information
technology can address many of the aforementioned challenges in CS
failure risk assessment [1, 100, 101].

The safety level of systems, such as marine CS, is largely
determined by the quality of TC forecasting based on failure risk
assessments of their equipment [102, 103, 104]. Forecasting, like TC
diagnostics, must consider the specifics of CS operating under
uncertain and extreme influences, with insensitivity to incomplete
equipment data, interconnections, and partial or complete failures
[25, 80, 97, 102, 105, 106].

A list of forecasting methods suitable for use depending on the
level of CS formalization is shown in Figure 1.10 [107]. TC
forecasting can be performed using machine learning methods based
on predefined CS performance indicators [108, 109, 110, 111, 112].
However, this approach is applicable only when considering binary
TS.
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For calculating the remaining operational life of CS, the PHM
(Prognostic Health Management) method is a promising forecasting
approach [113, 114].

The analysis of models and forecasting methods revealed that
changes in the TC of marine CS are highly challenging to predict.
This difficulty arises from the following factors: a lack of qualitative
and quantitative expert data on system reliability, the dynamic nature
of operational conditions, and the human factor [115].
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Figure 1.10 - Classification of forecasting methods
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Existing TC forecasting models and methods, which rely on
deterministic and formalized statistical models, are not universal.
They do not fully account for the specific operating conditions of
system equipment, especially under uncertain influences of various
external or internal factors on CS.

A significant drawback of such models and methods is that they
are not recommended for marine CS because they fail to meet the
requirements of the International Convention for the Safety of Life at
Sea (SOLAS-74) and the provisions of the International Safety
Management Code [116, 117]. Another major shortcoming is that
these models and methods have not undergone long-term practical
validation. A notable advantage in achieving adequate forecasting of
CS failure risk assessments is provided by structural models based on
artificial intelligence mechanisms and methods [118, 119, 120]. Such
models enable the prediction of CS failure risks by identifying
implicit dependencies between input and output data samples and
supporting various learning algorithms.

This capability is particularly beneficial for CS in evaluating and
forecasting scenarios of functionality loss that involve hundreds of
criteria and indicators. Addressing these issues is also linked to the
development and enhancement of problem-oriented software
packages [100, 121, 122]. Consequently, the role of modern
software-based TC assessment and forecasting methods for complex
systems is increasing.

Ensuring the guaranteed safe operation of CS by timely and
proactive prevention of normal situations transitioning into critical,
emergency, or accident scenarios is the foundation of the failure risk
management strategy [23, 73, 123, 124]. This strategy is based on a
systematic analysis of multifactorial failure risks, their reliable
assessment under various CS operating conditions, and TC
forecasting throughout their operational lifecycle [28, 125]. An
analysis of publications and regulatory materials on failure risk
assessment and forecasting for various types of CS revealed that the
existing diversity of models and methods requires addressing
significant uncertainties and improving the accuracy of assessments
and forecasts.
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Many models and methods focus on the operation of CS
equipment under normal conditions, without accounting for partial
functionality failures. They are often based on engineering, expert,
and other approaches, involving complex and expensive calculations,
which limit their widespread use and highlight the narrow
specialization of these models and methods.

Therefore, to ensure the effective operation of CS, the
development of new models, methods, and their algorithms—
implemented as problem-oriented software packages for TC
assessment and forecasting—remains a relevant task.

1.3 Comparative Analysis of Information and Intelligent Systems
for Diagnosing, Assessing, and Forecasting the Technical State of
Complex Critical Systems

Traditionally, information and intelligent systems (IIS) are
understood as interactive computer systems that assist decision-
makers in using information, as well as a set of mathematical and
heuristic models and methods for solving poorly structured or hard-
to-formalize tasks [126, 127, 128, 129, 130, 131]. The effectiveness
of 1IS functionality directly impacts the operational efficiency of CS
throughout their lifecycle.

IIS are unified by a general methodology for generating
alternative management decisions in CS, determining the
consequences of their implementation, and substantiating the choice
of an acceptable management decision [132, 133]. IIS components
include data sources and models, a model database, and a software
subsystem comprising a database management system (DBMS), a
model base management system (MBMS), and a user interface
(Figure 1.11).

The primary tasks solved by IS [128, 129] include data input,
storage, and analysis.

Main functionalities of 1IS:

Collecting necessary information from various data sources.
Converting the collected information into a unified data format.
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Generating queries to the data warehouse, processing them,
searching for information, and presenting it in a format suitable for
analysis and decision-making.

An Intelligent Information System should feature a web-based
client interface or be fully web-oriented [134]. The IIC data
repository can be built using various types of DBMS; however, given
the web orientation and the growing adoption of cloud technologies,
it is preferable to rely on web-based DBMS like MySQL and
PostgreSQL, as well as specialized cloud DBMS such as MS Azure.
Data sources originate from operational-level information systems,
special databases, and include engineering data along with
information from external sources.
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The data model is constructed based on the following
components:

Data sources and repositories,

Operational data storage and data marts,

Metadata.

The model database enables analysis within the 11S. Most DBMS
solutions include OLAP extensions in one form or another, so the
operational-analytical component of the 1IS is considered ready once
a DBMS type is selected for the data repository. When designing the
data repository, it is crucial to implement a mechanism for metadata
handling to describe the structure of the data within the database.
Developers of the I1S design and build the metadata tree structure.

At a conceptual level, 11Ss are classified as follows:
Communication-Driven DSS (focused on messaging),
Data-Driven DSS (focused on data),

Document-Driven DSS (focused on documents),

Knowledge-Driven DSS (focused on knowledge),

Model-Driven DSS (focused on models).

Architecturally, 11Ss can be categorized as functional, independent
data marts, or two-tier and three-tier data warehouses. Depending on
the type of data these systems process, 11Ss can be classified into
operational and strategic categories.

OLAP and Data Mining represent two essential components of the
decision-making support process. Data operations are performed by
the OLAP engine, which implements the concept of online analytical
processing. Depending on the storage type, OLAP systems are
classified into MOLAP, ROLAP, and HOLAP. Based on the location
of the OLAP engine, systems are divided into OLAP clients and
OLAP servers.

An OLAP client constructs a multidimensional cube based on
source data (to generate the required reports and cross-sections) and
performs calculations on the client-side PC.

An OLAP server processes requests, performs computations,
and stores aggregated data on the server, providing results upon
request.
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Cubes and other analytical reports must be configured [135]. 1ICs
are also classified by levels (basic, intermediate, advanced) and by
distribution levels (centralized, distributed) [136].

To perform analysis and generate recommendations, 11Cs employ
various methods (Table 1.2 [137]):

Information retrieval,

Data mining,

Knowledge discovery in databases (KDD),
Case-based reasoning,

Simulation modeling,

Evolutionary computations and genetic algorithms,
Neural networks,

Situational analysis,

Cognitive modeling, and others.

The application of artificial intelligence in 11Cs enables the system
to expand its functionality, enhance operational efficiency, and
improve the reliability of CS.

Table 1.2 - 1IS methods and models

Model of Presenting Data and

Methods of Organizing IIS Knowledge Problem-5olving Tasks

The formation of a solution Online Analytical Processing Organization of the environment for data

with the coordination of the (OLAP) Models accumulation. Collecting and combining

collections of data data. Intelligent data analysis.

Formation of solutions in an Product models, Logical Searching for solutions based on rules,

expert system based on rules ~ models, Semantic measures, Explanation of decisions. Learning the
Frames basics and understanding new rules,

Formation of decisions Piece neural networks, Accumulation of precedents, Searching for

based on precedents (CBR Precedents of problematic solutions in the base of precedents.

systems) situations Adapting solutions to new problem

situations.

Formation of solutions based ~ Semantic frameworks that Formation of distinctions between

on ontologies describe concepts in the concepts. Development of logical ontology
subject area and their models,

connections
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One of the most crucial functions of 11S software is the evaluation
of potential outcomes of decisions and the forecasting of the TC of
CS [138, 139, 140]. The choice of the specific forecasting method for
a particular 1S is left to the system developers.

Factographic methods, which are the least dependent on
subjective factors, are commonly used in software. For poorly
formalized input data, expert methods are utilized, though they come
with limitations related to the availability of a sufficient number of
experts.

As noted in [28, 80], during the operation of CTS, adverse
influencing factors (AIFs) can disable individual subsystems,
components, or affect overall system functionality. AlFs are typically
unpredictable or difficult to forecast (e.g., human errors, natural
disasters). Their impact can range in severity up to the complete
destruction of the CTS [141].

Developing intelligent information complexes (11Ss) for managing
equipment failure risks to ensure the survivability of marine CTS
under the influence of AIFs is a promising area in enhancing CTS
safety [124].

Such 1ISs can be implemented as standalone solutions or as
modules that complement general-purpose control and decision-
making systems with additional functionality. They enable rapid
decision-making in addressing the consequences of AIFs, ensuring
CTS reliability by identifying, analyzing, and assessing existing
equipment failure risks [107, 124, 141].

Most 1ICs are designed to address specific tasks or general classes
of problems, targeting various types of users. Developing 11Ss for
managing failure risks to ensure CTS survivability under incomplete
and uncertain information, combined with the presence of unforeseen
AlFs, is a forward-looking direction for effective and reliable
operation of subsystems, components, and CTS as a whole.

The primary concept of IISs is to address classical problems
arising in unstructured and poorly formalized CTS [142, 143].

These challenges include the inability to obtain complete and
objective information for rational decision-making, as well as the
need to utilize subjective and heuristic information. Additional issues
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include uncertainties in input data and ambiguities in the search for
optimal solutions. Moreover, solutions in such cases must interact
with the user through dialogue or other forms of human-machine
communication.

Given these factors, traditional algorithmic methods and decision-
making models need to be abandoned in favor of using intelligent
system technologies [144].

Theoretical substantiation and implementation of information
technologies based on Al for designing, modeling, and solving
practical problems in IICs have been explored by scientists such as
V.M. Glushkov, A.N. Kolmogorov, N.J. Wiener, W.R. Ashby, F.
Wassermann, S. Haykin, F. Rosenblatt, T. Kohonen, G.S. Tesler,
N.G., V.P. Bespalko, V.V. Davydov, M.M. Potashnik, G.V. Skok,
among others [145, 146, 147, 148, 149, 150, 151, 152, 153].

11Ss should implement the following scheme: assessment —
forecasting — decision-making — action. 1ICs provide decision-makers
with analysis of the problem being solved. Key IIS functions include
assessment, event forecasting, self-learning and adaptation, working
with knowledge bases (including creation, structuring, storage, and
database content), decision-making, and implementation.

Known methods implemented in 11Ss include [144, 154, 155, 156,
157, 158]:

Analog and systemic methods;

Heuristic methods for optimization tasks (genetic algorithms,
artificial immune networks, simulated annealing, swarm intelligence
methods, including ant colony algorithms);

Case-based reasoning (nearest neighbor, decision tree-based case
extraction, knowledge-based cases, and cases considering application
scenarios);

Structural mapping based on OWL ontologies.

I1Ss are often created by combining Al systems, expert system
technologies, machine learning, and agent-based systems [154, 159,
160].

Machine learning is widely used to automate risk assessment and
predict potential failures (e.g., analyzing large datasets, identifying
patterns and trends, system modeling and simulation).
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However, the use of large datasets involves limitations, such as
potential errors in risk assessment and inaccurate predictions.

The structural mapping method offers advantages, including the
ability to formalize complex hierarchical interactions among CTS
equipment functioning under stochastic conditions; flexibility in
implementing a production-based approach for knowledge base
creation within 11Ss; and convenient software implementation using
an object-oriented approach.

Most models enabling new knowledge acquisition based on
existing data can be reduced to production models.

A drawback of these models is the limited representation of the
problem domain, affecting flexibility in user-expert system dialogues
[154].

Bayesian networks can be used for modeling relationships
between various factors and their uncertainties in I1Ss for CTS with
numerous equipment components, providing a structured foundation
for failure risk assessment under uncertainty and assisting decision-
makers in prioritizing decisions [48, 58].

In 11Ss, methods based on case-based reasoning (CBR) can be
employed for assessing and forecasting the technical state of CTS to
generalize and apply accumulated experience [161, 162, 163].

When operating CTS under conditions of uncertainty, the case-
based approach simplifies the decision-making process. The
advantages of this method include:

The ability to learn from experience;
Versatility;
The capability to work with incomplete or unstructured data;
Flexibility in adapting to new situations.

Stages of the Case-Based Reasoning (CBR) cycle (Fig. 1.12):
Capture cases from the case library (CL).
Indexing (for quick retrieval of similar cases).
Search for the most suitable cases for the new task.
Review and adaptation (modification for the current task).
Evaluation for suitability, storage, and implementation.
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Figure 1.12 - Case-based Reasoning cycle [162].

The classical architecture of I1S (Fig. 1.13):

Provides justification for alternatives based on models and
methods utilizing expert evaluations by specialists.

Includes decision-making methods under uncertainty with the
modeling of problematic decision-making scenarios.

Contains a knowledge base (KB) — a set of rules for selecting
appropriate models and decision-making methods to justify
alternatives depending on the specific implementation of task
elements.

Incorporates a database (DB) for storing information.

Performs multidimensional task analysis and generates analytical
reports using an OLAP server.

The use of problem-oriented KB in the form of knowledge models
enables the identification of new heuristic knowledge under
uncertainty [164, 165] (Fig. 1.14).
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Currently, technologies of Al are being increasingly implemented
to enhance the operational efficiency of CTS.

For example, according to the requirements of the Maritime
Register, all vessels must be equipped with Al-based systems
[25, 102].

This requires algorithmic and software tools capable of assessing
and predicting the technical state of systems in alignment with the
defined objectives [1, 166, 167].

An example of using an IIS is the PHM method, which
encompasses the entire process from data collection to utilizing
decision-making results.

Real-time information about the state of ITS is used to assess the
technical condition within the 11C framework. For modeling technical
states, the following can be employed: fault tree analysis, event tree
analysis, and Bayesian belief networks.

Bayesian belief networks are preferred as a tool for assessing the
risk of ITS failures.

Among software solutions addressing decision-making tasks,
Crystal Info (Seagate Info) is utilized—an 1IS based on flexible data
access and processing technology.

Open OLAP technology allows the integration of
multidimensional OLAP data from heterogeneous sources (Crystal
Info, Crystal Holos, Hyperion Essbase, OLE DB for OLAP providers
(Microsoft SQL Server OLAP Services, Applix TM 1, IBM DB2
OLAP Services, and Informix MetaCube)). All OLAP sources can be
represented within a unified interface.

For many years, researchers have been developing 11Ss for various
purposes; however, certain challenges regarding the efficiency and
formalization of knowledge in ITS remain unresolved [168]:

Enhancing the objectivity and reliability of decisions made
under uncertainty in evaluation and failure risk forecasting tasks;

Accounting for factors of incompleteness, ambiguity, and
contradictions in initial information (data and knowledge) and rules;

Ensuring the representation and processing of diverse types of
knowledge, data, and models, as well as the development of
corresponding databases, knowledge bases, and models;
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Collecting, storing, and accumulating declarative and expert
information about the problem domain in databases, knowledge
bases, and case libraries;

Improving the accuracy of ITS assessments based on new
models, methods, algorithms, and software invariant to the subject
area for evaluation and failure risk forecasting, aiming to detect early
signs of pre-failure states in equipment;

Applying adequate and technically feasible formal models for
solving tasks, considering structural, functional, informational, and
subject-specific features of ITS.

To successfully address the issue of efficient and accident-free
operation of ITS under emergency operating modes, it is necessary to
use information technologies with software and hardware modules
for receiving and transmitting diagnostics, assessment, and
forecasting results for complex systems [1, 169, 170].

The quality of data reception and transmission systems (DRTS) is
determined by a set of characteristics affecting their efficiency:
topology, bandwidth, speed, permissible error magnitude in data
transmission and reception, information security efficiency, and the
risk of device failures in DRTS.

From the conducted analysis of literary sources, it follows that to
ensure effective ITS operation, the 11S must implement the following
scheme: evaluation — forecast — decision — action, based on the
results of diagnosing the technical state of subsystems, components,
elements, and their interconnections within ITS.

Utilizing the results of the structural scheme implementation
shown in Figure 1.15 is essential.

Thus, solving the challenges of effective and reliable operation of
critical application CCS requires improvement and the development
of new models, methods, and algorithms, as well as problem-oriented
software complexes.

These should be aimed at identifying pre-failure and failure states
of equipment systems, addressing tasks of assessment and failure risk
forecasting under conditions of uncertainty, and ensuring relative
insensitivity to incomplete equipment data, taking into account both
partial and complete failures.
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Figure 1.15 - Structural Diagram of Diagnostics, Assessment, and
Forecasting of Technical States in CCS

The informatization of assessment and forecasting of technical
states should be based on artificial intelligence methods.

The intellectualization of evaluating and forecasting the technical
states of systems with reasoning based on cases and diagnostic
features remains a necessary direction for the development of modern
technologies.

This approach ensures operational efficiency of CCS at different
stages of their lifecycle and is a pressing issue.

1.4 Conclusions for Chapter One
The conducted analysis of existing models, methods, and
information systems for diagnostics, assessment, and forecasting of

technical states in complex CCS demonstrates that known structural
models and methods only consider complete failures of operability
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while ignoring partial failures. They are also constrained by increased
algorithmic and computational complexity, as well as the need for
complex preprocessing of diverse data, which reduces the
effectiveness of CCS operation.

