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INTRODUCTION 

 

One of the main causes of technogenic accidents involving CTS used 

in transportation, aviation, energy, and other fields remains operational 

equipment failures. An analysis of the results of ship operations shows that 

despite measures taken to ensure maritime safety, the number of accidents at 

sea remains high. A primary reason for many of these accidents is the failure 

of CTS. As a result, such systems are classified as critical application 

systems. 

Complex technical systems of critical application are hierarchical 

structures with non-trivial internal organization, multifunctional subsystems, 

components, and elements, interconnected with complex links and subject to 

various failure states. A characteristic feature of CTS operation is 

uncertainty, as well as incomplete information about the technical condition 

of the systems. 

Due to increasing demands for safety and reliability of expensive 

maritime CTS, their efficiency depends significantly on extending 

operational life and resource use. Enhanced efficiency can be achieved by 

applying models and methods for diagnosing, assessing, and forecasting the 

TC of complex systems and integrating them into intelligent information 

systems. These IIS enable the evaluation and prediction of TC based on 

diagnostic results. Existing diagnostic models and methods are widely used 

in practice, but they do not always ensure comprehensive operational 

efficiency of CTS. Additionally, current TC diagnostic models often account 

only for full functional failures but overlook partial ones. Partial failures are 

more diverse in their types and locations of manifestation compared to full 

failures. Advanced diagnostic algorithms are required to meet efficiency 

demands in decision-making while considering the continuation of CTS 

operation. 

Promising modeling methods for TC diagnostics include Bayesian 

belief networks, which account for uncertainties and incomplete data of 

modeled CTS, and cognitive simulation modeling methods, which 

additionally evaluate the structural and functional vulnerabilities of system 

equipment. However, cognitive simulation modeling requires improvements 

due to its limitations: lack of universality regarding structural threats and 

vulnerabilities in CTS, and insufficient consideration of the significance and 

criticality of equipment for overall system functionality. 

Known methods for assessing and predicting TC in complex systems 

implemented in IIS include case-based reasoning; analogies; systematic and 
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heuristic methods for optimization tasks (e.g., genetic algorithms, artificial 

immune networks, annealing methods, swarm intelligence methods 

including ant algorithms); and structural representation methods based on 

OWL ontology precedents. Some of these methods face challenges such as 

high algorithmic and computational complexity, the necessity of intricate 

preliminary data processing stages, and limited visualization capabilities for 

interpreting results. A general drawback is the high dimensionality of 

possible tasks during decision-making. 

Improving the efficiency of CTS operation by applying diagnostic, 

assessment, and forecasting models and methods that consider both partial 

and full equipment failures is a critical scientific problem. 

Research Aim. 

The aim of this research is to enhance the operational efficiency of 

CTS by developing models and methods for diagnosing, assessing, and 

forecasting the TC of critical application complex systems. 

Research Objectives. 

To achieve this aim, the following tasks were identified and resolved: 

Analysis of models, methods, and information systems for 

diagnosing, assessing, and forecasting the TC of critical application CTS. 

Development of stochastic models and a method for diagnosing the 

TC of critical application CTS. 

Research and analysis of stochastic models and the diagnostic 

method for CTS. 

Development of a method for assessing and forecasting the TC of 

CTS. 

Creation of an IIS for diagnosing, assessing, and forecasting the TC 

of CTS. 

Research Object. 

The processes of diagnosing, assessing, and forecasting the TC of 

critical application CTS. 

Research Subject. 

The models and methods for diagnosing, assessing, and forecasting 

the TC of critical application CTS. 

Research Methods. 

To achieve the research goals, mathematical, simulation, and 

computer modeling methods were used, along with expert evaluation and 

theories of information, control, decision-making, graphs, artificial 

intelligence, cognitive analysis, literature content analysis, data processing, 

diagnostics, and forecasting. Methods of theoretical, applied, and object-
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oriented programming were employed in developing conceptual stochastic 

diagnostic models for CTS. Optimization theory methods were applied in 

data transmission modeling, as well as in diagnosing, assessing, and 

forecasting CTS. 

Scientific Novelty. 

The scientific novelty of the obtained results includes: 

For the first time: 

 A stochastic diagnostic model for CTS was proposed, which 

simultaneously accounts for the presence of subsystems, components, and 

elements, their interconnections, and the probabilities of partial or complete 

functional failure. This led to the development of a diagnostic method based 

on a Bayesian belief network for critical application CTS. 

A data transmission and reception model for diagnosing, assessing, 

and forecasting the TC of CTS was developed. It considers conflicting 

requirements and competing criteria, enabling the identification of Pareto-

optimal solutions for effective data transmission and reception. 

Further development was achieved in: 

The diagnostic method for CTS based on a Bayesian belief network, 

enabling the timely identification and visualization of structural and 

functional vulnerabilities, thus enhancing the operational efficiency of 

critical application systems. 

The case-based reasoning method, ensuring TC assessment and 

prediction to improve the performance of CTS. 

Improvements were made to: 

The cognitive simulation model, incorporating simulation-impact 

impulses, which allows for diagnosing equipment TC with consideration of 

interdependencies and mutual influences. 

Practical Significance. 

The practical significance lies in the development of an IIS that 

automates the processes of assessing and predicting the TC of critical 

application CTS in various states of functionality.  

An algorithm was created to detect failures in subsystems, 

components, and elements, including their interconnections, based on risk 

assessments of these failures.  