Promising modeling methods for diagnosing technical states
include Bayesian belief networks, which account for uncertainties,
stochastic processes, and incomplete CCS data.

Additionally, cognitive simulation modeling methods can assess
structural and functional vulnerabilities of system equipment. Within
I1Ss, case-based reasoning methods are identified as prospective
approaches for evaluating and forecasting technical states of complex
systems.

Hence, there is an urgent scientific and practical task to enhance
the efficiency of CCS operations through the intellectualization of
diagnostics, assessment, and forecasting of technical states under
conditions of uncertainty and relative insensitivity to incomplete
equipment data, considering both partial and complete failures.

Research Objective

The goal of this study is to improve the operational efficiency of
critical application CCS through the development of models and
methods for diagnostics, assessment, and forecasting of technical
states in such systems.

Research Tasks

To achieve this objective, the following tasks must be addressed:

Analyze models, methods, and information systems for
diagnostics, assessment, and forecasting of technical states in critical
application CCS.

Develop stochastic models and a diagnostic method for the
technical states of critical application CCS.

Conduct research and analysis of the stochastic models and
diagnostic method for the technical states of critical application CCS.

Develop a method for assessing and forecasting the technical
states of critical application CCS.

Design an intelligent information system for diagnostics,
assessment, and forecasting of the technical states of critical
application CCS.
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CHAPTER 2
DEVELOPMENT OF STOCHASTIC MODELS AND
METHODS FOR DIAGNOSTICS OF THE TECHNICAL
CONDITION OF COMPLEX CRITICAL APPLICATION
SYSTEMS

2.1 Development of a Stochastic Structural Model and Method
for Diagnosing the Technical Condition of Complex Critical
Application Systems

2.1.1 Problem Statement for Developing a Stochastic Structural
Model and Method for Diagnosing the Technical Condition of
Complex Critical Application Systems

The operational efficiency of ship-based CTSs can be assessed
based on reliability in the form of the risk of equipment failures. In
this regard, the evaluation of equipment failure risk must account for
the CTS structure (hierarchy and topology), functional states (partial
or total loss of functionality), as well as incomplete system data.
Operating CTSs involves uncertainties (incomplete information about
external and internal factors affecting systems and their technical
condition, and uncertainty in system behavior). Based on this and as
noted in Section 1.2, models and methods for diagnosing the
technical condition of complex systems fall under stochastic and
conceptual approaches.

As derived from the analysis in Section 1.2.1, the most promising
approach for diagnosing the technical condition of complex systems
is the intelligent Bayesian Network Method, which simplifies and
accelerates the development of corresponding models. In the
development of diagnostic models for the technical condition of ship-
based critical complex systems, the following considerations are
made:

e A hierarchical structure is adopted.
e Interactions between equipment are modeled using
GeNleRate [61].
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This approach enables aggregated information about equipment to
provide insights into the overall system. Variants of object status in
terms of equipment failure risk are highlighted based on Harrington's
desirability function. For describing loss categories resulting from
failures, a verbal form may be used, allowing numerical assessments
to be matched with various damage classes based on Harrington's
scale. On this scale, critical damage is denoted as Dcrit, with the
following classifications:

e 0.1-Dcrit: minor damage.
0.29-Decrit: insignificant damage.
0.51-Dcrit: moderate damage.
0.72-Decrit: significant damage.
1.0-Derit: critical damage.

Thus, for the effective operation of CTS equipment in various
failure states, the conceptual stochastic diagnostic models being
developed should demonstrate robustness to incomplete data and link
types of technical conditions of complex systems with their
diagnostic indicators in the form of failure risks. Results obtained
using diagnostic models should facilitate intelligent assessment and
prediction of the technical condition of complex systems.

2.1.2 Development of a Stochastic Structural Model and Method
for Diagnosing the Technical Condition of Complex Critical
Application Systems

The foundation for developing a conceptual stochastic model and
an intelligent diagnostic method for technical condition in the form of
a dynamic Bayesian network involves using diagnostic features of
CTS, along with a model for describing the intellectualization of
failure risk diagnostics, encompassing:

e Subsystems (S),
Components (C),
Elements (E),
Inter-system connections (IS),
Inter-component connections (IC)
Inter-element connections (IE).

42



STOCHASTIC MODELS AND METHODS FOR DIAGNOSING,
ASSESSING, AND PREDICTING THE TECHNICAL CONDITION
OF COMPLEX CRITICAL APPLICATION SYSTEMS

The model includes sets of functional elements and connections of
complex systems based on diagnostic features.

The proposed conceptual stochastic diagnostic model for the
technical condition of ship-based complex systems, presented in
graphical and probabilistic form, appears as follows:

CCM =< G, {x;},F,Q, {FE}{FC},{Rpg},{Rpc}L > (2.1)

where G - is a cyclic directed graph (G =(V,T,E), V = {Vi }_

the sets of vertices and edges of the digraph; T —time; E= {eij} —

the set of edges connecting the vertices of the digraph; i — the
sequential number of the graph vertex, i=1,2,...,k, ij — the sequential
numbers of the incoming and outgoing functional connections);

X = {xi } — the set of parameters of the digraph vertices;

F= f{Vi,eij} — the function representing connections between

the digraph vertices;

Q — the domain of parameters for the digraph vertices;

FE, FC - functional equipment (subsystems, components,
elements) and connections included in the CTS structure;

{Reed (Rec} _ sets of diagnostic risk assessments of failures
for FE and FC;
L— the mapping of connections between the sets

{FEL{F C}’{RFE 2 {RFE }, based on the fault tree of the CTS
diagnostic model.

The sets of FE in CTS, considering hierarchical levels, are defined
as:

'{FE:{UP '1:?}'.5;”!_‘3 :l_l-’f;_g} (2 2)

where: u::f9> —the TS of each FE;
i —the index of FE;
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e _ the index of the hierarchical level of FE;

lee the total number of FE;

Mee _ the number of hierarchical levels of FE.

The technical state of each FE in CTS is determined by:

<m>

U, = , a

UFE

T (2.3)

U; ’ O,
NEE; O"FEj

where: WUOFE ,WU';E — full and partial functionality of FE;

o 1 %, — the technical states of the incoming and
FEi FEj
outgoing FC in FE;
My, — the hierarchical level of FE;

in,out — indices of incoming and outgoing FC in FE.

Partial functionality of FE under various degrees of loss is
determined by:

Wuif:E = f<i'mfe> | f = 11,| :1’ IFE; mfe :17 MFE} (24)

In (2.4), =0 indicates the functional state of CTS, and f=1
represents the complete failure of CTS.

The sets of FC in CTS are defined as:
{FCl={w2"* |a=1,Ab=1B;z=1Z;5=1S}, (25)

<a,b,z,q>

— the technical state of each FC;

— the index of inter-component connection;
Z — the index of inter-system connection;
b — the hierarchical level index for inter-component
connections;

where: gl
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s — the hierarchical level index for inter-system
connections;

A — the number of inter-component connections;

Z — the number of inter-system connections;

B — the number of hierarchical levels for inter-component
connections;

S — the number of hierarchical levels for inter-system
connections.

The technical condition of each inter-component and inter-system
connection:

<ab,z,s> __ 0 . f o, S<Mge>
Wpc = Worg, )00 7 kcay a0 ? Ui + (2.6)
0
W f ) . . .
where: Orcany 2+ Ve 2o full and partial working capacity
of the FC

Partial performance of the FC at different degrees of its loss:

Wf ={\N<a(b),Z(Q)>| f :ﬂazﬁ;bzlz B,Z:ﬁ,SZE} (27)
f

“FCa(b).a(a)

Sets of diagnostic assessments of the risk of failure of FE and FC
CTS:

R{RFE' RFC}’ (2.8)
Ree :{rfenm) | fe=LFE,n, =L Ngem =1L, M},

RFC = {rfc 1,2, 1S

li, =1, FC,a=1,Ab=1B,z=1,Z5s=15S},

a(b),z(s)

where: rfe - risk of failure of each FE and FC

of the CTS
A generalised model for determining the risk of FE and FC
failures:

r
n(m) ' fCaw)a(s)

KR=<P, e >, (2.9)

P D D e
FEvm ' FCapyz(@) '~ FEIn(m)’ ~ FCao).z(a) '~ FEN(M) ' “FCatb).2(a)
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where: P P - are the conditional probabilities of failure
FEam) ' FCab)z(a)

FE and FC, respectively;

Dre), ™’ DFCa(m,z(q, - respectively, failure losses FE and FC;

Cren(myr Crcupy e is the weight of FE and FC, respectively,

taking into account the hierarchy in the CTS

The risk of failure n(M) is the FE of the CTS:
Re =D (t) (2.10)

n(m) n(m

The risk of failure a(b), z(q) is the FC CTS:

RFCa(b),z(q) - DFCa(b)‘z(q) ' PFCa(b),z(q) (t) (2.11)

The total risk assessment of the CTS failure, taking into account
the risk assessment of the FE and FC failures, is determined:

FE N(M) FC A(B),Z(Q)
R= Z Z (Rfen(m) 'efen(m)) + z z (Rfca(h)vz(q) fca(b)z(q)) (2.12)
fe=1 n(m)=1 fe=1 a(b),z(q)=1

The probability of failure of FE and FC is determined by the
following formulas:

_ %ee,, 'exp(_aFEn(m) 'TFEn(m)) _ (2.13)
Entm) At )FEn(m) = = e, \&
eXp(_aFEn(m, 'TFEn(m))
Orc -exp(-a Tee )
Pec A)ec = = = e,y (2:14)
o o eXp(_aFCa(n),z(q) .TFCa(n),z(q)) o

where 4 is the failure rate;
¢ is the distribution parameter, which is taken equal to piBaum

a®1/T,, based on the test results, piBaum T, is the estimate
of the average time to failure.
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Quantification of FE losses from failure N(M) of the subsystem
(component, element) to determine the risk of failure:

Dee  ={de, |fe=LFENn=LNm=1M}, (215)

where dFEn(m) - losses from the failure of a subsystem (component)
of the CTS

n(m)

Quantification of losses incurred by FC from the failure
a(b), z(q) of intersystem (intercomponent) communication:

DFCa(b)‘z { feao) | fC :1’ ,b:].,B,Z:]..Z,q:l,_Q}, (216)

where losses from failure of intersystem

fCag)z(a) ~
(intercomponent) communication

To describe the category of losses from failures of inter-system
(inter-component) connections, a verbal form is used.

Based on the established conditional probabilities of failures and
the associated losses for FE and FC (2.10), (2.11), their risk of failure
is determined. The assumptions and constraints adopted during
modeling include that FE and FC in CTS have a level of failure risk
distributed according to Harrington's desirability function.

The model for the intellectualized evaluation of the technical state
of complex systems based on diagnostic features using BBN is a
synthesis of reliability and diagnostic models. In the diagnostic
model, BBN is used to assess the risk of failure (probability) in the
system.

To create a diagnostic model of TS, it is necessary to determine
the risk of failure (conditional probability) for each node in the
network. These data are derived from expert knowledge and
historical data analysis.

After defining the failure risk (conditional probabilities), the
model can be used to assess and predict the TS. In the model, the risk
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of failure for each state of the system is determined using information
about the system's TS and the risk of failure for each node in the
network.

The development of a stochastic diagnostic model for the TS of
complex systems, which simultaneously accounts for the presence of
equipment, their interconnections, and the risk of partial or complete
failure, enabled the proposal of a diagnostic method for the TS of
critical application complex systems based on BBN.

The development of the diagnostic method for the TS of critical
application complex systems based on BBN includes the following
stages:

1. Construction of a BBN based on a stochastic diagnostic model
of the TS of complex systems.

2. Initialization of the model by extracting failure risk data for
equipment and their interconnections from the OREDA database.

3. Conducting research by simulating emergency situations.

4. ldentifying and visualizing structural and functional
vulnerabilities of the equipment, and analyzing the simulation results.

5. Transferring the diagnostic data of the TS of the critical
application complex system to an intelligent information system for
assessment and prediction of the TS of the complex system.

The construction of a BBN based on a stochastic diagnostic model
of the TS of complex systems includes the following steps:

1. Construction of the BBN:

1.1. Nodes and inter-system (inter-component) BBNs representing
the subsystems (components) of the CTS are created, taking into
account the TS:

1.1.1. Each subsystem (component, element) can exist in the
following technical states:

Work,f:‘e> - operable state ne- of the nfe subsystem (component,

element) m of the mfe level;
Not _work . ™ - partial (complete) failure of the nr. - th subsystem

nfe

(component, element) of the my. - th level.
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1.1.2. Each intersystem (intercomponent) link is in states:
Work 2% - is the operable state a(z), of the b(q) level

a(z)fc
intersystem (intercomponent) link;
Not _work 2% - partial (complete) failurea(z),, of the

a(z) ¢
b(q) level intersystem (intercomponent) link

1.2. The connections between the BBN nodes, representing
subsystems (components, elements), inter-system (inter-component)
connections of the CTS, and diagnostic values R, are specified.

2. The parameters of the BBN are specified:

2.1. The risk of failure at the initial moment of time for FE and FC
of the CTS, assuming that all of them are operational before the CTS
begins operation:

RWork,"""),, = F(PWork,™"),,) =0; (2.17)
R(Work ). = F(PWork () ) =0

a(z) s

2.2. Risk of failure at the initial time point for the FE and FC of
the CTS, assuming that all of them are inoperable before the CTS
starts:

R(Not _work, "), = F(P(Not _work, ")) =1; (2.18)
R(Not _work::%),_, = F(P(Not _work:2%),_,) =1

a(z) fc a(z) fc

2.3. The risk of failure of the FEs and FCs of the CTS at the
current time point, provided that some FEs and FCs failed at a
previous time point:

R((Not _work; ™), /(Not _work,""), ;) =1; (2.19)
R((Not _work:>%), /(Not_work;2%), ,))=1

a(z) ¢ a(z) g
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2.4. The risk of failure of the FE and FC of the CTS at the current
time point, provided they are in a serviceable condition, and at the
current time point, provided they were in a serviceable condition and
at the previous time point:

<M fe>
e Z fe t <imfe)

R(Work, "), /(Work, ™), ;) = =e ™ =0: (2.20)
e

71;:2 fe> (t-1)

_ a<bgs
a(z)fc _p<b.a>

e

b, b, a(z) fc

R(WorkZ( ) IWork i3 ) ) = —se o =€~ © =0
e

a(z) fc

2.5. The risk of failure of the FE and FC of the CTS at the current
time point, provided that the FE and FC fail at the current time point
and are operable at the previous time point:

R((Not_work;™), /(Work;™) ;) = (L—e ™ )-Deg; (221)

i<<b,q>

R((Not _work:%), /(Work 2:%), ;) = (1—e ““*). Drc,

a(z) ¢ a(z)

When developing the model and method of intelligence for
diagnosing the TS of complex systems, such as the SPP, based on the
BBN, the input data include:

1. The schematic diagram and operating principles of the SPP,
which detail the system's structure and functional capabilities.

2. The probabilities of failure for FE and FC, which allow
formalizing variations of scenarios in which a specific element or
system cannot perform its intended function.

3. A fault tree, representing a structured set of possible scenarios
for the cessation of FE and FC TS functioning, along with the
corresponding levels of failure risk.

The number of FE and FC TS in the CTS can be determined based
on the analysis of fault tree models and the associated failure risk
values (Figure 2.1).
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The synthesis and analysis of the fault tree are performed from a
structural perspective, based on the logical schemes of equipment
interactions within the CTS in terms of maintaining its operability.
Structural analysis employs statistical data on the reliability of CTS
equipment.

In Figure 2.1, R represents the system failure risk; S1-S6 denote
various combinations of failure sequences; F1-F14 represent system
elements, event types, and their failures.

F3
L] L]
1 | ‘ _ :
54 / \ \ f \ 55 £ oes
—J(Fe J(F7 ) (P ) | I M)
[T
[ rs ) [ F ) Fio) [ Fi1 ) 56 [ F12 )

Figure 2.1 - Fault Tree of Subsystems (Components, Elements) and
Inter-System (Inter-Component) Connections of the SPP

Table 2.1 illustrates the correspondence between the designations
S in the fault tree and FE in the BBN.
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Table 2.1 - Correspondence Between S and Subsystems
(Components) in the BBN

Designation Event Characteristics

51 Failure of the IE element

52 Failure of the elements FFS, CAS, MCME
53 Failure of the elements RACSME, P1, SPP
S4 Failure of the elements CS, BDS, BP

S5 Failure of the elements ME, ED_PSC, CSPSC
S6 Failure of the elements TPMEP, P2, PSC

The developed structure of the BBN for the SPP (Figure 2.2) is a
multi-level system comprising thirteen subsystems distributed across
seven levels. P1 and P2 are specialized intermediate nodes designed
to implement the multi-level structure of the BBN.

Legend of subsystems and components in the SPP BBN:

e Input Element — IE;
e Firefighting System and Compressed Air System — FFS,
CAS;
e Manual Control of the Main Engine — MCME;
Control Systems and Remote Automated Control of the Main
Engine — CS, RACSME;

e Intermediate Component — P1;

e Ship Power Plant — SPP;

e Main Engine — ME;

o Ballast Drainage System — BDS;

e Emergency Drive for the Propulsion and Steering Complex —
EDPSC;

e Control System for the Propulsion and Steering Complex —
CSPSC;

e Boiler Room — BR;

e Power Transmission from the Main Engine to the Propeller —
TPMEP;

e Intermediate Component — P2;
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e Propulsion and Steering Complex — PSC;
e Output Component — EXIT

Figure 2.2 - Structure of the BBN for the SPP
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For the subsystems of the top-level structure of the BBN for the
SPP, conditional failures are determined based on the impact of
subsystems from the lower hierarchical levels.

An example of applying the BBN to interconnected SPP blocks
IE, CAS, SPP, and their connections IE — CAS, CAS — SPP (Figure
2.2), using failure rate data, can be presented as follows:

RWork;53),o =0.

R(Not _work;5),, = 1
ROWOIK S xs cas_spp)ico = 0 ;
R(Not _ WOrk; cus cas_spp o 1’
R(Work;53), /(Work;5s), 1) = 0,1;
R(WOrk i cus cas spp)i /ONOTKE ca casspp)i1) =011

(2.22)

The sets of failure risk at the current time, considering the
previous state of subsystems (components, elements) and intersystem
(intercomponent) connections, can be within the following ranges:

o The expected level of failure risk is assessed as minimal, and the
consequences of the accident are minimal under the following
conditions:

R((Not _work;Zy), /(Workzy),,) =01-0,2; (2.23)

R((NOt _WorkleiCAS,CAS_SPP)t /(\Alorkllf’ig_CAS,CAS—SPP)t—l) =01-0,2
The expected level of failure risk is assessed as acceptable, and
the consequences of the accident are minor under the following

conditions:
R((Not _work.22), /(Work}28), ,)=0,2—-0,37; (2.24)

R((Not _ WorklE CAS,CAS _SPP t/(VvorklE cascas-sep i) = 0,2—0,37
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e The expected level of failure risk is assessed as maximal, and
the consequences of the accident are significant under the following
conditions:

R((Not _ work}22), /(Work;-22), ,) = 0,37 —0,63; (2.29)
R((Not _ Worklzlé:iCAS,CA57$PP)t /(\Norklzlé:iCAS,CAS—SPP)t—l) =0,37-0,63

o The expected level of failure risk is assessed as critical under the
following conditions:

R((Not _work;?3), /Work;25),,) =0,63—1; (2.26)

R((NOt_Workﬁég_CAs,CAs_spp)t /(Vvorklzlf_CAS,CAS—SPP)t—l) =063-1

Based on the retrospective analysis conducted, it is possible to
identify the most probable causes of failures and investigate the
reasons for subsystem, component, and element failures in CTS. The
use of a BNT for analyzing subsystem and component failure risks in
CTS is considered adequate.

Accounting for partial failures of CTS equipment enables the
identification of failure causes. Conducting preventive maintenance
before failures occur will enhance system reliability and improve
operational efficiency.

The first novelty point is formulated as follows: a stochastic
diagnostic model for complex systems has been proposed for the first
time. This model simultaneously considers the presence of
subsystems, components, and elements, their interconnections, and
the probability of partial or complete functionality loss, enabling the
development of a diagnostic method for complex critical systems
using a Bayesian Network of Trust.

The presented BBN structure, which supports implementing the
diagnostic method based on a graph-probabilistic model, reflects the
essence of the second novelty point: the diagnostic method for
complex systems based on BBN has been further developed. This
method facilitates timely detection and visualization of structural and
functional vulnerabilities, enhancing the operational efficiency of
critical complex systems.
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2.2 Development of a Cognitive Simulation Modeling Approach
for Diagnosing the Technical Condition of Critical Complex
Systems

From the perspective of technical safety, diagnosing the risk of
CTS failures is a necessary yet complex task that requires the
development and application of specialized mathematical tools.
Solutions to such problems often rely on failure tree analysis.

A promising simulation modeling method for studying CTS
reliability during system transitions between different states is
Cognitive Simulation Modeling.

This approach utilizes directed graph models to represent the
interactions of FE and FC within CTS.

Based on an analysis of transition graphs for determining the
states of FE and FC across all hierarchy levels, algorithms for
decision-making in corresponding software functions were developed
and implemented.

In modeling the structural and functional properties of subsystems
and their connections, the directed graph serves as a structural model
of FE and FC within CTS.

The goal of developing a conceptual approach to CSM-based
methods is to establish methodological foundations for diagnosing
CTS failure risks under the influence of unpredictable external and
internal factors.

The concept of diagnosing CTS failure risks under emergency
scenarios is based on integrating FE and FC into a unified model.

This model must ensure failure risk diagnosis for FE and FC,
considering their interconnections and mutual influences, based on
their significance and criticality for overall system functionality. It
must also identify structural vulnerabilities within CTS.

The transition from a cognitive map to a cognitive model is
achieved by applying CSM, where structural vulnerabilities in CTS
equipment are diagnosed via simulation modeling using diagnostic
impulses.
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During model testing, a diagnostic impulse (DI) is generated,
applied to a conditional node (edge) of the CSM, and propagates to
subsequent nodes (edges), inducing failure states in interconnected
FE of the CTS.

The conceptual stochastic CSM for diagnosing complex system
conditions includes an impulse vector imp, (t),k €1,2...,1 for discrete

time.

This is determined by the change in weights of the nodes and
edges in the directed graph, defining the dynamics of impact
propagation across the CTS.

For an impact of imp = 0, the element remains unaffected, while
an impact of imp = 1 disables the element with 100% probability.

The proposed conceptual stochastic CSM for diagnosing critical
ship complex systems is structured as follows:

CCM=<G {x_i},F,Q.{FE}{FC}L[R_FE}{R_FC }.L,[imp]_k®)J> (2.27)
impg (T) = (X1,%3, .o, Xp()), (2.28)

where *1:X2:Xv(5) _ state of FE ta FC CTC

To test the developed software, a CSM of a CTS was created in
the form of a directed graph, using an internal combustion engine
(ICE) as an example (Fig. 2.3).

The directed graph diagram of the ICE example with subsystems
is shown in Fig. 2.4.

As a measure of damage, it is proposed to determine the structural
losses from FE and FC failures in accordance with the method for
diagnosing structural failure risk in CTS.

For diagnosing the failure risk of FE and FC in the ICE, it is
necessary to determine the probabilities of failure for each FE and
FC.

Statistical data tied to a specific time z-are used, containing
information about the number of failures n for FE and FC.
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Figure 2.3 - Structural diagram of the internal combustion engine
with subsystems (TAB - traction accumulator battery; ICE - internal
combustion engine; ZRR - motion mode controller; BS - block for
summing up voltages and power; OPE - energy converter; PCHM -
rotation speed and torque converter; MP - mechanical transmission;
VK - driving wheels; MZI - clutch coupling between the ICE and
OPE shafts; MZ2 - clutch coupling between the OPE and PCHM
shafts; ROPE - OPE regulator; RPCHM - PCHM regulator; RICE -
ICE regulator; Mc - resistance torque on the shaft; Mk - torque on the
shaft).
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Figure 2.4 - Schematic of the orientated graph of the ICE
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The probability of failure of FE and FS of the ICE is determined:

Voo T (2:29)
Pv. . - . .
where I is the probability of failure of the i-th FE;

Pa.
J - is the probability of failure of the j-th FC;

nv.
I - is the number of failures of the i-th FE;

na.
) - is the number of failures of the j-th FC;
r=10% . is the period of statistical testing.

Based on the method of diagnosing the risk of failures during the
operation of FE and FC of a CTS, an algorithm for diagnosing the
risk of failures of FE and FC depending on the degree of their mutual
influence was developed (Fig. 2.5).

The existing theoretical foundation and the availability of a wide
range of simulation software, such as Arena, AutoMod, AnyLogic,
Extend, GPSS World, and others, contribute to the active application
of CSM for diagnosing the risk of CTS failures [171, 172]. However,
the known software tools only facilitate the testing process itself and
do not address the most challenging task of collecting the initial
information, its interpretation, formalization, and adequate
correlation with the specific object. Mastering such software
environments requires significant effort. Based on the concept of
failure risk diagnosis of FE and FC CTS described in [93], it
becomes possible to develop software that enables automated risk
diagnosis of FE and FC CTS failures, taking into account their TC
[8]. To determine the general boundaries and context of the subject
area being modeled, at the initial stages of developing failure risk
diagnosis software for partial and complete loss of CTS operability,
as well as formulating general requirements for its behavior, a
diagram of the created software has been developed (Figure 2.6).
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Figure 2.6 — Use Case Diagram of the Created Software Variants

The developed software allows the user to:

» Create a CTS model in the form of a digraph, supporting
features such as specifying the model name, entering a brief textual
description, setting a new vertex in the digraph and visualizing it on
the model display panel, building connections between selected
vertices of the model, activating the current model layout algorithm
on the panel, and visualizing the resulting structure in the created
graphical container;

» Display the previously obtained structure of the developed
CSM in the form of a digraph with visualization of all edges and
vertices, providing the possibility of direct import into the program;

* Add a model to the system serialized in JSON format for
parsing and display;

» Perform the procedure for exporting the CSM in the form of
the created digraph to a graphic file in PNG or JPG format;
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» Execute the procedure for calculating the numerical values of
failure risks for FE and FC CTS and visualize the results by
generating a table format;

» Display the results graphically, applying value ranking in

descending order.

The built use case diagram of the software allows for the design of
the logical entities of the software implementation through the
development of corresponding class diagrams.

The key developed classes of the software are shown in Figure

2.7.
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Figure 2.7 — Class Diagram of the Developed Software
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The classes GraphsOverview, MainWindow, ChartViewWindow,
GraphsOverviewWindow,  GraphWindow, GraphWindowView,
CalcutePage, MainWindowView, and ChartViewModel implement
functional interfaces for the flexible adaptation of logic to introduce
specified functional capabilities for displaying data processing results
and performing computational operations.

To implement the described software logic, interfaces for the
CSM in the form of a digraph are used:

o [ComponentConnector (for ensuring the connection of FE
components);

IContent (for displaying and implementing the dynamic
combination and description capabilities of the entities in the
created graphical container on each system interface form);

INotifyPropertyChanged (for event binding related to changes
in the properties of the implemented CSM objects on the
software panel);

IStyleConnector (for modifying and selecting FE connections).
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Figure 2.8 — Software Component Diagram
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Based on the created diagrams, the characteristics of the physical
representation of the system are described in the form of formalizing
the order of interconnections between the basic CTS FE components.

To this end, the component diagram (Figure 2.8) should be
applied, which defines the software architecture by formalizing all
the connections between the created software components.

MainApp is the main module and is designed to invoke other
modules to process requests for the following processes: building the
CSM digraph model using the GraphBuilder class by applying the
Graph# and OxyPlot dependencies, which are external artifacts of the
project, as well as the GraphLayout class to construct the container
for interactive visualization of the created model; evaluating values
of losses and failure risks; displaying calculation results in table form
for their visual assessment; building and displaying a graphical object
for ranking results.

The Graph# and OxyPlot artifacts were used as libraries for
processing graphical primitives.

The first of these dependencies contains a number of algorithms
for fast layout of digraph models, including support for: Force-Scan,
LinLog, Fruchterman — Reingold, ISOM, Sugiyama, Kamada —
Kawai, and a simple tree layout.

To simulate the interaction of objects over time within the
developed software and to ensure message exchange processes
between them, a sequence diagram of the software actions has been
created (Figure 2.9).

All forms, except for the main one, shown in this diagram are
independent fragments that dynamically integrate into a single
collection within the main form through the generation of new tabs.

The basis of the digraph structure-building method is the
Sugiyama algorithm, which is based on the following tasks:
distributing the formed vertices of the digraph into levels to achieve
minimal length values, while maintaining their direction unchanged;
minimizing the total number of dummy vertices; minimizing edge
crossings in the digraph by changing the order of assigned model
vertices on their respective levels; selecting values for each vertex
coordinate to reduce the number of edge bends.
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Figure 2.9 — Software Action Sequence Diagram

To formalize the software functionality, the following functional
classes have been developed:

1. Public partial class CalculatePage: UserControl, IContent,
IComponentConnector for data interpretation and using the results of
the developed model in the form of a digraph for quantitative
assessment of CTS FE losses and their failure risks.

2. Public class ChartViewModel: INotifyPropertyChanged for
building and visualizing the ranked chart of the obtained CTS FE
failure risk values.

3. Class GraphWindowViewModel: INotifyPropertyChanged for
creating the CSM digraph.
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4. Public class GraphsOverview: UserControl, IContent,
IComponentConnector for displaying the digraph model to the user
interface.

The interface of the CSM digraph creation form for the developed
software is shown in Figure 2.10. This form allows selecting one of
the supported algorithms for building and displaying the digraph
within the container, assigning it a name as a string, entering its
textual description, and saving the created model in *.xml format.

Figure 2.10 — Interface of the CSM Digraph Creation Form for the
Developed Software

To test the software, a CSM diagnostic model of the CTS as a
digraph was created, based on the example of vector control of the
rudder transmission with an electric drive for a ship (Figure 2.11)
[124]. It includes the following components: 1 - steering machine; 2 -
worm wheel segment and brake; 3 - worm gear; 4 - rudder tiller; 5 -
gearbox; 6 - rudder stock; 7 - rudder sector; 8 - semi-axle; 9 - bracket
for the tray; 10 - bolt; 11 - bolt with nut; 12 - washer; 13 - locking
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plate; 14, 15, 16, 24, 25 - gears; 17 - carrier; 18 - free epicycle; 19 -
gear wheels; 20 - free carrier; 21, 22 - shafts; 23 - braking epicycle;
26 - engine; 27 - spring; 28 - rudder baler; 29 - profiled rudder; 30 -
drive wheel; 31 - propeller shaft; 32, 33 - low-pressure and high-
pressure turbine shafts; 34 - turbocharging unit; 35 - drive wheel; 36 -
intermediate gears; 37 - crankshaft drive wheel; 38 - camshaft; 39 -
connecting rod; 40 - piston; 41 - cylinder sleeve; 42 - cooling water
chamber; 43 - crankshaft; 44 - charge air cooler; 45 - exhaust gas
pipeline; 46, 47 - charge air and cooling water pipelines; 48, 49 - oil
and fuel pipelines; 50 - pushrod; 51 - fuel pump; 52 - oil ring; 53 -
cylinder head; 54, 55, 56 - exhaust, intake, and fuel valves; 58 - oil
sump; 59 - cylinder block.

e
NS

Figure 2.11 — CSM Diagnostic Model of CTS
From the conducted modeling, it is evident that the most

vulnerable elements of the system are the steering sector, worm,
worm wheel segment, brake, and gearbox.
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Their failure poses the greatest threat to the functioning of the
entire vector control system of the rudder transmission with an
electric drive.

Therefore, constant diagnostics of the CTS is necessary, which
will help prevent the loss of functionality of FE and FC CTS, and
reduce the risk of failures.

To automate the process of building the CSM for diagnosing the
risk of equipment failure in the ship's CTS, a cross-platform program
was developed in the Java programming language, using the JavaFX
graphical framework and XML markup language. After launching
the developed application, the user selects the operating mode
(manual — allows step-by-step assessment of parameters by entering
the necessary data for the selected system (Figure 2.12), automatic —
activates automatic data processing).
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Figure 2.12 — Interface for Viewing CSM Diagnostic of CTS in
Manual Mode
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The following conditional symbols are used for CTS: input
element — INP; oil subsystem — MP; fuel subsystem — TP; cooling,
compressed air, and drive-steering complex control systems — CO,
CCC, CUDR; ship's power plant — CE; fire protection system — PC;
main engine — GD; remote automated control system for the main
engine — DAU; ballast-drying system — BQOS; boiler room — KU;
power transmission from the main engine to the propeller — PM;
drive-steering complex — DR; sanitary water preparation system —
PC3P; exhaust gas system — GV.

An analysis of technical solutions aimed at improving the
reliability of CTS operations has shown that timely and high-quality
diagnostics, including remote components for complex technical
systems during operation, significantly enhance system reliability and
operational efficiency.

Software and hardware wireless data transmission in information
systems integrated with smartphones further enables remote control,
resource expenditure monitoring, synchronization of CTS equipment
operations, and coordination of distributed computational processes.

The relevance of utilizing the open Android operating system as a
platform for mobile application (MA) development is particularly
noteworthy.

Android offers advantages such as:

o Integration support for third-party services and components.

o Mechanisms for implementing virtualization.

e Flexibility in application development using Java MVC
templates and design patterns.

¢ SSL protocol protection for transmitted data.

e Optimization for mobile traffic data transmission.

The functionality provided by the Android platform allows for the
development of mobile applications for remote monitoring and
failure risk forecasting of technical system components.

The developed mobile application is designed for use on mobile
devices with an Android operating system version, a screen size of
4.5 inches, and a resolution of 800 x 600 pixels or higher. The user
interface (UI) flexibility is achieved through:
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e Elements for color-coded interaction and dynamic visualization
upon activation.

» Options to adjust text block sizes, fonts, and styles via Typekit.

e Support for switching between screen tabs using an event-
handling method.

o Preference for flat design elements over skeuomorphic ones.

o Clarity and dynamic animations when rendering statistics in
graphical form.

o Partial blurring of background activity upon the appearance of
dialog boxes or informational messages.

e Placement of all functional elements on a single screen,
eliminating the need for vertical scrolling.

o An integrated intelligent keyboard for text data input.

The choice of a database management system (DBMS) for
developing and implementing the mobile application depends on
effective interaction with the mobile client application, complicated
by the wide array of available solutions. SQL.ite, with its built-in file
server support in Android OS, is advantageous for fully offline
operation.

However, the mobile application’s operations require continuous
connection to an external remote server.

DBMS solutions integrated with standard tools and supported
libraries enhance the speed and efficiency of the mobile application.