This algorithm enables the implementation of a targeted IIS operation 

strategy. A user interface for the knowledge base was developed, allowing 

experts to review formalized data and make final risk assessments for 

equipment failures in CTS. 
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CHAPTER 1 

ANALYSIS OF MODELS, METHODS, AND INFORMATION 

SYSTEMS FOR DIAGNOSTICS, ASSESSMENT,  

AND FORECASTING OF THE TECHNICAL CONDITION  

OF COMPLEX SYSTEMS FOR CRITICAL APPLICATIONS 

 

1.1 Analysis of Operational Challenges in Complex Technical 

Systems for Critical Applications 

 

1.1.1 Principles of Design and Characteristics of Complex 

Technical Systems for Critical Applications 
 

Modern CTS used in transportation, aviation, energy, and other 

fields are hierarchical structures comprising multi-functional 

subsystems, components, and elements with nontrivial 

interconnections. These systems operate in states of partial or 

complete functional failure.  

The structure of CTS reflects the overall picture of cause-and-

effect interactions among the system's subsystems, components, and 

elements [1, 2]. 

The operation of CTS involves uncertainties that are challenging 

to fully describe, understand, or predict. CTS exhibit properties such 

as nonlinearity, adaptability, self-organization, and integrity [1, 2]. 

Adaptability refers to the system's ability to exist in multiple states. 

Information components of CTS [1, 3, 4], equipped with artificial 

intelligence elements, enable system adaptability.  

The property of self-organization is demonstrated by the system’s 

ability to modify its characteristics and return to its initial state when 

displaced. The integrity of the system is expressed in its ability to 

maintain systemic qualities. 

CTS can be classified as probabilistic or deterministic (based on 

the degree of functional predictability) and as well-organized or 

poorly organized. Based on interaction with the environment, CTS 

can be categorized as open or closed systems [1, 2]. 

Each component of a CTS is characterized by a set of attributes 

whose values determine its condition. Changes in the properties of 
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individual subsystems, components, elements, and their 

interconnections lead to changes in the properties of other 

subsystems, components, and elements. The functioning of CTS is 

based on systemic principles [1, 2]: 

Functional alignment of elements within components, components 

within subsystems, and subsystems within the CTS. 

The system's properties are not reducible to the sum of the 

properties of its constituent subsystems, components, and elements. 

Typical examples of CTS include marine systems—complexes 

comprising dozens of interdependent technical systems (mechanisms, 

assemblies, devices, pipelines, etc.) designed to ensure the operation 

of ships [3, 5]. An example of a CTS is a ship's power plant (SPP), 

consisting of interrelated subsystems, components, and elements with 

various functionalities. Figure 1.1 shows a graph representing the 

structure of an SPP. 

 

 
  

Figure 1.1 – Structure of the Marine Power Plant 

 

The graph vertices include: input component 1; manual control of 

the main engine 2; subsystems for compressed air 3 and propulsion-

rudder complex (PRC) control 4; boiler plant 5; power station 6; fire 
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protection system 7; main engine 8; subsystems for remote-

automated control 9 and ballast-drainage 10; power transmission 

from the main engine to the propeller 11; emergency PRC drive 12; 

PRC 13; subsystems for measuring instruments 14 and sanitary water 

treatment 15; output component 16. 

Thus, complex technical systems represent an organized set of 

numerous functionally interconnected and interacting subsystems, 

components, and elements, linked by nontrivial connections. These 

connections often involve uncertainties in input data, making them 

difficult or impossible to predict, and they exist in various states of 

failure. 

 

1.1.2 Analysis of Technogenic Accidents Caused by Failures in 

Complex Technical Systems of Critical Application 

 

One of the main causes of technogenic accidents associated with 

the operation of CTS used in transport, aviation, energy, and other 

fields remains the failure of their subsystems, components, and 

elements [6]. This categorizes such CTS as systems of critical 

application. 

Theoretically, the reliability of the TC of complex systems is a 

fundamental concept linked to the properties of systems recorded 

under specific external environmental conditions at a particular 

moment in time.  

Changes in the TC during the operation of CTS (Figure 1.2) 

necessitate the evaluation of system TC. 

Reliability [7, 8, 9] is the property of maintaining parameter 

values that characterize the functioning of CTS over a specific 

period.  

The key reliability indicators include: the probability (risk) of 

failure-free operation, the distribution frequency and intensity of 

failures, and the mean time between failures. The probability of 

failure and the criticality level of CTS can be represented in the form 

of a criticality matrix (Figure 1.3) [7]. 
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Figure 1.2 - Diagram of the Technical State and Events During the 

Operation of CTS 

 
  

Figure 1.3 - Qualitative Criticality Matrix for CTS Operation 

(categories of failure risk: X – unacceptable; 1 – undesirable; 2 – 

acceptable; 3 – insignificant) 
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Failure in reliability theory is a random event involving partial or 

total loss of functionality. The concept of partial failure is used as a 

transitional state between functionality and complete failure. Partial 

failure of the CTS refers to the inability to perform some functions 

due to a partial loss of system performance efficiency. Such CTS are 

considered systems with multiple states. 

External influences increase the load on an individual subsystem, 

component, or element of the CTS, which affects their ability to 

perform their functions, decreases efficiency and reliability, and leads 

to technological accidents. The causes of such accidents also include: 

CTS failures due to manufacturing defects and violations of 

operational modes; operator errors. 

Among the sectors of the economy where higher requirements for 

efficiency and reliability of critical application CTS are imposed, 

maritime and river transport are included. Dozens of CTS installed 

on ships affect their survivability, which is not ensured by 

compliance with regulatory requirements at the design and 

construction stages, as well as during ship operation [10, 11, 12].  

The databases [13] provide information on maritime accidents and 

incidents at sea. The Global Integrated Shipping Information System 

(GISIS), maintained by the IMO, contains full similar information 

[14] (Figures 1.4, 1.5). 

 
Figure 1.4 - Analysis of accident factors 
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Figure 1.5 - Vessel losses 

 

Systematized statistical data on maritime incidents are also 

presented by the European Maritime Safety Agency (EMSA) [15]. 

Statistics registered, for example, in the JTSB database within the 

Japanese shipping zone for the period 2008–2023 indicate [16] that 

the number of incidents shows a slight downward trend (Figures 1.6–

1.8). The issue of ensuring reliability remains relevant for both older 

and newer vessels, particularly for large-tonnage ships equipped with 

advanced control and communication systems, which consequently 

have more vulnerable subsystems [17, 18, 19]. 

 

 
 

Figure 1.6 - Trends in the overall accident rate of ships 
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Figure 1.7 - Breakdown of accidents by type of accident 

 

   
   

Figure 1.8 - Breakdown of accidents by vessel type 

 

The analysis of vessel operation results indicates that despite 

measures taken to ensure maritime safety, the number of maritime 

accidents remains high. One of the most frequent causes of ship 

accidents is the failure of CTS. 

Maritime accidents pose a serious threat to human life, vessels, 

the environment, or coastal infrastructure [20, 21, 22]. For example, 

the failure of the a SPP on a container ship led to a technogenic 

accident in Baltimore in 2024 (Figure 1.9). 
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According to the United Nations, the damages caused by man-

made disasters over the past 30 years have reached $200 billion per 

year. 

 
Figure 1.9 - A man-made accident in Baltimore in 2024 

 

As a result, maritime organizations, such as flag states, port 

authorities, and classification societies, have intensified their joint 

efforts to ensure the reliability and safety of ships and their systems. 

Currently, international requirements for maritime safety are 

becoming stricter. The operation of SPPs highlights the critical need 

to prioritize the safe functioning of such CTS. 

Thus, the analysis of vessel operation results indicates that, 

despite measures to enhance maritime safety, the number of maritime 

accidents remains high.  

An analysis of the distribution of accidents based on ship tonnage 

and age shows that the failure of CTS is one of the most frequent 

causes of ship accidents.  

With increasing safety requirements for expensive CTS, the 

demands for their efficiency, which depends on time and resources 

during their operation, are also growing. Ensuring the safe and 

efficient operation of ship CTS remains a pressing scientific and 

technical challenge. 
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1.2 Analysis of Models and Methods for the Intelligent Diagnosis, 

Assessment, and Prediction of the Technical Condition of 

Complex Critical Systems 

 

1.2.1 Comparative Analysis of Models and Methods for 

Intelligent Diagnosis of the Technical Condition of Complex 

Critical Systems 

 

The effective operation of critical CTS largely depends on the 

performance of their subsystems, components, elements, and their 

interconnections. Regulatory documents establish [23] that ensuring 

the uninterrupted operation of CTS requires monitoring the systems' 

TC, including diagnostics, assessment, and prediction of the 

performance of their equipment. 

The methods and tools for TC diagnostics, implemented during 

the design and operation of CTS, aim to ensure system efficiency and 

reliability [1, 23, 24, 25, 26]. These measures allow for the timely 

detection of equipment faults and their interconnections in CTS, 

determining the degree of functionality under changing operating 

conditions, reducing downtime and repair costs, and obtaining 

necessary information for evaluating and predicting the system's TC. 

Diagnostics should be performed without taking equipment out of 

operation, avoiding its disassembly. 

Diagnostics of TC is based on the theories of pattern recognition 

and testability [6]. The first involves developing algorithms for 

recognizing TC under limited information conditions, decision-

making rules, and diagnostic system models. The second includes 

developing tools and methods for obtaining diagnostic information 

and identifying faults. In TC recognition tasks, probabilistic and 

deterministic approaches are used. The probabilistic approach 

considers the system in one of its random states, while the 

deterministic approach matches the TC diagnosis with a specific 

domain in the feature space. Probabilistic methods are most 

commonly applied but require a large amount of prior information. 

A pressing issue for the safe operation of CTS is determining their 

TC based on non-invasive diagnostics and non-destructive testing. 
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Diagnostic theory relies on the relationship between the TC of a 

complex system and its representation in diagnostic parameters. 

Since diagnostics are performed under conditions of limited 

information during operation, diagnostic models are critical in fault 

recognition. Modeling CTS diagnostics is challenging due to the 

complex interconnections between subsystems, components, and 

elements, as well as interactions between the system and its 

environment. 

The numerical values of component parameters in diagnostic 

models depend on numerous factors that are difficult to account for 

during analysis. Additionally, since such models describe random 

processes, researchers classify them as stochastic models. It is 

assumed that the randomness of certain phenomena is expressed in 

terms of probability. Diagnostic models of CTS are also conceptual, 

defining the structure and properties of the modeled CTS under 

conditions of uncertainty. In this case, the mathematical model of 

CTS takes the following form [24, 25]: 

 

                                       Y(t)=F(X(t),U(t),V(t)),                            (1.1) 

 

   where  X – vector of the system model's current state; 

     U – vector of control inputs; 

     V – vector of external influences; 

     Y – vector of model output signals. 