For long-term scalability based on evolving project requirements,
NoSQL databases may be selected.

To achieve the objectives, the mobile application includes tables
such as equipment, sensors, parameters, CTS equipment failure
probabilities, failure losses, forecast parameters, and log lists.

Data types in the application primarily consist of integers, real
numbers, and large registration data entries.

Based on the designed ER model, a concrete physical database
model was implemented using MySQL Workbench or SQL
Navigator.

Application usage scenarios are designed and illustrated using a
mobile application use-case diagram (Figure 2.13).
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Figure 2.13 — Use Case Diagram for the Mobile Application

The application’s functionalities include:

e Viewing information on CTS equipment damage.

o Assessing failure probability and structural/functional failure
risks.

e Searching the database by object name or unique ID.

o Local storage and generation of reports in PDF format.

e Building CSM.

e Modifying user interface settings.

o Viewing forecast results for CTS equipment conditions.

e Enabling and disabling monitoring, diagnostics, and
forecasting modules for CTS equipment.
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for server-transmitted data.
To formalize the class and object models of the mobile application

(MA), a project class diagram was developed, illustrating the

relationships between classes and their instances (Figure 2.14).
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72



STOCHASTIC MODELS AND METHODS FOR DIAGNOSING,
ASSESSING, AND PREDICTING THE TECHNICAL CONDITION
OF COMPLEX CRITICAL APPLICATION SYSTEMS

The MA is launched in a separate thread via the initApp method
in the Main class. The authorization procedure is handled by the
Autoriz class, which generates a graphical user activity interface with
login and password fields. Each class implements the following
functionalities:

e Monitoring, diagnostics, and forecasting.

e Building CSM graphs.

e Searching and viewing information from sensors monitoring
CTS parameters.

o Determining the probability of CTS equipment failures, failure
risks, and associated losses.

For a more detailed description of the MA, an activity diagram
was developed (Figure 2.15).

The objects in the diagram include:

o Client-Mobile Application: Interfaces with users for system
interaction and data visualization.

o External Server: Synchronizes, processes, and verifies
statistical data on the performance of CTS components.

e Management Server: Performs tasks related to data storage,
processing, backup, and data exchange with the external server and
data collection system.

o Data Collection System: Collects data directly from sensors
located on individual CTS components and transmits the information
to the CTS management server.

The MA is used to verify server activity and establish a
connection between the server and the client. It sends a package of
requests to check for key active updates in repositories, validate
authorization data, and retrieve technical and statistical information
about the operation of the CTS.

To implement the prototype interface and develop the program
code, formalized through UML functionality, an algorithm for MA
operation was developed (Figure 2.16).

The application installation package is downloaded to the mobile
device in *.apk format.

As a result, all components and dependencies of the application
are initialized, including checks for connectivity to wireless Internet
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access points using supported technologies (via the android.net
package) and operations of the remote server.

Subsequently, the data update visualization component on the
server is rendered.
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Figure 2.15 — MA Activity Diagram
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When such a procedure is implemented, a new process begins
installing the necessary packages and updating programs in the
background.

The user accesses the system via the login interface by entering a
username and password. Technical and statistical information about
the system components is then retrieved.

After this, the application transitions to the main form, entering
standby mode and user request mode. In these modes, the execution
of the program code is triggered through the respective event handler.

Upon closing the application, an additional dialog box is
displayed, offering the option to run the MA in the background. If the
user selects this option, the application runs in a separate process and
thread, and the GUI is unloaded from the mobile device's RAM.

If the application, already running in the background, is
relaunched, the background mode is terminated, and control is passed
for access verification to the application mode.

When the user initiates the final closure of the application in the
background mode, all actions performed are logged in the local
working directory copy of the mobile application.

If the server connection is active, data is sent to the server.

Afterward, the application is fully unloaded from the mobile
device’s main memory.

The amount of MA data stored in the corresponding Cache
directory must not exceed 2.5 megabytes.

Otherwise, a caching procedure will be initiated.

The developed MA consists of the following modules:

o Initialization of user interface components

o Verification of the current data module for the application
version

o Connection to the remote server module

o Building and visualization of the CSM system module

e Reporting module for transformation and export of statistics
and graphical data from applications

o Prediction module for creating and training an artificial neural
network using the backpropagation method, linear normalization
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function, and tangent activation function. The network is trained with
error value evaluation

o Visualization of statistical data

e Retrieval of data query implementation from the server
database

These modules form the core structure of the MA development
project.

They are stored in separate packages, which can be extended. The
prototype implementation of the software client interface is shown in
Figure 2.17.

Analytics
Search Field | searcn g
Active Sensors List
SensoriD1 Watch Info
SensorlD2 Watch Info >

Additional Information

Enable Monitoring v
Enable Prediction v
v
v

Economy Mode

@ Send report
Traffic Speed Value

470,5 kbis

Figure 2.17 — Mobile Client Interface Prototype
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The prototype was developed using the SaaS cloud service
fluidui.com and consists of three tabs:

e Analytics: Includes components for viewing the list of active
sensors, retrieving information, and managing the monitoring,
diagnostic, and predictive modules of CTS equipment. It also
supports logging.

e Monitoring: Features graphical components for the dynamic
visualization of parameters and system characteristics.

o Prediction: Contains a table of predicted risk values based on
the selected time period.

The developed MA project for monitoring, diagnosing, and
predicting the risk of CTS equipment failures is complete and
logically structured. During code development, it is advisable to use
Gradle configuration to accelerate the processes of refactoring,
profiling, and integration with the GIT version control system.

The developed MA simplifies the process of assessing the risk of
CTS equipment failures.

Additional content and functional enhancements to the project are
feasible through Android-Core interfaces.

As an alternative to the server side, it is recommended to use
modern cloud services and technologies based on laaS and PaaS
models.

The third point of scientific novelty is formulated as follows: an
improved cognitive simulation model that uses simulation shock
impulses, enabling the diagnosis of CTS equipment systems while
considering their interconnection and influence.
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2.3 Conclusions to the Second Chapter

In the second chapter, stochastic models and a method for
diagnosing the CTS of complex systems were developed.

The models reflect a new approach that takes into account
uncertainties and incomplete data of the modeled systems,
considering partial and complete failures of equipment operability,
the identification and visualization of structural and functional
vulnerabilities of subsystems, components, and elements of their
interconnections. The method of dynamic BBN was used for
modeling.

A stochastic model for diagnosing the CTS of complex systems is
proposed for the first time, which simultaneously considers the
presence of subsystems, components, and elements, their
interconnections, and the probability of partial or complete failure of
operability.

This allowed for the introduction of a method for diagnosing CTS
based on a Bayesian trust network for complex critical application
systems.

The method for diagnosing the CTS of complex systems based on
the Bayesian trust network has been further developed, enabling the
timely detection and visualization of structural and functional
vulnerabilities and improving the efficiency of complex critical
application systems.

To detect and visualize vulnerabilities of CTS equipment with
consideration for their mutual relationships and influence, uncertainty
and data incompleteness, partial and complete equipment failures, as
well as tracking the consequences and system responses to failure
risks with non-obvious sources, a cognitive simulation model for
diagnosing the risk of equipment failure was used. This model
employs simulation impact impulses.

An improved cognitive simulation model has been developed,
which applies simulation impact impulses, enabling the diagnosis of
CTS equipment in systems, considering their mutual connections and
influences.
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CHAPTER 3

RESEARCH AND ANALYSIS OF STOCHASTIC MODELS
AND METHODS FOR DIAGNOSING THE TECHNICAL
CONDITION OF COMPLEX CRITICAL SYSTEMS

3.1 Research and Analysis of the Stochastic Structural Model and
Method for Diagnosing the Technical Condition of Complex
Critical Systems Using the Dynamic Bayesian Network Method

The purpose of studying the developed conceptual stochastic
model for risk diagnosis of CTS failures (Section 2.1) is to identify
vulnerable FE and FC of the system, considering their partial and
complete failures.

Reducing the problem of diagnosing the risk of FE and FC
failures in CTS to constructing a Bayesian Network Model (BNM)
enables the use of the algorithmic apparatus of BNM theory and
software tools like GeNle.

In this case, the comprehensive monitoring of failure risks
(probabilities) of FE and FC in CTS, hidden variable characteristics,
and their necessary visualization are addressed using the developed
model from Section 2.1.

In the diagnostic model, BNMs are employed to estimate the risk
(probability) of failure for FE and FC of the system.

This is based on its operating principles and expert data (sourced
from the OREDA database).

The model determines the failure risk for each CTS component,
considering the current and previous technical states related to the
risk of failure identified for each interconnected FE in the system.

The research focuses on a ship's critical CTS—its propulsion plant
(PP). The structure of the dynamic BNM was developed with
consideration of the layout and operating principles of the PP,
consisting of seven levels and seventeen nodes.

Table 3.1 presents the designations for PP equipment, the
hierarchical level numbers, and the weight of each subsystem
(component, element) within the dynamic BNM of the PP modeled in
the GeNle environment.
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Tabmuia 3.1 Symbols of subsystems, components of the SPP

Subsystem Subsystem

(Component) Hierarchical Subsystem (Component) (Component)

Number Level Number MName Symbol Weight

1 1 Input Element IE 0.26

2 2 Firefighting System FFS 0.01

3 2 Compressed Air System CAS 0.047

4 2 Main Engine Manual MCME 0.035
Contral

5 3 Control System 5 0.081

6 3 Main Engine Remote RACSME  0.01
Automated Control
System

7 3 Intermediate Component P1 0.01

8 3 Ship Power Plant SPP 0.09

9 4 Main Engine ME 0.16

10 4 Ballast Drainage System BDS 0.019

11 4 Emergency Drive ED PSC 0.01
Propulsion and Steering
Complex

12 4 Propulsion and Steering CSPSC 0.081

Complex Control System
13 4 Boiler Plant BP 013

14 5 Power Transfer from Main TPMEP 0.003

Engine to Propeller

15 5 Intermediate Component P2 001

16 6 Propulsion and Steering PSC 0.01
Complex

17 7 Output Component EXIT 0.26

The modeling was conducted using the traditional "top-down" and
"bottom-up" approaches, based on the model's prior characteristics.
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The following assumptions and constraints were adopted during
the modeling process:

e The FE and FC of the CTS are in either partial or complete
failure states;

e At the initial time, the FE and FC of the CTS are in a
functional state;

e The current technical state of each FE and FC of the CTS
depends on their current and previous technical states;

o Time is discrete, with a step size of one hour.

When modeling the DBN of the SPP (Fig. 3.1), for various values
of the probability (risk) of failure of the input subsystem, the
probability (risk) values for the failure and operability of the FE and
FC of the SPP were determined over 20,000 hours of operation.

Figure 3.1 shows the BNM of the SPP for modeling and
diagnosing the failures of FE and FC at an input element failure risk
of 0.26, displaying the operational state and failure risk level of each
FE and FC of the SPP.

Fragments of operational states and failures, for example,
subsystems CS and SPP, located on the third level of the BNM and at
the output of the model, are shown in Fig. 3.1.

Similar studies were conducted for an input element failure risk of
0.49, showing the operational state and failure risk level of each FE
and FC of the SPP (Fig. 3.2).

Figures 3.3 and 3.4 present the calculated values of conditional
probability and failure risk for the FE and FC obtained from
modeling results for 2,863, 8,616, 13,079, 16,726, 19,809, and
20,000 hours of SPP operation, respectively.

Figures 3.5 and 3.6 present the calculated values of the probability
and risk of failure for the FE and FC obtained from modeling the
operation of the SPP over 20,000 hours in the GeNle environment.

Retrospective analysis of the study results identifies FEs that are
in partial or complete failure states.
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Figure 3.1 - BNM of SPP in GeNle environment for modelling FE
and FC failures at the risk of input element failure of 0.26
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In studying emergency situations and analyzing CTS events, the
primary objective is to determine the causes of FE and FC failures.

t IE MCME s CSPSC BP SPP FFS ME  RACSME BDS TPMEP  EDPSC
0,26 0,07 0,05 019 0,34 0,14 0,02 0,36 0,02 005 0003 0,0
0 02 0,07 0,05 019 03 014 0,02 0,36 0,02 005 0003 0,0:

2863 0,300015 0,080773201 0,057695144 0,219242 0,392326977 0,161546 0,023078 0,415405 0,023078 0,057695 0,003462 0,023078057
8616 0,400007 0,107694148 0,076924391 0,292313 0,523085859 0,215388 0,03077 0,553856 0,03077 0,076924 0,004615 0,03076975€
13079 0,500012 0,134618553 0,096156109 0,365393 0,653861541 0,269237 0,038462 0,692324 0,038462 0,096156 0,005769 0,038462444
16726 0,600031 0,161546858 0,115390613 0,438484 0,784656167 0,323094 0,046156 0,830812 0,046156 0,115391 0,006923 0,046156245
19809 0,700036 0,183471206 0,13462229 0,511565 0,915431572 0,376942 0,053849 0,96928 0,053849 0,134622 0,008077 0,053848916
20000 0,706753 0,190279728 0,135914091 0,516474 0,924215822 0,380559 0,054366 0,978581 0,054366 0,135914 0,008155 0,054365637

Figure 3.3 - Conditional probabilities of failure of FE and FC of SPP

; IE MCME s CSPSC BP SPP FFS ME RACSME BDS TPMEP EDPSC
0,26 0,035 0,047 0,081 013 0,09 0,01 0,16 001 0018 0003 0,01
0 026 0,035 0,047 0,081 013 0,09 0,01 0,16 001 0019 0003 0,01

2863 0,300014747 0,040386601 0,054233435 0,093466133 0,150007 0,103851 0,011539 0,184624 0011539 0,021924 0,00462 0,011539
8616 0,400006834 0053847074 0072308928 0124617514 0,200003 0,138464 0,015385 0,246158 0,015385 0,029231 0,004615 0,015385
13079 0,500011766 0,067309276 0,090386742 0,15577289% 0,250006 0,173081 0,019231 0,3077 0019231 0,036539 0,005769 0,019231
16725 0,600001185 0,08076939 0,108461753 0,186923446 0,300001 0,207633 0,023077 0,369231 0,023077 0,043846 0,006323 0,023077
19808 0,700000907 0,094230891 0,126538626 0218077206 0,35 0,242308 0,026923 0,43077 0026923 0,051154 0,008077 0,026923
20000 0,706753275 0,095139864 0,127759246 0,220180828 0353377 0,244645 0,027183 0,434925 0,027183 0,051647 0,008155 0,027183

Figure 3.4 - Failure risk of FE and FC of SPP

0.8

Figure 3.5. - Failure probabilities FE and FC for 20,000 hours of
operation of SPP
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Figure 3.6 - Failure risk of FE and FC for 20,000 hours of operation
of the SPP

The research results indicate that one of the highest failure risk
values, 0.35, occurs when the input element failure risk varies from
0.26 to 0.70 over 20,000 hours of subsystem operation in the BP
subsystem (Fig. 3.6).

This subsystem is interdependent on the functioning of other SPP
subsystems (IE, CAS, SPP).

The maximum failure risk value of 0.43 was recorded when the
input element failure risk varied from 0.26 to 0.70 over 20,000 hours
of operation in the ME subsystem. This is explained by the
significant influence on the ME's technical state by its interconnected
subsystems: IE — CAS — RACSME, IE — MCME - P1, and IE — CAS
—P1.

To identify the potential causes of BP failures, a study was
conducted using the BP subsystem failure cause investigation scheme
shown in Fig. 3.7. The factors influencing the technical state of the
BP subsystem are indicated in Fig. 3.8.
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Figure 3.7 - Scheme of searching for the causes of failure of the BP
subsystem
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Figure 3.8 - Factors affecting the BP vehicle

The search for the causes of failures of the BP subsystem of the
dynamic BNM was performed in accordance with the algorithm
shown in Fig. 3.9.

When searching for the causes of failures of the BP subsystem for
FE of the SPP BNM (Fig. 3.9), IE, CAS, SPP, BP: IE - CAS, CAS -
SPP, SPP - BP are sets of failure risk at the initial time point and

taking into account the dynamics of the TC in time based on a priori
data on the intensity of failures:

RWork!224), , =0; R(Not _work;3s1s), o =1;

1,3,8,13/7t=0

2,34 -0 -
R(\NorklEfCAS,CAsfsPP,SPPfBP)t:O - O ’

R(Not _ work |2 E’?:’éAS,CAS—SPP,SPP—BP o =1; 3.1
R(Work;Z5:5), /Works25), ) =0.1;

2,34 2,34 —
R((\NorklE—CAS,CAS—SPP,SPP—BP t /(VvorkIE—CAS,CAS—SPP,SPP—BP)t—l) - Oll
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Figure 3.9 - Algorithm for finding a fault in the BP subsystem

Failure risk sets at the current moment of time, taking into account
the previous FE and FC, may be within the limits:

- the level of failure risk is assessed as minimal, the consequences
of an accident are minimal for:

R((Not _work;Zs:%), /(Work;Z5:%),1) =01—0,2;
R((Not _work*!

(3.2)
CAS,CAS*SPP,SPP—BP)t /(\Norkflé:iéAS,CAS—SPP,SPP—BP)t—l) = 011_0’2
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- the risk of failure is assessed as acceptable, the consequences of
an accident are insignificant at:

R((Not _work;29:%), /(Work29%), ) =0,2—0,37; (3.3)

R((NOt work I2E3CAS CAS—SPP,SPP— BP)t /(\NorkIlliéAS,CAS—SPP,SPP—BP)l—l) =0,2-037
- the risk of failure is assessed as maximum, the consequences of
an accident are significant at:

R((Not _work;55:3), /Worky33:5%),,) =0,37—0,63;  (3.4)

R((Not _work |253 CAS ,CAS—SPP,SPP— st /(\NorkiLEg—éAS,CAS—SPP,SPP—BP)t—l) =037-0,63
- the risk of failure is assessed as critical at:
R((Not_work;23:%), /(Work; 2 5:%), ) =0,63—1; (3.5
R((NOt_Worklzé:i’éAS,CAS—SPP,SPP—BP t / (Vvork;LI’iéAS,CAS—SPP,SPP—BP)t—l) =063-1

ailure risk allocation of FE and FC in a dynamic failure-adjusted
BNM is as follows:

- for the distribution of the risk of failure of the BP of the SPP:
RMWork), = R((Works), /Work), ;) R(Work?), , - ROWork?),, - RWorks), , x
XR(\NOI’ 3)t—l R(\/\IorklE CAS /t-1 R(VvorkCAS—SPP)t—l' R(\NorkSPP—BP)t—l
+R(Work), = R((Work_,), /(Not_work}), ,)- RWork), , - RWork?), , - RWork2), , x
X R(NOt Work 3)t -1 R(VvorklE CAS /t-1 R(Vvork3 CAS - SPP)t -1 R(VvorkgPP BP)t -1
+R(Work,;), = R((Worky,), /(Work3), ,) - R(Not _work), , - RWork?), , - RWork?), , x
x R(\Nork13)t -1 R(\NorklE£AS -1 R(\NorkCAS SPP)t -1 R(VvorkSPP ppha T
+R(Worky}), = R(Worky), /(Work), ,)-RWork?), , - R(Not _work?), , - R\Work?), , x
x R(\/\lork13)t =) R(\NOFk,E cAs Jt-1 R(\NorkCAS—SPP)t—l : R(\NorkSPP—BP)t—l
+R(Worky), = R(Worky,), /(Worky}), ,)- RWork;), , -RWork?), , - R(Not _work?), , x
x ROWorky), 5 - RWOTKE cus)r s - RIWOTK g oop), o - RWOrkS, ), 4+ (3:6)
+R(Work.}), = R(Work}), /(Work;3), ) - RWork}), , - RWork?), , - RWorky), , x
x R(Work 3)1 - R(Not _ WorkIE cas Jt-1 R(\NOI’k cas-spp)it R(Workspp sl ¥
+RWork), = R(Work,}), /(Work%), ,)- RWork,), , - RWork2), , - R(Worky), , x
xR(\NOI’k 3)1_1 R(\NorkIE cas Jt-1 R(NOt_WOI’k CAS— SPP)t—l R(\Norkspp BP)t at

90



STOCHASTIC MODELS AND METHODS FOR DIAGNOSING,
ASSESSING, AND PREDICTING THE TECHNICAL CONDITION
OF COMPLEX CRITICAL APPLICATION SYSTEMS

+RWorkg,), = R(Workys), /(Work;s), ,)- RWork; ), , - R(Work; )., - RWorkg); x
x R(Vvorkg)t—l. R(\Norklefms t-1° R(VvorkéAS—SPP)t—l ’ R(NOt_WOFkgpprP)tfl
- o distribute the risk of failure of the SPP:
R(Workg), = R(Workg), /(Workg), ;) - RWork;), ; - RWork;), ; x
x R(\Norkg)t—l - R(Work I2E—CAS t—1° R(\NorkgAS—SPP)t—l +
+RWork?), = R((Work?), /(Not _work?), ,)- R(Work;), , - RWork?), , x (3.7)
x R(NOt_WOI‘kBS)Fl -R(Work IZE—CAS 1" R(VvorkgAsfspP)tfl +
+R(Work?), =R((Worky), /(Works), ,)- R(Not —work), , - RWorkZ), , x
x R(Vvork:)t—l : R(\Norkle—CAS t1° R(VvorkgAS—SPP)t—l +
+RWork?), = R(Work?), /(Worky), ,) - R(Work}), , - R(Not _work?), , x
x R(Vvork:)t—l : R(\Norklefc,As t-1 " R(VvorkgAS—SPP)t—l +
+R(Workg), = R(Workg), /(Workg), ;) - RWork;), , - RWork3), ,
x R(Vvorkg)t—l -R(Not _Workle—CAS t-1° R(\NorkgAS—SPP)t—l +
+RWorkg), = R(Worky), /(Works), ;) - RWork;),_, - ROWork;),_;
x R(\Norkg)t—l : R(\Norkle—CAS t-1 " R(NOt_WorkgAS—SPP)t—l
- to distribute the risk of CAS failure of the SPP:
RWork?), = R(Work?), /(Work?), ,)- RWork?), ,- RWorkZ), - RIWOrkE ), +(3.8)
+ R((Vvork;)t /(NO'[_WOI’|(32)H) ' R(Vvorkl:_l)t—l : R(NOt_Works)t—l : R(Worklefu\s )t—l +
+R((Work?), /(Work?), ,) - R(Not _work;), , - RWork?), , - RWorkz cus),, +
+ R((\Norkf)l /(Vvorkiiz)t—l) . R(\Alork]:}-)t—l : R(\Nol’k32)171 : R(NOt_Worklefoxs )171
- to distribute the risk of failure of the SPP input component:
R(Work}), = R(Work), /(Work?),_,) - RWork?), , + (3.9)
+ R((Work;) /(Not _ work}), ,)- R(Not _work;), ,
The use of BNM in the process of diagnosing the risk
(probability) of FE and FC failures aims to obtain posterior

conclusions.
This is achieved by recalculating prior data to assess the risk or

failure probability values, which serve as the initial information for
analyzing new data.
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Posterior conclusions are based on the results of data analysis
processes obtained through the application of BNM.

Following modeling with prior and posterior data, the
probabilities (risks) of FE and FC failures in the SPP, which affect
the main engine's operability and the overall system performance
over various time intervals within 20,000 hours, are determined
(Figs. 3.10-3.32).
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Figure 3.10 - A posteriori and a priori estimates of the probability of failure
of the MCME subsystem
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Figure 3.11 - Posterior and a priori estimates of the probability of
failure of the IE subsystem
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Figure 3.12 - A posteriori and a priori estimates of the probability of

failure of the CS subsystem
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Figure 3.13 - A posteriori and a priori estimates of the probability of

failure of the BP subsystem
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Figure 3.14 - A posteriori and a priori estimates of the probability of

failure of the CSPSC subsystem
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Figure 3.15 - Posterior and a priori estimates of the probability of
failure of the SPP subsystem
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Figure 3.16 - A posteriori and a priori estimates of the probability of
failure of the FFS subsystem

0,15

01

o

0,05

0
dTed T T AT oo
OO T NN O XRRONT NN AN OWNT M
\.DmDf‘-d‘meNmmwamohﬂ‘n—(wgHCDI-DNG’)\DM
HANANMNMFT TN OO0 A A NMM NN O~~~ O
A A A A A A A A A A A A A

= BDS a posteriori ====BDS a priori

Figure 3.17 - Posterior and a priori estimates of the probability of
failure of the BDS subsystem
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Figure 3.18 - A posteriori and a priori estimates of the probability of
failure of the ME subsystem
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Figure 3.19 - A posteriori and a priori estimates of the probability of
failure of the ED PSC subsystem
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Figure 3.20 - Posterior and a priori estimates of the probability of
failure of the RACSME subsystem
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Figure 3.21 - A posteriori and a priori estimates of the risk of failure
of the SPP input component
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Figure 3.22 - A posteriori and a priori estimates of CSPSC subsystem

failure risk
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Figure 3.23 - A posteriori and a priori risk assessments of FSS
subsystem failure
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Figure 3.25 - A posteriori and a priori estimates of the risk of failure

of the MCME subsystem
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Figure 3.26 - A posteriori and a priori risk assessments of ME

subsystem failure
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Figure 3.27 - A posteriori and a priori risk assessments of SPP
subsystem failure

0,03
0,025
0,02
@« 0,015
0,01 —
0,005

e RACSME a posteriori = ==—RACSME a priori

Figure 3.28 - A posteriori and a priori risk assessments of the
RACSME subsystem failure
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Figure 3.29 - A posteriori and a priori risk assessments of the BDS
subsystem failure
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Figure 3.30 - A posteriori and a priori estimates of the risk of failure
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Figure 3.31 - A posteriori and a priori risk assessments of the
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Figure 3.32 - A posteriori and a priori risk assessments of ED PSC

subsystem failure
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It has been confirmed that the most critical FE and FC with the
highest predicted probabilities and risks of failure are BP and ME.
Since the BP and ME subsystems are interdependent within the
hierarchical structure of the SPP, a thorough examination of the CTS
was conducted to identify the causes of the high risk (probability)
values for their failures.

The use of dynamic BNM enabled the diagnosis of the probability
(risk) of CTS failures during the modeling of interdependencies
between different failure probability (risk) values.

The results of developing the CTS diagnostic model with
incomplete technological data and its implementation in an intelligent
system for diagnosing the risk of FE and FC failures in critical MPP
applications provided prior information about the technical state of
each subsystem (component) of the complex system.

Posterior characteristics obtained from the study results during
the diagnosis of the TS of the SPP over 20,000 hours of operation
show that the risk values of FE and FC failures vary slightly from the
prior characteristics. This does not contradict the expert failure risk
values for FE and FC of the ship's CTS recorded in the OREDA
database. The TS indicator for the CTS and its FE and FC—posterior
failure risk—is focused on making a reliable conclusion about system
failures and their FE and FC.

The calculation of the posterior distribution of variables provided
reliability assessments for the CTS to minimize losses from
subsystem (component) failures and reduce the probability of
erroneous decisions. The studies confirmed that the developed model
and method, considering the hierarchical levels of FE and FC for
intelligent diagnostics of CTS failure risks and identifying the causes
of failures, allow for monitoring the risk (probability) of failures as
new information becomes available about FE and FC failure risks in
the current and future periods over 20,000 hours.

An intelligent diagnostic method for FE and FC failure risks in
CTS with varying degrees of operability loss and incomplete system
data was developed using the CPP as an example. This method relies
on prior information about failures linking the types of TS of FE and
FC.
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The diagnostic results reflecting the failure risks of FE and FC
confirmed that the model can be considered conceptual. Thus, the
studies demonstrated that the developed stochastic model and
diagnostic method of TS, which account for partial and complete
operability losses with retrospective analysis of their causes,
identification of the most vulnerable FE and FC, and implementation
of appropriate measures, enable the exclusion or reduction of repeat
failures. This approach fulfills the task of improving the efficiency
and reliability of FE and FC operation in CTS.

The practical implementation of the proposed method for
assessing FE and FC failure risks in SPP can be extended to any CTS
structure of any complexity with varying interdependencies between
FE and FC.

3.2 Research and Analysis of the Cognitive Simulation Model for
Diagnosing the Technical State of Complex Critical Systems

The studies in Section 3.1 enabled the diagnosis of FE and FC
failure risks in CTS but did not address the functioning of systems in
extreme emergency situations. To diagnose the TS of equipment
systems considering their interconnections and interactions, as well
as to track system responses to failure risks with non-obvious causes,
a cognitive simulation model was developed.

Cognitive simulation modeling complements the results obtained
in Section 3.1 by studying models and methods for diagnosing FE
and FC failure risks under simulated impacts in unpredictable
external conditions and internal damaging factors in extreme
emergency situations.

The goal of cognitive simulation modeling is to generate and test
hypotheses about CTS failure risks and derive FE and FC failure
risks that explain the causes of CTS failures. One advantage of the
CSM-based information system for CTS is its ability to process
scenarios with varying probabilities of failure, addressing "What if?"
guestions.

The studies consider both the position and role of FE and FC in
CTS and the risk (probability) of their failures under  defeat
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modelling pulse (DMI) impacts. The influence of DMI on the system
is modeled as closely as possible to reality. This allows for evaluating
possible scenarios of development and consequences of FE and FC
failures in CTS. DMI propagates from the affected FE (a node in the
digraph) to adjacent FE (nodes), transitioning them to a failed state.
Each node and edge in the CTS digraph in CSM has a failure
indicator ranging from 0 (failed) to 1 (operational). DMI is modeled
as an impulse vector containing DMI values, indicating the degree of
impact on the respective node in the digraph, ranging from 0 (node
remains unaffected) to 1 (node completely fails). It is assumed that
DMI propagates along the edge between two nodes in the digraph
within a discrete time period.

To achieve the research objective of diagnosing CTS failure risks
and identifying causes of FE and FC failures using the method
implemented in CSM, software was developed. The listing is
provided in Appendix G.

The studies utilized a digraph of an ICE as an example, as shown
in Section 2.2 (Fig. 2.4). The model was activated using GNU Make
tools, and visualizations were generated with Graphviz. The
modeling process has the following structure (Fig. 3.33): the initial
model is defined as a JSON file, which is processed by a Python
program to generate a set of tables in CSV format and diagrams in
DOT format. The Make utility processes DOT files using Graphviz
to produce a set of TS diagrams for the complex system in PNG
format.

For the analysis of obtained results, Calc LibreOffice is used.
Utilizing the JSON format allows for conveniently and efficiently
defining the structure and configuration of available equipment.

One of the advantages of working with the JSON format is the
ability to formalize the complete system specification (with
numerical characteristics of nodes, configuration, and the digraph of
inter-node connections) within a single file.

The JSON file can be edited manually using text editors or via
automated tools for data collection and processing.

The propagation of diagnostic impulses through the system can be
represented graphically or as CSV-based scenarios.
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Figure 3.33 - Modelling process in the Debian GNU/Linux
environment

This process generates a separate intermediate protocol file for
step-by-step  DMI propagation, as well as a final CSV file
summarizing the protocols and calculating numerical failure risk
metrics for various system changes.

The generated CSV files contain calculated characteristics for any
FE of the CTS based on the specified topology.

These CSV files can be used in various analytical software tools,
such as spreadsheet editors (e.g., Microsoft Excel or LibreOffice) or
advanced visualization systems like Gnuplot, R, Statistica, or
Seaborn.

By combining JSON, CSV, and DOT formats, the system
manages configuration and analyzes the CTS considering different
aspects, including visual, automated, and their combinations.
Preliminary analysis of the obtained characteristics can be performed
visually using DMI propagation diagrams.

Methods employing automated behavior utilize CSV files to
numerically analyze system characteristics and generate and evaluate
solutions.

Thus, the method for diagnosing FE failure risks under various
operating conditions within the CTS framework is based on
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describing the state functionalities and the CSM of the system's
structural FEs.

This enables an assessment of the operational level of CTS FEs
based on DMI impacts on the CSM, as well as the influence of
corresponding FEs on the overall system structure under different
emergency scenarios.

The values of the DMI vector are determined sequentially before
each iteration of its propagation across all vertices and edges of the
MTS CSM digraph.

If the DMI does not reach the terminal vertices of the digraph, the
next computational iteration is performed.

In such cases, the obtained DMI vector values are recorded in a
text file and can later be used to assess the structural failure of the
CSM TS along the edges or vertices of the constructed digraph.

After completing the cycle for evaluating the structural failure risk
of the CTS CSM, the text file is analyzed.

Based on the obtained DMI vector values, calculations are
performed to determine the coefficients of structural threats and
failure risks, which are displayed in the program window and added
to the text file.

The simulation results in the CSM form values for structural loss
assessments and failure risks based on the probabilities of FE and FC
failures in the ICE. These results are used for ranking the calculations
(Figs. 3.34-3.37).
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Figure 3.34 - Ranking of the results of structural damage values FE
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The research results demonstrate that the application of DMI
significantly influences the process of its propagation across the CTS
CSM digraph.

Taking into account such structural features of the digraph as
connectivity, the presence of loops, vertex vulnerability, and the type
of FC resource, the most connected FEs of the digraph affected by
the FCs were identified.

The findings on structural losses of ICE FEs indicate that the most
critical FEs are the battery, ignition system, and combustion
chamber, with high structural damage values resulting from failures
(1.0, 0.85, and 0.75, respectively).

Less critical elements include the transmission system and the
driving wheels, which show slightly lower structural damage values
from failures (0.15 and 0.05).

Among the least vulnerable ICE FEs and subsystems is the fuel
injection regulator (0.02). Comparatively low structural failure risk
values for CTS FEs are attributed to minor structural damage caused
by equipment failures.

This confirms the correctness of the topology design for the
arrangement of ICE FEs and FCs during the system's development.

The developed CTS CSM substantiates the feasibility of using
DMI for diagnosing the failure risk of FEs and FCs in CTS.

The advantages of the developed CSM include its simplicity,
clarity, and applicability for diagnosing the failure risk of a wide
range of CTS.

The CSM procedures are easily formalized and transformed into
computational algorithms and models for diagnosing failure risk,
which is particularly important for CTS with a large number of FEs
and FCs.

Thus, the conducted research revealed that the developed CSM
reflects a direct relationship between the failure risk of CTS FEs and
FCs and the system's topology. It also enables the identification of
the least functional FEs and FCs, whose operation significantly
impacts the system's performance, efficiency, and reliability.
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3.3 Conclusions for Chapter three

In Chapter three, the results of research and analysis of stochastic
models and the method for diagnosing complex CTS systems were
presented.

The goal of the research on the developed models is to diagnose
CTS vulnerabilities, including subsystems, components, elements,
and their interconnections over time, considering partial and
complete functionality failures. The chosen object for the study was
the ICE.