The diversity of models and methods for diagnosing TC is 

determined by their dependence on the informativeness of the 

system's behavior, its complexity, and the variety of diagnostic tasks. 

The more complex a system, the more complicated its TC diagnosis, 

and the greater the risks of failures and emergencies during the 

operation of CTS  [8, 28, 29, 30, 31]. 

TC diagnosis includes: anomaly detection, fault localization, and 

fault classification. To achieve these tasks, machine learning and 

artificial intelligence methods are applied, such as support vector 

machines [32], nearest neighbors [33], and decision trees [34]. 

During the design and operation of CTS, specialized diagnostic 

methods and models are also used for TC diagnosis (Table 1.1)  
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[35–45]. Standards [46, 47] recommend fault trees and Petri nets for 

modeling TC diagnosis. However, fault trees cannot account for 

common equipment failures in CTS. Petri nets are used, for instance, 

in Monte Carlo simulation modeling, but these models are difficult to 

use, especially for large systems. 

From the analysis of literature sources, it is evident that existing 

methods for modeling TC diagnostics of complex systems do not 

provide reliable data that can be used for assessing and mitigating the 

consequences of failures in systems or making necessary 

management decisions. In this context, Bayesian belief networks 

(BBNs), as artificial intelligence models, are a valuable tool for TC 

diagnosis due to the following advantages [27, 48–51]: 

High efficiency in solving problems for CTS with numerous 

subsystems, components, and elements; 

Simplicity of interpretation and visualization; 

Logical explanation of fault propagation. 

Table 1.1 Methods and models of TC diagnostics of folding 

systems 
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BBN theory is based on probability and graph theories. Bayesian 

rules rely on expert assessments as well as prior and posterior 

observation data for solving diagnostic problems. 

When diagnosing the TC of complex critical systems (CCS), 

incomplete data are available for each subsystem, component, or 

element at any given time. This indicates uncertainty, which is 

addressed using probabilistic reasoning in BBN methods and 

cognitive simulation models for diagnosing the TC of complex 

systems [52]. 

BBNs leverage modern software technologies (Microsoft 

Bayesian Network Editor, Bayes Net Toolbox for Matlab, GeNIe, 

Smile, AgenaRisk, Analytica, Bayes Server, Hugin Expert). There 

are also ready-made libraries and modules for Python, C++, C#, 

Matlab, R, and VB.NET, compatible with various operating systems 

(Windows, Linux, macOS) [53–60]. A key product is GeNIe 

Modeler, which allows for the creation of models of any size and 

complexity [28, 61, 62]. Well-known software packages for Matlab 

(BNT – Bayes Net Toolbox) and R (gRain package) further expand 

the capabilities of BBNs [63–65]. 

The content and methods of simulation modeling aim to create 

cognitive simulation models (CSMs) for TC diagnosis by exploring a 

wide range of potential alternatives. A simulation model can be 

viewed as a set of rules that facilitate TS diagnosis [66], considering 

their significance and criticality for the overall CTS operation. The 

advantages of CSMs over analytical methods for TC diagnosis 

include the ability to construct models of complex systems without 

relying on analytical methods, using partially reliable and incomplete 

data about the object being modeled. Theoretical foundations and a 

wide range of software products, such as Arena, AutoMod, 

AnyLogic, Extend, and GPSS World, facilitate the application of 

CSMs. 

Given the inherent uncertainty, incompleteness, and vagueness of 

information about CTS, fuzzy logic is often used for TC diagnosis 

[45]. This approach enables the diagnosis of the TC of complex 

systems under extreme scenarios while minimizing computation 
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time. Both functional interconnections and equipment interactions 

within CTS are taken into account. 

 Combining CSMs with fuzzy modeling is particularly effective 

for diagnosing the TC of complex systems, as it is supported by 

algorithms and methods that accurately reflect system features [40, 

67]. However, this approach requires further development for 

diagnosing the TC of complex systems. 

From the analysis of typical models and methods, it is evident that 

there is no universal methodology for diagnosing the TC of CTS. 

Existing methods have the following limitations: 

They are applied only within narrow scopes due to the "rigidity" 

of information processing schemes; 

They do not account for the history of the TC; 

They require significant modifications when the composition or 

logic of CTS operation changes; 

They fail to consider partial failures in the functionality of system 

equipment and their interconnections. 

From the analysis of literature sources related to partial failures of 

functionality, it follows [36, 37, 38]: 

The spectrum of possible partial failures in almost any technical 

device is significantly broader than that of complete failures. 

Detection and identification of partial failures involve more 

complex recognition algorithms. 

At present, there are no tools for a theoretical approach to the 

development of diagnostic models for TC that account for partial 

failures. This is due to the infrequent collection of statistics related to 

such failures. The identification algorithms used do not distinguish 

failures based on the criterion of partial or complete failure. 

From the analysis of models and diagnostic methods for CS, it 

follows that the operational strategy for CS should be preventive. 

Enhancing the operational and maintenance strategies of CS is 

achieved through a comprehensive approach to developing and 

implementing appropriate diagnostic support.  

When addressing tasks related to improving the efficiency of CS 

operation, the role of methods based on modern diagnostic software 

increases. 
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Thus, for the effective operation of CS in critical systems, timely 

diagnostics of both partial and complete equipment failures based on 

conceptual stochastic models and diagnostic methods is crucial.  

Diagnostics must consider incomplete data from CS equipment, 

providing knowledge under uncertainty while ensuring the highest 

accuracy of results. 

 

1.2.2 Comparative Analysis of Models and Methods for 

Intellectualizing the Evaluation and Prediction of the Technical 

Condition of Complex Critical Systems 

 

The development of conceptual models and methods for assessing 

the TC of complex CS requires considering the possibility of 

continued operation under partial failures with multiple scenarios for 

their evolution [68, 69, 70, 71, 72, 73].  

Such an approach improves CS efficiency by extending 

productive operation until scheduled maintenance and recovery 

activities. 

The extent of technogenic accidents is measured by the risk of 

equipment failure, with consequences determined by the level and 

duration of CS operation [74, 75, 76].  

Risk assessment involves identifying hazards and evaluating them 

against acceptable failure risk criteria, producing qualitative and 

quantitative results, and converting hazards into measurable 

categories [77, 78, 79]. 

When assessing the risk of CS failures, the following should be 

considered: 

The hierarchy, topology, and diversity of equipment differing in 

physical principles, parameters, and operational modes. 

Functional state and operating conditions under uncertainties. 

Diagnostic results for TC. 

Challenges in obtaining statistical and expert data on failures  

[28, 29, 30, 78, 80, 81]. 

Available sources for failure risk statistics, such as for marine CS, 

include the OREDA database [82] and maintenance methods with 

safety assessments of CS [83, 84]. 
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Known methods for assessing CS failure risks differ in how 

probabilities and losses from failures are obtained [85, 86, 87, 88, 

89].  

Risk assessments within the technocratic concept are performed 

using methods classified as deterministic, probabilistic, expert-based 

under uncertainty, or combined, based on TC diagnostics of complex 

systems. 

Advantages of the probabilistic method include: 

Analysis of failure scenarios and consequences. 

Explicit consideration of interdependencies between CS 

equipment regarding failures. 

Quantitative assessment of uncertainty impact on risk evaluations. 

Ranking deficiencies and safety problems. 

However, as noted in the literature [90], models based on 

probabilistic approaches for assessing failure risks in marine CS are 

used to a limited extent. They provide approximate failure risk 

estimates without sufficient objective information. 

Expert methods are the most widely used for evaluating failure 

risk indicators [91]. However, these methods face limitations due to 

the high complexity of selecting experts with the required 

qualifications and the subjectivity of their assessments. The 

significant advantages of Bayesian network methods (BNM) make 

them promising for evaluating failure risks in CS. Risk assessment 

models of equipment, considering its importance and criticality for 

CS functionality, also employ cognitive simulation modeling 

technology [67, 92, 93, 94, 95, 96]. 

To establish the relationship between the actual resource and the 

probability of failure of CS, the fuzzy-probabilistic modeling method 

is used [97, 98]. However, the existence of standards for fuzzy logic 

does not resolve the issue of numerical risk assessment of CS 

failures. This is because the standards provide criteria without the 

models required for comparative analysis of CS failure risk 

assessment options. 

Failure risk rankings are performed using risk indices, but these 

lack reliable models and input data. For example, a matrix of failure 
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consequences and probabilities is used, which requires expert 

assessments. 

To rank failure risk assessments of CS, Harrington's generalized 

desirability function [99] is recommended with risk levels and 

consequences defined as follows: 

 0–0.2: Minimal (minimal impact that does not affect CS 

operation). 

 0.2–0.37: Acceptable (minor impacts allowing CS operation 

without repairs). 

 0.37–0.63: Maximum (significant impacts, CS operation is 

possible with repairs). 

 0.63–1.0: Critical (catastrophic impacts, CS operation is not 

allowed). 

From the conducted analysis of models and methods, it follows 

that despite their advantages, they cannot be applied in their original 

form as conceptual models or methods for CS failure risk 

assessments due to their narrow industry-specific focus. Most models 

and methods are based on the assumption that CS equipment operates 

under normal conditions, without considering partial failures of 

functionality. However, leveraging advancements in information 

technology can address many of the aforementioned challenges in CS 

failure risk assessment [1, 100, 101].  

The safety level of systems, such as marine CS, is largely 

determined by the quality of TC forecasting based on failure risk 

assessments of their equipment [102, 103, 104]. Forecasting, like TC 

diagnostics, must consider the specifics of CS operating under 

uncertain and extreme influences, with insensitivity to incomplete 

equipment data, interconnections, and partial or complete failures 

[25, 80, 97, 102, 105, 106]. 

A list of forecasting methods suitable for use depending on the 

level of CS formalization is shown in Figure 1.10 [107]. TC 

forecasting can be performed using machine learning methods based 

on predefined CS performance indicators [108, 109, 110, 111, 112]. 

However, this approach is applicable only when considering binary 

TS. 
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For calculating the remaining operational life of CS, the PHM 

(Prognostic Health Management) method is a promising forecasting 

approach [113, 114]. 

The analysis of models and forecasting methods revealed that 

changes in the TC of marine CS are highly challenging to predict. 