The input data for modeling failure risk (probability) diagnostics
based on the CTS CSM include the object's schematic and operating
principles, as well as expert evaluations. Cognitive simulation
modeling was conducted to simulate the impacts on CTS equipment
under unpredictable external influences, internal damaging factors,
and extreme emergency scenarios. During the modeling process, a
damaging impulse was applied to the system in conditions as close as
possible to real-world CTS operating environments. The cognitive
simulation modeling was implemented through the development of
specialized software.

The procedures of the method are easily transformed into a model
for diagnosing failure risk (probability), which is crucial for CTS
with a large amount of equipment.

This approach enabled the tracking of consequences and CTS
responses to failure risk (probability) from less apparent sources and
causes. Using the method for diagnosing failure risk (probability) in
CTS equipment allows for the identification and visualization of
structural and functional vulnerabilities.

Methods for intelligent failure risk diagnostics of subsystems,
components, and elements under various CTS conditions and
incomplete data, using technical and technological foundations, were
confirmed through the example of ICE.

The developed models can be considered conceptual. Applying
the research results of the developed models, along with retrospective
analysis of emergency scenarios, enhances the effectiveness of CTS
diagnostics and, consequently, the efficiency of CTS operation.
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CHAPTER 4

DEVELOPMENT OF A METHOD FOR ASSESSING AND
PREDICTING THE TECHNICAL CONDITION OF
COMPLEX CRITICAL APPLICATION SYSTEMS

4.1 Development of an assessment and prediction method based
on the case-based reasoning method for the technical condition of
complex critical application systems

The growing complexity of technical systems, the diversity of
their parameters, and the inadequacy of system descriptions require
the improvement of management decisions under conditions of
uncertainty to ensure the efficiency and reliability of FE and FC
systems, based on the results of assessing and predicting their TC.

In order to improve the operation of shipboard critical application
systems (CAS), decision-making becomes more complex due to the
need to account for a significant number of various factors.

Primarily, this includes the need for a large volume of information
about the system; accounting for the mutual influence of FE and its
parameters on one another; partial and total failures.

When operating CAS, an important task remains the development
and improvement of methods aimed not only at diagnosing the
system but also at assessing and predicting the system’s technical
condition.

That is, the development of 1IS for assessing and predicting the
technical condition of FE and FC of shipboard CAS under adverse
impacts and disturbing factors is one of the promising directions for
ensuring the efficiency and safety of such technical systems.

Based on the analysis of methods for assessing and predicting the
technical condition of FE and FC of CAS, the method of structural
representation was selected due to its advantages, including: the
ability to formalize the nature of interconnected hierarchical
interactions between FE systems; effective application for CAS
operating under stochastic conditions; flexibility in implementing a
production approach for the formation of knowledge bases in 1IS;
ease of software implementation based on an object-oriented
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approach; and the support for integrating automation tools to ensure
interactive interpretation of results.

For the practical implementation and operation of the IIS, it is
necessary to link the proposed models and methods (Sections 2 and
3) with heterogeneous a priori information, which includes indicators
for diagnosing the technical condition of complex systems, along
with an expert system containing computational, experimental, and
expert data obtained during the operation of the CAS.

The development of a case-based reasoning method for the
technical condition of complex critical application systems includes
the following stages:

1. Representation of a case with a set of parameters with

specific values and decisions.

2. Input of diagnostic data for the technical condition of a
complex critical system into the 1IS for assessing and
predicting the technical condition of the system.

3. Obtaining assessment and prediction data for the technical
condition of the complex critical system.

4. Transmitting assessment and prediction data for the technical
condition of the system to the decision-making process.

1S can be implemented either as standalone solutions or as
modules that complement ready-made general-purpose management
and decision-making systems with the necessary functionality.

These systems will enable the operational decision-making
process during the removal of consequences from adverse impacts
and disturbing factors, ensuring the effective operation of shipboard
CAS through the ability to assess and predict their technical
condition [155, 157].

The implementation of the strategy in the 1IS for assessing and
predicting the TC of complex systems (Fig. 4.1) is ensured by
targeted actions in accordance with the 1S algorithm (Fig. 4.2) to
find failures in FE and FC based on failure risk assessments.
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Analysis of the results of assessing the technical condition of the
1S

Figure 4.1 - The strategy of the 1IS in assessing and predicting the
TC of complex systems
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The foundation for constructing the IIS is the formulation of the
decision-making task in general terms:
N = f(F,G,A FR,SG,P,C,PC,NS), (4.2)

where: F — the number of failures in the FE and FC of the CAS;

G — the set of set goals;

A — the set of possible alternatives;

FR — the set of failure rates in the FE and FC of the CAS;

SG,P,C — the set of characteristics, advantages, and criteria for
ensuring the reliability of FE and FC of the CAS;

PC - the set of coordination principles for evaluating
alternatives, taking into account individual criteria;

NS — the required solution to the problem.

The priority F represents the evaluation of the utility of the
method for achieving the goal.

This is specified without distinguishing the features on which it
was made or without the characteristics SG. The characteristics
include the degree of achievement of the goal. To make the final
choice of the method for achieving the goal, it is necessary to
formulate criteria, the number of which is determined by the number
of features. If the 1IS uses multiple criteria, it is necessary to apply
the coordination principles PC to harmonize the evaluation of
alternatives for each criterion.

The problem-oriented knowledge base model in 1IS is based on
the following lists:

FE and FC that affect the failure-free operation of the CAS;

The state of the CAS during failure-free operation of the FE
and FC systems;

Factors that can change the current reliability of the CAS;

Problem states that the CAS may enter under the influence of
equipment failures.

The knowledge base is represented as a five-level hierarchical tree
(Figure 4.3). Considering the hierarchical structure of the knowledge
base allows for the quick localization of the cause of a defect or
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failure and reduces the time for assessing the technical condition of
the complex system.

Knowledge acquisition and addition occur automatically during
the training and implementation of the expert system. Knowledge is
provided by an expert and is also adapted to changes in the subject
area and its operational conditions.

This is achieved by replacing the rules or information in the KB
within the 1IS.

The main limitations of the methods and technologies currently
used in the 1IS relate to solving complex formalized problems due to
the insufficient effectiveness of: solving training tasks, tuning, and
adapting to the problem domain; processing incomplete and
inaccurate input information; data interpretation; and accumulation of
expert knowledge. These limitations in the IIS are eliminated by
using the case-based reasoning (CBR) method [162].

— Problematic elements,
components- C,

—» Reliable operation of CTS in the
absence of failures of elements,
components - C,

—# Failures of elements,
components CTS - C3

Risks of CTS failures as a result
of failures of one or more
elemets, components - C 4

Level 4

" Llevel 5 - /

Figure 4.3 - Multi-level hierarchical structure of the knowledge base
tree

The body of knowledge on assessing

st the risk of failure of elements,
components of the CTS, making decisions
on eliminating failures
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The development and research of I1S using CBR, with the aim of
increasing the effectiveness of the implementation of learning
mechanisms and adaptation to the specifics of the problem
environment for the relevant specific applications, as well as
increasing the effectiveness of decision-making in DM based on the
results of evaluation, forecasting of TC of complex systems is
relevant.

Such development and research was carried out taking into
account: partial and complete failures of FE and FS performance; a
precedent model of knowledge based on a vehicle dynamics model
from a serviceable state to complete failure. The TC dynamics model
takes into account cause-and-effect relationships and the hierarchical
structure of the TC, which consists of: elements (E); components (C);
subsystems (S).

The description of the problematic situation during the operation
of the CTS consists in the consequences of partial or complete loss of
FE and FS of a complex system.

When using the method of reasoning based on precedents for the
representation of precedents, a fairly simple parametric
representation, i.e. presentation of a precedent in the form of a set of
parameters with specific values and decisions (estimates, TC
forecasts and recommendations to the person making the decision):

CASE = {;R.P.a.n-'_:' wr . RE,SS, RF,FF,DR), (4.2)
)

Elnim i L

where R,P,D are parameters (risk, probability, loss) describing the
precedent;

RiRS(CvE)n(m)’RIS(C)a(Z)} - sets of FE and FS CTS failure risk

assessments and a decision maker recommendations;

PP,

S(C.E)n(m)’ P's(c)a(z) }

probability estimates and a decision maker recommendations;

- sets of FE and FS CTS failure
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DiDS(C'E)n(m),D,S(c)a(z)} - sets of estimates of losses from

failures of FE and FS CTS and recommendations of a decision
maker;

f

Vs (c.Bmem assessments of working capacity (partial or full)

of FE and recommendations of a decision maker;

f

a)IS(C)a(z)

full) of the FS and recommendations of the OPR:

- evaluations of the operational capacity (partial or

RE — sets of refined specific estimates of parameters of TC FE and
FS CTS, decision-making (re,...rey € RE);

SS - saving a set of refined estimates of parameters of TC FE and
FS STS, adopted decisions;

RF - sets of refined certain predicted values of parameters of TC
FE and FS of CTS, decision-making (rf,...rfy € AF);

FF - preservation of a set of refined forecasted values of TC
parameters FE and FS of TC, adopted decisions;

DR - diagnosis and recommendations of a decision maker [38]

Rs(c,e)n(m) :{rs(c,e),,(m) | S(C, e) = 11 S(C, E): ns(c,e) :11 NS(C,E) ’ms(c) :11 MS(C)}' (43)

R ={r  |iy=Llge a=LAz=127}

s(ca(z) is(‘3)21(2)
where rS(C,E)n(m) - is the risk of failures of FE CTS;
. the risk of FC CTS failures;

is(c)a(z

N,y - FE number in CTS;
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M.y - the number of the hierarchical level of FC CTS;

Ns ¢,z - number of FE CTS;

Mg, - the number of hierarchical levels of FC CTS;

S,C,E-FECTS;

Is, Ic - FC CTS;

n, m — number, hierarchical level in the CTS;

a — number of intercomponent communication;

z - is the number of intersystem communication.

A - the number of intercomponent connections;
Z - is the number of intersystem connections

P it A5 by D5 gy Tsie.a) ~ (4.4)
S(CE)m) ( )S(c,E)n(m) - T =0k
exp( As(C By S(C,E)n(m))
A (t) = als(c)a(z) . exp(_als(c)a(l) .TIS(C)a(Z))
Is(C)az) Is(C)az) - eXp(—OC . T s ©agy

IS(C)a(z) 1S(Cla(z)

where 1 - is the intensity of failures;

o — distribution parameter, a~1/(T,)", (To) — estimate of average
service life before failure

Quantitative assessment of damage from failure n(m,e)-
subsystem, component, element to determine the risk of failure:

DS(CYE)M) ={dyc.), . |s(c,e)=1S(C,E),n=1,Nm=1M}, (45)

where gy - losses from failure of FE CTS
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Quantitative assessment of losses from failurea(z) - FC
determination of the risk of failure:

={d,

lij) =L sy a=L Az =17}, (46)

IS(C)a( z) s(C)a(z)

where dis - is the loss from failure FC
(©a(z)

Performance of FE at different degrees of its loss:

=T F =080 =LNge My LMo} (A7)

US(c E)n(m)
Functional capacity of FC at different degrees of its loss:

W W2 | f=0La=1LAz=12Z;} (48

mls(c)a(z)

In the process of functioning of FE CTS in emergency scenarios,
taking into account Harrington's generalized desirability function,
they can be in one of the following TC [38]: 0 - 0.2 - the level of risk
and consequences are minimal, which do not affect the operation of
CTS (RMi); 0.2 - 0.37 - the level of risk is acceptable and the
consequences are insignificant, allowing the operation of the CTS
without repair (RA); 0.37 — 0.63 — the level of risk is maximum, the
consequences are significant, but allowing the operation of the CTS
during repair work (RMa); 0.63 - 1.0 - the level of risk is critical, the
consequences are catastrophic, preventing the operation of the CTS
(RC).

Taking into account [39] for the hierarchical structure of CTS, TC
transitions are possible in the form of a TC matrix (Fig. 3). In Fig. 3,
ke, ke, ks are the weight (significance) coefficients of an element,
component, subsystem in the structures of the CTS.
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Figure 4.4 - CTS TC matrix

4.2 Development of the Data Reception and Transmission Model
for Diagnosis, Assessment, and Prediction of the Technical
Condition of Complex Critical Application Systems

To successfully address the issue of effective, failure-free
operation of CAS in emergency operating modes, it is necessary to
utilize information technologies with software and hardware modules
for receiving and transmitting the results of diagnostics, assessment,
and prediction of the TC of complex systems [1, 174, 175].

The quality of the data reception and transmission system (DRTYS)
is determined by a set of characteristics that influence its operational
efficiency: topology; bandwidth; performance; acceptable error
margin in data reception and transmission; effectiveness of
information protection in the system; risk of failure of DRTS devices.

When developing the data reception and transmission model for
diagnosing, assessing, and predicting the TC of complex critical
systems, it is necessary to consider the presence of multiple
conflicting requirements and competing criteria.
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To justify the choice of the DRTS topology, it is necessary to
solve the task of multi-parameter, multi-criteria optimization of
information parameters aimed at increasing performance, minimizing
errors and failure risks in subsystems, components, and elements of
CAS, and maximizing the protection of the received and transmitted
information.

The application of optimization methods to solve practical multi-
criteria, multi-parameter optimization problems [176, 177] must
account for: large problem dimensions (tens and hundreds of
variables and constraints); topological complexity of the optimized
function; significant computational costs; the need to solve the
problem in a multi-criteria context, using unrelated models.

The operation of an open platform for DRTS may rely on I1SO
standards in the field of Condition Monitoring and Diagnostics of
Machines [178].

Using a standard base ensures the unification of approaches to
receiving and transmitting information.

The reception and transmission of information are carried out
based on one of the standards for digital DRTS, such as IEEE 802.15,
WiMax, IEEE 802.22, UMTS, LTE.

The quality of the DRTS model’s operation is determined by a set
of characteristics influencing its performance: topology {F.};
bandwidth {B}; performance {Ts}; acceptable error margin in data
reception and transmission {c}; effectiveness of information
protection in the system {Zs}; risk of failure of DRTS devices {Rs}.

It is assumed that the model describing the DRTS is linear, with
both deterministic and concentrated stochastic parameters.

The set of quality indicators of the model can be represented as a
vector, whose coordinates are the individual indicators, and their
given values need to be improved to the required level.

A model for data reception and transmission during the diagnosis,
assessment, and prediction of the TC of complex critical systems is
proposed as a function of its functionality:
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< MPP >= f(H), (4.9)

H ={FK}{T:}.{B}{6 }{R:}.{Z;:}}

The generalized quality indicator of the DRTS operation is
determined based on the results of optimizing the information
parameters and its reliability characteristics. The objective function
for optimizing the information parameters of the model is a multi-
parameter optimization of variables that affect the performance of the

DRTS:
o(F) =max ¢(F,) = max ¢(L,C,S), (4.10)

L={L, eL|L,nsLsL, . }.C ={C, €CICulCLCrl.
S= {SO € S|04C4CO},Where L — the length of the data
transmission and reception paths;

C — the compactness of the system structure;

S — the degree of centralization of the system structure;

Do, Ko, Co _ normalized individual criteria of the system
topology performance, obtained by converting the indicators
into dimensionless form.

The objective function for optimizing the DRTS operating time:

P
@(T) =maxe(T;) = max(”(szmI o Ten e Toes Tors Trp T T Te) (4'11)

1=1
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T={,, eT

T =il TNy, £TelTey | T =T €TlTeg, LMoo Lo |,

To LT Top 1T =0 €TTo, 0 LTo )

T ={Toe €TMoe, LTocLToe T = s €Ty, 100 LT,
T={T eTfTe, £TesTe T ={T €TTu, 2T LTy,
T={Te €TTe,, £T0 LT, 1T = Tor €T Mo, LTor LTor_|,
T={T, eTl, £T,2T, {T={ eTfT, £T,2T_|

@(T) =min o(T,), ¢(T,) =max o(n,T ),
p(Ty) =max (B, ), Q)(TTG):maX ¢(BTG’ f),
P(Tye) =max o(By., ), @(B)=max o(By, Big, Byc)

B=1{B, cBJB,, /BB, | B={B cBBy, /B By |,

B={B BB /BBy |,
where Tsoi— the performance of the CAS equipment;

To _ the performance of the switching device;

Tq' TC2 — the performance of the servers on the

transmission and reception sides of the DRTS;
Tc, Tpe — the performance of the coder and decoder;

Tor — the performance of the transmission path;
Tgrp — the performance of the reception path;

T,y — the performance of processing network flows in the local
network;
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T — the performance of processing network packets in the
transit gateway;

TD - the delay of signals in redundant nodes;

f — the size of network packets;

B, —the bandwidth of the local network;

B — the bandwidth of the transit gateway;

B, - the bandwidth of the communication channel;

n — the length of the code combination;

T\ — the time required for receiving and transmitting the code

combination.
The objective function for the error in data reception and
transmission:

@(8) =min (S5, Spy)s (4.12)
where &5 - dataerrors;

Oprys - data errors during reception and transmission;

The optimization task for protection is to ensure the maximum
level of security with the minimum risk of potential breaches of the
DRTS, i.e.