This difficulty arises from the following factors: a lack of qualitative 

and quantitative expert data on system reliability, the dynamic nature 

of operational conditions, and the human factor [115]. 

 

 
 

Figure 1.10 - Classification of forecasting methods 
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Existing TC forecasting models and methods, which rely on 

deterministic and formalized statistical models, are not universal. 

They do not fully account for the specific operating conditions of 

system equipment, especially under uncertain influences of various 

external or internal factors on CS. 

A significant drawback of such models and methods is that they 

are not recommended for marine CS because they fail to meet the 

requirements of the International Convention for the Safety of Life at 

Sea (SOLAS-74) and the provisions of the International Safety 

Management Code [116, 117]. Another major shortcoming is that 

these models and methods have not undergone long-term practical 

validation. A notable advantage in achieving adequate forecasting of 

CS failure risk assessments is provided by structural models based on 

artificial intelligence mechanisms and methods [118, 119, 120]. Such 

models enable the prediction of CS failure risks by identifying 

implicit dependencies between input and output data samples and 

supporting various learning algorithms.  

This capability is particularly beneficial for CS in evaluating and 

forecasting scenarios of functionality loss that involve hundreds of 

criteria and indicators. Addressing these issues is also linked to the 

development and enhancement of problem-oriented software 

packages [100, 121, 122]. Consequently, the role of modern 

software-based TC assessment and forecasting methods for complex 

systems is increasing. 

Ensuring the guaranteed safe operation of CS by timely and 

proactive prevention of normal situations transitioning into critical, 

emergency, or accident scenarios is the foundation of the failure risk 

management strategy [23, 73, 123, 124]. This strategy is based on a 

systematic analysis of multifactorial failure risks, their reliable 

assessment under various CS operating conditions, and TC 

forecasting throughout their operational lifecycle [28, 125]. An 

analysis of publications and regulatory materials on failure risk 

assessment and forecasting for various types of CS revealed that the 

existing diversity of models and methods requires addressing 

significant uncertainties and improving the accuracy of assessments 

and forecasts.  
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Many models and methods focus on the operation of CS 

equipment under normal conditions, without accounting for partial 

functionality failures. They are often based on engineering, expert, 

and other approaches, involving complex and expensive calculations, 

which limit their widespread use and highlight the narrow 

specialization of these models and methods. 

Therefore, to ensure the effective operation of CS, the 

development of new models, methods, and their algorithms—

implemented as problem-oriented software packages for TC 

assessment and forecasting—remains a relevant task. 

 

1.3 Comparative Analysis of Information and Intelligent Systems 

for Diagnosing, Assessing, and Forecasting the Technical State of 

Complex Critical Systems 

 

Traditionally, information and intelligent systems (IIS) are 

understood as interactive computer systems that assist decision-

makers in using information, as well as a set of mathematical and 

heuristic models and methods for solving poorly structured or hard-

to-formalize tasks [126, 127, 128, 129, 130, 131]. The effectiveness 

of IIS functionality directly impacts the operational efficiency of CS 

throughout their lifecycle. 

IIS are unified by a general methodology for generating 

alternative management decisions in CS, determining the 

consequences of their implementation, and substantiating the choice 

of an acceptable management decision [132, 133]. IIS components 

include data sources and models, a model database, and a software 

subsystem comprising a database management system (DBMS), a 

model base management system (MBMS), and a user interface 

(Figure 1.11). 

The primary tasks solved by IIS [128, 129] include data input, 

storage, and analysis. 

Main functionalities of IIS: 

 Collecting necessary information from various data sources. 

 Converting the collected information into a unified data format. 
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 Generating queries to the data warehouse, processing them, 

searching for information, and presenting it in a format suitable for 

analysis and decision-making. 

An Intelligent Information System should feature a web-based 

client interface or be fully web-oriented [134]. The IIC data 

repository can be built using various types of DBMS; however, given 

the web orientation and the growing adoption of cloud technologies, 

it is preferable to rely on web-based DBMS like MySQL and 

PostgreSQL, as well as specialized cloud DBMS such as MS Azure. 

Data sources originate from operational-level information systems, 

special databases, and include engineering data along with 

information from external sources. 

 

Figure 1.11 - IIS structure 
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The data model is constructed based on the following 

components: 

 Data sources and repositories, 

 Operational data storage and data marts, 

 Metadata. 

The model database enables analysis within the IIS. Most DBMS 

solutions include OLAP extensions in one form or another, so the 

operational-analytical component of the IIS is considered ready once 

a DBMS type is selected for the data repository. When designing the 

data repository, it is crucial to implement a mechanism for metadata 

handling to describe the structure of the data within the database. 

Developers of the IIS design and build the metadata tree structure. 

At a conceptual level, IISs are classified as follows: 

 Communication-Driven DSS (focused on messaging), 

 Data-Driven DSS (focused on data), 

 Document-Driven DSS (focused on documents), 

 Knowledge-Driven DSS (focused on knowledge), 

 Model-Driven DSS (focused on models). 

Architecturally, IISs can be categorized as functional, independent 

data marts, or two-tier and three-tier data warehouses. Depending on 

the type of data these systems process, IISs can be classified into 

operational and strategic categories. 

OLAP and Data Mining represent two essential components of the 

decision-making support process. Data operations are performed by 

the OLAP engine, which implements the concept of online analytical 

processing. Depending on the storage type, OLAP systems are 

classified into MOLAP, ROLAP, and HOLAP. Based on the location 

of the OLAP engine, systems are divided into OLAP clients and 

OLAP servers. 

 An OLAP client constructs a multidimensional cube based on 

source data (to generate the required reports and cross-sections) and 

performs calculations on the client-side PC. 

 An OLAP server processes requests, performs computations, 

and stores aggregated data on the server, providing results upon 

request. 
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Cubes and other analytical reports must be configured [135]. IICs 

are also classified by levels (basic, intermediate, advanced) and by 

distribution levels (centralized, distributed) [136]. 

To perform analysis and generate recommendations, IICs employ 

various methods (Table 1.2 [137]): 

 Information retrieval, 

 Data mining, 

 Knowledge discovery in databases (KDD), 

 Case-based reasoning, 

 Simulation modeling, 

 Evolutionary computations and genetic algorithms, 

 Neural networks, 

 Situational analysis, 

 Cognitive modeling, and others. 

The application of artificial intelligence in IICs enables the system 

to expand its functionality, enhance operational efficiency, and 

improve the reliability of CS. 

 

Table 1.2 - IIS methods and models 
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One of the most crucial functions of IIS software is the evaluation 

of potential outcomes of decisions and the forecasting of the TC of 

CS [138, 139, 140]. The choice of the specific forecasting method for 

a particular IIS is left to the system developers.  

Factographic methods, which are the least dependent on 

subjective factors, are commonly used in software. For poorly 

formalized input data, expert methods are utilized, though they come 

with limitations related to the availability of a sufficient number of 

experts. 

As noted in [28, 80], during the operation of CTS, adverse 

influencing factors (AIFs) can disable individual subsystems, 

components, or affect overall system functionality. AIFs are typically 

unpredictable or difficult to forecast (e.g., human errors, natural 

disasters). Their impact can range in severity up to the complete 

destruction of the CTS [141]. 

Developing intelligent information complexes (IISs) for managing 

equipment failure risks to ensure the survivability of marine CTS 

under the influence of AIFs is a promising area in enhancing CTS 

safety [124].  

Such IISs can be implemented as standalone solutions or as 

modules that complement general-purpose control and decision-

making systems with additional functionality. They enable rapid 

decision-making in addressing the consequences of AIFs, ensuring 

CTS reliability by identifying, analyzing, and assessing existing 

equipment failure risks [107, 124, 141]. 

Most IICs are designed to address specific tasks or general classes 

of problems, targeting various types of users. Developing IISs for 

managing failure risks to ensure CTS survivability under incomplete 

and uncertain information, combined with the presence of unforeseen 

AIFs, is a forward-looking direction for effective and reliable 

operation of subsystems, components, and CTS as a whole. 

The primary concept of IISs is to address classical problems 

arising in unstructured and poorly formalized CTS [142, 143].  

These challenges include the inability to obtain complete and 

objective information for rational decision-making, as well as the 

need to utilize subjective and heuristic information. Additional issues 
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include uncertainties in input data and ambiguities in the search for 

optimal solutions. Moreover, solutions in such cases must interact 

with the user through dialogue or other forms of human-machine 

communication. 

Given these factors, traditional algorithmic methods and decision-

making models need to be abandoned in favor of using intelligent 

system technologies [144]. 

Theoretical substantiation and implementation of information 

technologies based on AI for designing, modeling, and solving 

practical problems in IICs have been explored by scientists such as 

V.M. Glushkov, A.N. Kolmogorov, N.J. Wiener, W.R. Ashby, F. 

Wassermann, S. Haykin, F. Rosenblatt, T. Kohonen, G.S. Tesler, 

N.G., V.P. Bespalko, V.V. Davydov, M.M. Potashnik, G.V. Skok, 

among others [145, 146, 147, 148, 149, 150, 151, 152, 153]. 

IISs should implement the following scheme: assessment – 

forecasting – decision-making – action. IICs provide decision-makers 

with analysis of the problem being solved. Key IIS functions include 

assessment, event forecasting, self-learning and adaptation, working 

with knowledge bases (including creation, structuring, storage, and 

database content), decision-making, and implementation. 

Known methods implemented in IISs include [144, 154, 155, 156, 

157, 158]: 

Analog and systemic methods; 

Heuristic methods for optimization tasks (genetic algorithms, 

artificial immune networks, simulated annealing, swarm intelligence 

methods, including ant colony algorithms); 

Case-based reasoning (nearest neighbor, decision tree-based case 

extraction, knowledge-based cases, and cases considering application 

scenarios); 

Structural mapping based on OWL ontologies. 

IISs are often created by combining AI systems, expert system 

technologies, machine learning, and agent-based systems [154, 159, 

160].  

Machine learning is widely used to automate risk assessment and 

predict potential failures (e.g., analyzing large datasets, identifying 

patterns and trends, system modeling and simulation).  
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However, the use of large datasets involves limitations, such as 

potential errors in risk assessment and inaccurate predictions. 

The structural mapping method offers advantages, including the 

ability to formalize complex hierarchical interactions among CTS 

equipment functioning under stochastic conditions; flexibility in 

implementing a production-based approach for knowledge base 

creation within IISs; and convenient software implementation using 

an object-oriented approach.  

Most models enabling new knowledge acquisition based on 

existing data can be reduced to production models.  

A drawback of these models is the limited representation of the 

problem domain, affecting flexibility in user-expert system dialogues 

[154]. 