P(Zy) =minp(Ry: T,), ¢(Z;) =maxep(Ny) (4.13)
Nf 2 Nfo J Ta STao ) RMR = pMR'H'
Pmr = Pi- P2 Py Pe Py
where R,z — multiplicative risk criterion for the probability of a
DRTS breach;

Pur — the probability of a breach of the information system,
determined based on expert data;
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Pi _ the probability that a given information system is on the list
of potential targets;

p, - the probability that the system will be selected from the list
and attacked,;

p, — the probability that the bordering technologies will be

breached:;
p. —the probability that attacks will intensify;

py — the probability that the DRTS will be damaged;

H — potential losses from information security breaches;
N; — the number of functions characterizing the functionality of

the DRTS;

T,- —average access time to DRTS protection objects;;
N, T.o - limitations on functionality and performance.
The objective function for the risk of device failure in the
DRTS:

@(R)=min (p(RSnO,RDRTS, Ps., Hsm, R,P(S)), (4.14)
where RSno —risk of device failure in the DRTS;
Rprrs — average risk of failure in the DRTS;
Ps., — probability of device failure in the DRTS;
Hs,  — losses from device failure in the DRTS;
R; — conditional risk during data reception and transmission

in the TC;
P(S,;) — conditional probability of error during data reception

and transmission
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The developed model is designed to optimize the information
parameters of the DRTS to ensure its effectiveness.

The method used, which allows for the investigation of the
developed model and optimization of the information parameters of
the DRTS in the TC state, is based on considering the presence of a
set of conflicting requirements for such a system.

The complexity of solving multi-criteria optimization problems
lies in the fact that the criteria compete with each other.

The problem can be solved using the Pareto optimality principle
[179, 180].

A characteristic of the Pareto optimal set is the ability to "discard"
consciously unsuccessful alternatives that are inferior to others on all
criteria.

As a result of solving the optimization problem, a set of
alternative solutions is determined that satisfy the Pareto optimality
principle and meet the imposed constraints.

This strategy for solving optimization problems significantly
differs from known nonlinear programming approaches, offering
higher efficiency and substantially broader capabilities.

The sequence of optimization of the information parameters of the
DRTS includes the following stages:

o determination of the set of independent parameters, as well as
the conditions that define the acceptable values that the variables can
take;

e obtaining the objective function as a measure of ensuring the
quality of the optimization object with the given variables;

o selection of the method and solution to the optimization
problem.

To investigate the model of multi-criteria and multi-parameter
optimization of the information parameters of the DRTS, algorithms
implemented in freely distributed software [181], based on response
surface technology, were used.

A distinguishing feature of this technology is the efficiency of
finding an optimal solution when investigating DRTS models, which
are simulated at high levels of complexity and hierarchy, including
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achieving mathematical modeling (2D and 3D problems) and the
possibility of rapid integration.

The program is designed for the numerical solution of multi-
criteria parametric optimization problems of complex functional
dependencies under functional constraints and operates with target
functions (4.10) — (4.14).

The ranges of numerical values for the quality indicators of the
DRTS are given in Table 4.1.

The solution to the optimization problem of the DRTS
information parameters lies in finding the maximum efficiency of the
system under certain conditions of its indicators.

To optimize the information parameters of the DRTS for the
ship's TC, a software structure for its operation has been developed
(Fig. 4.5).

As an example, the results of solving the bandwidth optimization
problem for the DRTS are presented.

The bandwidth of the DRTS is determined by the maximum
transmission capacities of the communication channels of the system,
which receive and transmit data from the local networks and the
transport gateway of the DRTS.

Table 4.1 - Ranges of numerical values of DRTS quality indicators

Quality Indicator Constraint Min Max
Bandwidth (B) 10 MB/s 10 MB/s 100 MB/s
Information Protection Efficiency (£ ) 0.95 095 1.0
Structure Risks (B)x 02 02 037
Acceptable Data Transmission Error {cr] 0.5 byte 0.5 hyte 1.0 byte
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Figure 4.5 - The structure of the DTS in RD software

The maximum capacity of a communication channel with additive
noise is determined by Shannon:

s
B =W -log,(1+—>—), 415
0,0+ o) (4.15)

where W — is the bandwidth of the communication channel, kHz;
S/ N —signal-to-noise ratio in the recipient's receiver, dB
The target function of the DRTS throughput::

@(B) =maxeW,S/N ) (4.16)

As shown in Fig. 4.6, the solution to the optimization problem of
the DRTS information parameters based on the developed model

allows finding several Pareto-optimal solutions for the quality
indicator (criterion) — bandwidth.
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Figure 4.6 — Scatter diagram of the set of Pareto-optimal solutions
for bandwidth with respect to the set i and j.

Since all points in the non-dominated set in the criteria space are
equivalent according to the Pareto set of the solution space, the main
role in supporting decision-making based on the results of multi-
criteria optimization is played by the Decision Support System
(DSS).

Based on the consideration of preferences, the DSS determines the
unique Pareto-optimal solution, which is considered the final result of
the selection procedure. By performing linear convolution for the two
criteria iii and jjj, and taking into account equation (4.16), the best
optimal solution is determined — the bandwidth of 1.735 kHz, with a
signal-to-noise ratio of 42.5-52.5 dB.

When formulating and solving the optimization problem for the
information parameters of the DRTS TC, a set of independent
parameters, conditions defining their permissible values, obtained
objective functions, and a method for solving optimization problems
were defined. The developed model for optimizing the information
characteristics of the DRTS TC allows:

« Monitoring the DSS state of the TC in real-time, which will help
avoid accidents during its operation;

 Reducing the risk of failure of the DRTS equipment.

The fifth point of scientific novelty is formulated: for the first
time, a model for data reception and transmission during the
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diagnosis, assessment, and forecasting of the technical condition of
complex systems for critical applications has been developed, which
takes into account the presence of conflicting requirements and
competing criteria, allowing the identification of Pareto-optimal
solutions to ensure the efficiency of data reception and transmission.

4.3. Conclusions to Chapter Four

In Chapter Four, a method for assessing and forecasting the TC of
complex systems for critical applications was developed.

The method is based on: presenting a precedent with a set of
parameters with specific values and decisions; obtaining evaluation
data and forecasting TC of a complex system; and forming
recommendations to ensure the effective operation of the equipment
in the system.

The method of reasoning based on precedents was further
developed, which allowed for the evaluation and forecasting of the
technical condition and improved the operational efficiency of
complex critical systems.

When receiving and transmitting various diagnostic, evaluation,
and forecasting data for the TC of complex KA systems, their
effective reception and transmission must be ensured while reducing
the redundancy of the information during processing, maximizing its
protection, and minimizing errors.

To solve this issue, a model for receiving and transmitting
diagnostic, evaluation, and forecasting data was developed, along
with the solution to the multi-parameter, multi-criteria optimization
of information parameters affecting its performance, using the Pareto
optimality principle.

For the first time, a model for receiving and transmitting data
during the diagnosis, evaluation, and forecasting of the TC of
complex critical application systems has been developed, which
accounts for the presence of conflicting requirements and competing
criteria, enabling the identification of Pareto-optimal solutions for
ensuring the efficiency of data reception and transmission.
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Chapter 5

DEVELOPMENT OF AN INTELLIGENT INFORMATION
SYSTEM FOR DIAGNOSTICS, ASSESSMENT, AND
PREDICTION OF THE TECHNICAL CONDITION OF
COMPLEX CRITICAL SYSTEMS

5.1 Design of an Intelligent Information System for Diagnostics,
Assessment, and Prediction of the Technical Condition of
Complex Critical Systems

Decision-making methods in an intelligent information system
(I1S) based on precedents involve using analogies with previously
solved problems to find and adapt solutions to new situations. Such
methods include the stages that form the CBR (Case-Based
Reasoning) cycle:

1. Capturing cases from the case library (CL).

2. Indexing (organizing cases for finding similar instances).

3. Searching for the most relevant cases for the new task.

4. Adapting (modifying the retrieved case to fit the current
task).

5. Evaluating and implementing (verifying the adapted solution
for suitability and implementing it if necessary).

Advantages of case-based reasoning: adaptability; the ability to
work with incomplete information; versatility; and learning
capability. Cases can be represented in various forms, including
textual descriptions, diagrams, tables, prototypes, usage scenarios,
and UML-based modeling. Each method can be effective depending
on the context and project goals.

The representation of cases is implemented as follows. In the
proposed CBR cycle (Fig. 5.1), to support knowledge exchange, the
initial task formulation block receives a set of input parameters of the
diagnosed TS and an ontology array representing a structured
description of the domain of marine CTS.

As a result, the structure of the new case object is generated, and
its content is extracted using the nearest neighbor method based on
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the similarity (proximity) evaluation of the analyzed scenario with
the TS and considering data in the knowledge base.

Based on this procedure, a solution object is formed, which can be
modified for its targeted adaptation, taking into account all aspects of
partial and complete failure scenarios (FE and FC) of the CTS by
applying a transformational method [181].

Input diagnostic
parameters of TS STS

Formation of
the task

Nearest neighbor
method

An array of
ontologies

Precedent
preservation Removal of
precedent

: T Knowledge base
Conclusion of

- 1
the decision - - -
S CRE— ) EED
solution
Dot

Verification - Transformational
and formation of ‘Modification l—- method
a decision for adaptation

Figure 5.1 - CBR Cycle Structure

The updated precedent is verified for logical consistency,
considering the use of predicate productions and applying the
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ontological reasoning approach via the Hermit reasoning system
[181]. The resulting solution is exported as a separate object
containing recommendations for the decision-maker (DM) and
metadata.

Subsequently, the precedent is stored in the case base, which is a
component of the knowledge base (see Fig. 5.1).

The decision-making sequence (Fig. 5.2) using the proposed CBR
cycle, with consideration of operations for processing and structuring
precedent data within the framework of the applied software system,
is carried out as follows:

Figure 5.2 - Decision-Making Sequence Diagram
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When the software system is launched, the main user interface
form is initialized, providing the ability to import input data for task
formulation. Next, control parameters and configuration options for
the operation of all modules involved in the information processing
cycle are set, including the Data Processing Module (DPMod),
Precedent Extraction Module (PEMod), and Adaptation Module
(AMod).

A request is then made to transfer the generated data arrays to the
DPMod, where data processing procedures are conducted step by
step (including consistency checks and fragmentation). A collection
for storing precedents is created, taking into account metadata (such
as a brief textual description of the target purpose, its identifier,
creation date, and some statistical indicators).

After this, a request is made to retrieve a specific precedent via
the PEMod, where actions for metric evaluation are performed using
the nearest neighbor method. The result is sent to the DPMod as a
collection based on an associative array. After verification and
validation, the DPMod sends the processed collection to the AMod
for adaptation procedures.

Adaptation uses a transformation method, aligning the precedent
with a set of rules and considering logical productions of
correspondence. As a result, the updated precedent collection is
returned to the DPMod for generating a list of final decisions and
validating them.

The results are output as text records and graphical
representations. The serialized solution (in JSON format) is sent to
the main interface form for further initiation of precedent data
transmission, storage in the knowledge base, and providing the user
with a notification about the transaction results.

For creating precedents, simple parametric representation suffices,
i.e., presenting the precedent as a set of parameters with specific
values and a solution (diagnosis and recommendations for the
decision-maker).

Various methods are known for extracting and modifying
precedents. The most common include:

e Nearest Neighbor (NN) method [182];
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o  Precedent extraction based on decision trees;
e  Precedent retrieval based on knowledge [157, 183];
e  Precedent extraction considering their application.

These methods utilize diverse metrics. Among the primary
metrics, the nearest neighbor method is applied, enabling easy
calculation of the similarity between the current problem situation
and precedents in the case library. The nearest neighbor method uses
simple coordinate-wise comparison of the current situation with the
precedent, where each parameter describing the precedent is
considered as one of the coordinates.

The distance DCTD_{CT}DCT between the point corresponding
to the current situation and the point corresponding to the precedent
is calculated.

The effectiveness of the nearest neighbor method depends on the
choice of metric. If precedent CCC and current problem situation
TTT are defined in an n-dimensional property space, the similarity or
proximity S(C,T)S(C, T)S(C,T) between precedent CCC and
situation TTT can be determined using one of the metrics for
calculating the distance between two points xiCx_i"CxiC and
XiTX_I"TxiT, such as the Euclidean distance:

Der = JZ?ﬂ(l}C - ;’CDZ
(5.1)

To determine the similarity degree value (SIM), the maximum
distance DmaxD_{max}Dmax is calculated within the chosen metric
using the parameter range limits for describing the precedents.
Subsequently, the similarity degree value is determined using the
parameter range limits for describing the initial and final precedents,
i=1,...,ni = 1, \dots, ni=1,...,n.

The similarity degree value can be calculated as follows:

SIM =1 — D¢/ Diax (5.2)

133



STOCHASTIC MODELS AND METHODS FOR DIAGNOSING,
ASSESSING, AND PREDICTING THE TECHNICAL CONDITION
OF COMPLEX CRITICAL APPLICATION SYSTEMS

5.2 Implementation of the Intelligent Information System for
Diagnostics, Evaluation, and Forecasting of the Technical
Condition of Complex Critical Systems

The implementation of the intelligent information system with
CBR (Fig. 5.3) integrates the developed models and the diagnostic
method for TS with a database (DB), a knowledge base (KB), and an
expert system. The expert system contains computational,
experimental, and expert-provided data obtained during the operation
of the CTS.
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interface
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Request A
L l i i recommendations Precedent
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External and °
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Structure of
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Block of
L| extractionof | __|
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evaluations Module of Knowledge
EXPEMt ed{ foOrmalization of =% formalization
expert evaluations module
Diagnostic parameters
of the technical
condition of CTS

Figure 5.3 - Structural diagram of the implementation of the method
of reasoning based on precedents for evaluating and forecasting the
TC of a complex short-circuit system

The software structure development began with a schematic
representation of the primary interacting modules of the IIS. The
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structural diagram of the modules and their interconnections (Fig.
5.3) visually represents the interaction of FE and FC within the I1S.

During the development of the IIS, the control and executive unit
(CEU) was selected as the object for TS evaluation and forecasting.
When assessing the reliability of the SPP, it was taken into account
that CTS is characterized by a large number of diagnosable
parameters. These parameters differ in informativeness and
accessibility, particularly under conditions of insufficient information
for TS assessments, as well as by specific and diverse operating
conditions under uncertainty.

The Core Components of the Intelligent Information System (11S):

The cores of the I1S are:

o DB: A structured storage of all system-related data.

e KB: Includes methods for calculating reliability indicators
(risks and probabilities of failures) and a set of decision rules for
selecting appropriate decision-making methods.

o Model for the Intellectual Evaluation of TC of FE and (FC in
CTS.

The I1S includes:

o User Interface Module: Facilitates interaction between the user
and the system.

e KB with a Precedent Library and DB: Supports decision-
making.

e Query Formalization Module: Structures and processes user
requests.

e Recommendations Module for Ensuring CTS Efficiency:
Provides actionable suggestions based on evaluations.

e Libraries of Structural Schemes for Marine CTS: Contains
predefined structural templates.

o Expert Evaluation Formalization Module: Standardizes expert
input into actionable data.

o Knowledge Formalization Module: Structures and organizes
the knowledge base.

The implementation of the developed strategy in the IS ensures
targeted actions in support of decision-making to identify FE and FC
failures based on established TC evaluations.
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Knowledge Base:

The KB model is production-based, while its software
functionality is object-oriented. The developed KB is represented by
rules derived from:

» Intelligent data analysis (a multi-level hierarchical structure of
the knowledge base tree).

o Expert evaluations.

e Results from applying diagnostic models for the technical
condition of complex systems.

The KB operates according to the developed decision-making
sequence (Fig. 5.2) and considers the CTS TC matrix (Fig. 4.4). All
data and expert evaluations are retrieved from the database based on
queries. As a result, the KB generates evaluations of TC for
subsystems, components, elements, and their interconnections.

These evaluations are passed to the Recommendations Module for
ensuring effective CTS operation and subsequently to the Decision
Maker (DM) for managing the technical condition of the complex
system.

Database:

The DB contains:

o CTS Structure Database: Stores structural information.

o Failure Risk Criteria Database: Contains risk evaluation metrics.

o Complex Systems TC Database: Records conditions of technical
systems.

e Degradation Processes Database: Tracks wear and aging
patterns.

¢ Risk Mitigation Measures Database: Details actions to reduce
failure risks.

The precedent library consists of:

o Incident Precedent Library: Documents cases of minor issues.

e Emergency Situation Precedent Library: Contains data on
critical failures.

Diagnostics of Problematic Situations:

Diagnostics of full or partial equipment failures and their
interconnections in CTS is performed by simulating diagnostics
based on risk (probability) of failure and failure-related losses. Using
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the diagnostic data, the KB and precedent library provide established
TC evaluations of the complex system and form recommendations
for DM decision-making.

Forecasting and Recommendations:

Based on these evaluations, the system forecasts the TC of the
complex system. The results may include a list of actions performed,
additional comments, and links to other precedents.

Hierarchical Structure and Logic Implementation (Fig. 5.4):
The hierarchical structure of the program logic for data processing
modules by precedents and reasoning includes the following
interfaces for abstraction levels and object behavior polymorphism:

o |IData: Manages the path to the location of input data sets,
initializes data structures and collections, normalizes data, checks for
missing rows, and defines structures.

¢ |IOntology: Stores attributes, classes, and relationships,
assembles ontology structures, and validates them.

o IPrecedent: Handles properties of situation scenarios, problems,
and solutions, and manages the process of precedent creation,
storage, serialization, and logical consistency checks.

Each class implements a different version of the logger() method

to ensure the logging of intermediate results during the execution

of computational operations over time.

o The DatalLoader class implements the IData interface, handling
data loading into the system and performing operations such as
creating collections of precedents, verifying data integrity, executing
necessary transformations, filtering, aggregating, setting up
structures, and issuing status messages based on the outcomes of
these actions.

e The OntologyMaker class implements the IOntology interface,
working with a partial collection of ontologies in a dynamic array to
aggregate individual ontology elements. This class is designed to
construct the logical base structure of the system for each precedent.
It also provides visualization of the ontology in a graph-oriented
form.

e The PrecedentExtractor and PrecedentAdapter classes
implement the IPrecedent interface, overriding methods for managing
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precedent data. These methods are utilized in the processes of
extraction and adaptation performed by the extractPrecedent() and
adaptPrecedent() methods, respectively. The result of these processes
is a Precedent object.

o A separate KnowledgeBase class is implemented to manage
CRUD operations with rules.

sintefaces
IPrecedent
sinterface dintefaces
IData [0ntology + stuatn {ge et )+ Sy
+ dtath {ge e | - g +Eni { gt 2, it <Sng> ";:"_7’7’" i ”‘:J‘: ‘;m
+ intiake) : void + Classes { get; sel; } : (5t <String> chin {ge; i,m’ ‘g
) ) + burecedint]) : Frecedint
+ transformation() : voed + Indviiabs { get; sel; } : Lt <String> ePrecedent): void
+ setStructure]). void + bulbntobgy) : void ::g;erf" w" "
, n +logger)
+hgerl): f): voi
b vid gt vl + checiracednt])vid
i 1 T
| | ro
KnowledgeBase |
DataLoader OntologyMaker I
- nes: Analist <Rue> PrecedentExtractor )
- dataPath: String - ontologies: ArrayList <Ontology> Precedenthdapte
+setRule]) : vod i
+importData() : void +buidOnkology() ; void +getRulef) : ke -
+makeListStructure{) : void +processClasses{) : void +updateRue() : void +3?:c;P;ecadam(\‘H-atedent vad
+sendMessagel) : void +processIndividuais) : void +hogger() : vaid +buidPrecedent]) 'P‘m[ ederk IWE'U&:M‘ Precadent
+logger) : void +processEntiist) : void ! a0 J
K yvePre v B
+itegriyCheder() : void +visuglzeGraph() : vaid n :z:k}’:::::rij\) '::j IMG’rmntl(:J). -’rb;aiem
PN A, ) : savePrecedent() : voi
*ntaz) m‘?)‘md ol vt . +update() : void +chedkPrecedznti) : void
+setStructure() : void o ] i +update() : void
oo ] R — R
\
Decision

- decisionDescription: String
- decisionRate: int

+getDecision() : void
+pritResubl) : void
+saveResul() : void

Figure 5.4 - Hierarchical structure of the key program logic of
fragments of data processing modules regarding precedents and
considerations

Using instances of these classes, a Decision object is created. The
state of the Decision object is described by private properties
decisionDescription and decisionRate, while its behavior is expressed
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through public methods for creating, displaying, and saving the
decision results.

The IS with the CBR cycle was implemented using the Visual
Studio development environment, the .NET 4.7 framework,
WinForms technology for creating graphical user interfaces, and
functional libraries such as Hermit for ontology support and JSON
handling [170].

An interface of the main form of the software system, featuring a
tab for managing the precedent creation process within the proposed
CBR cycle for assessing and forecasting the technical condition of
systems (demonstrated using the example of a marine CTS), is shown
in Fig. 5.5.
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Figure 5.5 - The interface of the main form of the software system
with the tab for managing the process of creating precedents
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The system includes a main menu for navigating between
processes such as connecting data sources and the knowledge base
(File menu), managing and processing data (Data Processing menu),
selecting and executing computational operations (Operations menu),
configuring system modules and settings (Settings menu), and
accessing reference information about the system's functionality
(Help menu).

The functionality supports working with data from precedents,
ontologies, rules, and decisions. For the hierarchical representation of
the structure of marine CTS, as well as their FE and FC, a dedicated
graphical widget is provided in the form of a tree of nodes.

Data entry for precedents is carried out through a corresponding
text field.

Options are available for providing a detailed description of
parameters, constructing a summary crosstab for all values of marine
CTS and their equipment, as well as forms for extracting, adapting,
and validating the created precedents.

A table is implemented to display the results obtained from
precedents, including similarity evaluations, descriptions, and a brief
set of typical recommendations.

For easier management, a quick navigation component is provided
for performing CRUD operations and search functionality within the
table.

Visualization tools are introduced to highlight the most suitable
options for adapting precedents to specific CTS operational scenarios
after completing all analytical procedures. The system supports local
saving of visualization results in PDF and CSV formats.

The results of risk evaluations for subsystem failures of the
studied SEU, formulated considering the created precedents, are
presented in Figure 5.6.

The results of failure risk prediction for the FE and FC of the
SEU—for instance, for the Main Engine subsystem—can be viewed
in the interface block for risk prediction review by navigating to the
web page labeled Predictions (Figure 5.7).
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Figure 5.6 - The interface of the risk assessment form for the
analyzed subsystems of the ship's power plant
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Figure 5.7 - Main Engine subsystem failure risk prediction block
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Figure 5.8 - User interface

A block is provided for displaying the prior and posterior failure
risk values for the Main Engine, as well as a widget for showing the
dependence of the predicted prior and posterior failure risk values for
the Main Engine.

The user interface for the view form of the module displaying the
results of the system's generated decisions is shown in Figure 5.8.

The system supports navigation through decision scenarios, as
well as components for displaying data regarding decisions, causes of
violations, consequences of scenarios for further system operation,
and a list of recommended actions for improving the performance of
the ITS.

Options for opening log files to view intermediate stages of
computational operations and calculations are provided, along with
options for saving results to the database.
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For managing the process of constructing a failure tree model,
components have been developed to configure the parameters for
node construction methods, graph visualization algorithms, graphical
representations, and report generation. Functionality is provided for
building decision trees, viewing their structure, and editing the model
in editor mode.

A drawback of the precedent-based method with the CBR cycle is
the increased time for finding the closest precedent.

Therefore, a comparative analysis of the time required to find the
nearest precedent was conducted, depending on the size of the
precedent database, considering data caching during the initialization
of the data structure as a collection of an associative array.

The graph showing the time required to determine the complex
system's state as a function of the number of precedents is shown in
Figure 5.9.

The time spent on finding the closest precedent for 10,000
precedents in the knowledge base was about 370 ms.

The first closest precedent from 5,000 precedents was found in
approximately 50 ms.
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Figure 5.9 - Time to determine the TS of a complex system
depending on the size of the precedent base
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As the number of precedents in the precedent library increases,
the time required to determine the state of a complex system
increases as well, but it does not significantly affect the overall time
spent on assessing the subsystems of the investigated marine power
plant.

Despite this drawback, the study showed the potential application
of the CBR-based reasoning method and its appropriate use for
decision-making in real operational conditions.

The developed 1S demonstrates high performance.

In order to assess the time costs for constructing the knowledge
base within the implementation of the proposed method, a
comparison of the execution time of computational processes was
conducted using the developed 1IS under the following system
modes: single-threaded, dual-threaded, and quad-threaded (Figure
5.10). It is important to note the overall exponential nature of the
dependency between the execution time of computational processes
for the assessment and forecasting of the state of the complex energy
system (CES) and the number of precedents in the KB.

Thanks to the distributed computing mode, it becomes possible to
reduce the time costs by up to 28% when using two isolated data
threads, and by up to 42% when the computational load is divided
into four separate data threads.
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Figure 5.10 - Execution time of computational processes based on the
number of formed precedents
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The interface of the main form of the software system, with the
tab for managing the process of creating precedents, implements the
functionality for determining the operability of the IIS with the CBR
cycle and the implementation of its embedded functions.

Considering partial and complete equipment failures of the ship’s
CKS in the IS will allow the OPR to make decisions aimed at pre-
failure maintenance of complex systems, thereby extending the
operational life of systems and increasing their operational
efficiency.

Thus, the development and research of the IIS with CBR,
designed for effective assessment and forecasting of TS of complex
systems, was conducted by ensuring the IIS’s performance.

The effective operation of the 1IS with CBR is based on the use of
the precedent-based reasoning method. The IIS with CBR consists of:
an interface module; a knowledge base with a precedent library and
database; a query formalization module; a recommendations module
for ensuring the efficiency of the CKS; a library of structural
diagrams for the CKS; expert evaluation formalization modules and
knowledge formalization modules.

Experimental studies of the IS for TS assessment and forecasting
of complex systems showed that the time spent to retrieve the nearest
precedent with 10,000 precedents in the knowledge base was about
370 ms.

The decision-making process, using the proposed IIS with the
CBR cycle system, which considers operations for processing and
structuring data according to precedents within the functioning of the
developed software system, demonstrates high performance,
facilitates operation with incomplete information, and supports
learning for decision-making.

Thanks to the distributed computing mode, it becomes possible,
when using two isolated data threads, to reduce time costs by up to
28%, and up to 42% when the computational load is divided into four
separate data threads.

When the proposed IS is operational, partial and complete
failures of the operability of subsystems, components, elements, and
their interconnections in the CKS are taken into account.

145



STOCHASTIC MODELS AND METHODS FOR DIAGNOSING,
ASSESSING, AND PREDICTING THE TECHNICAL CONDITION
OF COMPLEX CRITICAL APPLICATION SYSTEMS

The increased efficiency of CKS operation is ensured by the fast
evaluation and forecasting of TS, as well as the OPR’s actions aimed
at making decisions regarding pre-failure maintenance of complex
systems at the early stages of failure development.

5.3 Efficiency of Complex Technical System Operation Based on
Diagnostics, Assessment, and Forecasting of Equipment
Technical Condition

As a result of the conducted research based on diagnostic data of
the TS equipment of the complex system, the 1IS has performed an
assessment and determined the predicted values of failure risk
(probabilities) for FE, FC. Table 5.1 shows the obtained probabilities
of failure and the probability of maintaining the operability of the
CKS upon detection of partial equipment failures during 20,000
hours of system operation.

Table 5.1 - Probability Characteristics for Partial Equipment Failures
in the CKS

Time, hours 1000 2500 5000 7500 10000 12500 15000 20000
Probability of failure 0133 0144 0163 0185 0209 0237 0269 0304
Probability of maintaining 0.867 0836 0837 0815 0791 0763 0731 0689

operability

The operational efficiency of the CTS is determined by a scalar
value (E), which depends on the effectiveness of its functional
subsystems, components, elements, and their interconnections:

E = E[FE,FC] 53)

The operational efficiency of the CTS is determined by the
probability of maintaining system functionality, which does not
exceed the threshold probability value POP_0OPO, at which a complete
system failure occurs:
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P{E > ED} < F, (5.4)

The threshold failure probability POP_OPO is determined from
Harrington's generalized desirability function [99], and the range of
0.63 - 1.0 represents the critical probability (system operation
becomes impossible).

The failure probability is calculated using the well-known formula
from reliability theory:

P(t)=1- exp[— .[OT /‘L(t)dt} , (5.5)

where - A The failure intensity, which depends on the operating time
of the system,

For n partial failures, the probability of maintaining the
operability of the system, which determines the effectiveness of the
system's operation:

P(O) = (PO + PO+~ POus + PO By o0

When equipment with partial failure is detected and preventive
maintenance is carried out, its failure intensity decreases (A(t)—AA(t)).
The probability of maintaining the system in an operational state
increases (Table 5.2).

Table 5.2 - Probability characteristics for partial failures during
preventive maintenance of the system's equipment.

Time, hours 1000 2500 5000 7500 10000 12500 15000 20000
Prabability of failure 0110 0121 0740 09682 0186 0214 0246 0289
Probability of maintaining 0890 0879 0860 0838 0814 0786 0754 07N

operational capability
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Figure 5.11 shows the results of the obtained probabilities of the
operational capability of the system in the case of detected partial
failures and detected partial failures with preventive measures.

0,9
0,8
0,7

0,6

0,4

0] 5000 10000 15000 20000 h

Figure 5.11 - Probabilities of the operational capability of the system
in the case of: detected partial failures - 1; detected partial failures
with preventive measures - 2.

The operational efficiency of the equipment in the system, with
partial failures and preventive maintenance, is determined by:

Pz = P()Pp ()P (D)Pam (P () 57

where Pct(t) is the probability of no complete failure;

Pei(t) is the probability of no external influences leading to
complete failure of the system equipment;

Pam(t) is the probability of errors by the operator;

Per(t) is the probability of error-free expert assessments.

The results of the calculation of the operational efficiency of the

CTS, determined by the probability of maintaining operability,
considering partial equipment failures and preventive maintenance,
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do not exceed the threshold probability at which a complete failure of
the CTS occurs, as defined by the generalized desirability function of
Harrington.

The probability of maintaining the system in working condition
increases by 3%.

Thus, when partial failures are detected and preventive measures
are taken for the CTS, the probability of maintaining operability
increases, which, in turn, extends the system equipment's operational
lifespan and improves the operational efficiency of the FE and FC.

5.4 Conclusions to Chapter Five

In Chapter Five, the development of an IIS for the diagnosis,
evaluation, and forecasting of complex systems of the complex
technical systems was carried out. The design of the 11S focused on
ensuring the operational efficiency of the CTS using a method of
CBR.

The design of the 1IS with CBR links the developed models and
methods for diagnosing, evaluating, and forecasting the CTS of
complex systems with an expert system that includes computational,
experimental, and expert-derived data obtained during the operation
of the CTS.

The cores of the IIS are: a database;

- a knowledge base with a library of precedents, methods for
calculating probability indicators, failure risks, and a set of decision-
making rules; a query formalization module;

- a recommendation module for ensuring CTS effectiveness;
libraries of structural schemes of the CTS;

- a module for formalizing expert assessments; and a knowledge
formalization module.

The implementation of the developed strategy within the 1IS is
supported by targeted actions according to decision-making
processes aimed at identifying equipment failures based on the
established evaluations of their CTS.

To test its functionality, the full cycle of the IIS’s operation,
including the evaluation and forecasting of the failure risk
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(probability) of the CTS, was simulated using the developed
knowledge base, applied to a ship's energy installation.

The obtained risk (probability) assessments of subsystem,
component, and element failures, which do not contradict expert
evaluations, indicate the effectiveness of the diagnostics, evaluation,
and forecasting of complex systems, accounting for both partial and
complete failures.

The results of the operational efficiency calculations of the
complex technical system, determined by the probability of
maintaining operability, taking into account partial equipment
failures and preventive maintenance, do not exceed the threshold
probability at which complete failure of the CTS occurs, as defined
by the generalized desirability function of Harrington.

The probability of maintaining the CTS in operational condition
increased by 3%.
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GENERAL CONCLUSIONS

The research is dedicated to solving an important scientific and
technical problem: increasing the operational efficiency of complex
technical systems through the use of results from the development of
stochastic models and methods for diagnosing, evaluating, and
forecasting system equipment failures, taking into account partial and
complete failures.

1. An analysis of existing models, methods, and information
systems for diagnosing, evaluating, and forecasting CTS showed that
the known structural models and diagnostic methods only account for
complete system failures but do not consider partial failures. These
models have limitations (increased algorithmic and computational
complexity, the need for complex preprocessing of diverse data),
which reduces their effectiveness in improving the operational
efficiency of CTS.

2. Stochastic models and methods for diagnosing CTS were
developed that simultaneously account for subsystems, components,
elements, their interconnections, and the risk (probability) of partial
or complete failure, as well as uncertainties and incomplete data. This
led to the development of a diagnostic method for complex CTS
based on BBN. The improvement of the cognitive simulation model,
which applies simulation impulse effects, allows for diagnosing
system equipment with consideration of their interrelations and
influence. Further development of this method enables timely
identification and visualization of structural and functional
vulnerabilities, enhancing the operational efficiency of complex
systems.

3. Research and analysis of stochastic models and diagnostic
methods for vulnerable subsystems, components, elements, and their
interconnections in CTS, considering partial and complete failures,
were conducted. The simulation used a ship's energy installation
(SPP) as an object. The input data for the risk (probability) failure
modeling based on BBN included the system's scheme, operational
principles, and expert assessments. Cognitive simulation modeling
was used to simulate internal and external impacts and to track
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responses to risks (probabilities) of equipment failures with unclear
sources and causes. The application of this diagnostic method using
incomplete data revealed and visualized structural and functional
vulnerabilities, confirming that the developed stochastic models can
be considered conceptual.

4. A method for evaluating and forecasting complex CTS was
developed, based on the further development of the reasoning method
based on precedents. This method ensures the evaluation and
forecasting of CTS and improves the operational efficiency of
complex systems.

5. An information intelligent system for diagnosing, evaluating,
and forecasting complex CTS was developed. The IS, using CBR,
links the developed models and methods for diagnosing, evaluating,
and forecasting with an expert system containing computational,
experimental, and expert data. The IIS's implementation supports
targeted decision-making to identify equipment failures based on
CTS evaluations. The obtained risk assessments of subsystem,
component, and element failures, which align with expert
evaluations, confirm the effectiveness of the diagnostics and
forecasting of complex systems, considering partial and complete
failures. The results of the efficiency calculation for the IIS, using
CBR and considering preventive maintenance, show that the
probability of maintaining operability increases by 3%.

6. The scientific results of this research in the form of
information and software have been implemented in the operations of
the Maersk shipping company (Denmark) and have been reflected in
the scientific activities and educational processes at the Department
of Information Technology at the National University "Odessa
Polytechnic."
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