Bayesian networks can be used for modeling relationships 

between various factors and their uncertainties in IISs for CTS with 

numerous equipment components, providing a structured foundation 

for failure risk assessment under uncertainty and assisting decision-

makers in prioritizing decisions [48, 58]. 

In IISs, methods based on case-based reasoning (CBR) can be 

employed for assessing and forecasting the technical state of CTS to 

generalize and apply accumulated experience [161, 162, 163].  

When operating CTS under conditions of uncertainty, the case-

based approach simplifies the decision-making process. The 

advantages of this method include: 

 The ability to learn from experience; 

 Versatility; 

 The capability to work with incomplete or unstructured data; 

 Flexibility in adapting to new situations. 

Stages of the Case-Based Reasoning (CBR) cycle (Fig. 1.12): 

 Capture cases from the case library (CL). 

 Indexing (for quick retrieval of similar cases). 

 Search for the most suitable cases for the new task. 

 Review and adaptation (modification for the current task). 

 Evaluation for suitability, storage, and implementation. 
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Figure 1.12 - Case-based Reasoning cycle [162]. 

 

The classical architecture of IIS (Fig. 1.13): 

 Provides justification for alternatives based on models and 

methods utilizing expert evaluations by specialists. 

 Includes decision-making methods under uncertainty with the 

modeling of problematic decision-making scenarios. 

Contains a knowledge base (KB) – a set of rules for selecting 

appropriate models and decision-making methods to justify 

alternatives depending on the specific implementation of task 

elements. 

Incorporates a database (DB) for storing information. 

Performs multidimensional task analysis and generates analytical 

reports using an OLAP server. 

The use of problem-oriented KB in the form of knowledge models 

enables the identification of new heuristic knowledge under 

uncertainty [164, 165] (Fig. 1.14). 
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Figure 1.13 - IIS architecture 

 

 
Figure 1.14 – Knowledge Representation Model Scheme 
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Currently, technologies of AI are being increasingly implemented 

to enhance the operational efficiency of CTS.  

For example, according to the requirements of the Maritime 

Register, all vessels must be equipped with AI-based systems  

[25, 102].  

This requires algorithmic and software tools capable of assessing 

and predicting the technical state of systems in alignment with the 

defined objectives [1, 166, 167]. 

An example of using an IIS is the PHM method, which 

encompasses the entire process from data collection to utilizing 

decision-making results.  

Real-time information about the state of ITS is used to assess the 

technical condition within the IIC framework. For modeling technical 

states, the following can be employed: fault tree analysis, event tree 

analysis, and Bayesian belief networks.  

Bayesian belief networks are preferred as a tool for assessing the 

risk of ITS failures. 

Among software solutions addressing decision-making tasks, 

Crystal Info (Seagate Info) is utilized—an IIS based on flexible data 

access and processing technology.  

Open OLAP technology allows the integration of 

multidimensional OLAP data from heterogeneous sources (Crystal 

Info, Crystal Holos, Hyperion Essbase, OLE DB for OLAP providers 

(Microsoft SQL Server OLAP Services, Applix TM 1, IBM DB2 

OLAP Services, and Informix MetaCube)). All OLAP sources can be 

represented within a unified interface. 

For many years, researchers have been developing IISs for various 

purposes; however, certain challenges regarding the efficiency and 

formalization of knowledge in ITS remain unresolved [168]: 

 Enhancing the objectivity and reliability of decisions made 

under uncertainty in evaluation and failure risk forecasting tasks; 

 Accounting for factors of incompleteness, ambiguity, and 

contradictions in initial information (data and knowledge) and rules; 

 Ensuring the representation and processing of diverse types of 

knowledge, data, and models, as well as the development of 

corresponding databases, knowledge bases, and models; 
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 Collecting, storing, and accumulating declarative and expert 

information about the problem domain in databases, knowledge 

bases, and case libraries; 

 Improving the accuracy of ITS assessments based on new 

models, methods, algorithms, and software invariant to the subject 

area for evaluation and failure risk forecasting, aiming to detect early 

signs of pre-failure states in equipment; 

 Applying adequate and technically feasible formal models for 

solving tasks, considering structural, functional, informational, and 

subject-specific features of ITS. 

To successfully address the issue of efficient and accident-free 

operation of ITS under emergency operating modes, it is necessary to 

use information technologies with software and hardware modules 

for receiving and transmitting diagnostics, assessment, and 

forecasting results for complex systems [1, 169, 170].  

The quality of data reception and transmission systems (DRTS) is 

determined by a set of characteristics affecting their efficiency: 

topology, bandwidth, speed, permissible error magnitude in data 

transmission and reception, information security efficiency, and the 

risk of device failures in DRTS. 

From the conducted analysis of literary sources, it follows that to 

ensure effective ITS operation, the IIS must implement the following 

scheme: evaluation – forecast – decision – action, based on the 

results of diagnosing the technical state of subsystems, components, 

elements, and their interconnections within ITS.  

Utilizing the results of the structural scheme implementation 

shown in Figure 1.15 is essential. 

Thus, solving the challenges of effective and reliable operation of 

critical application CCS requires improvement and the development 

of new models, methods, and algorithms, as well as problem-oriented 

software complexes.  

These should be aimed at identifying pre-failure and failure states 

of equipment systems, addressing tasks of assessment and failure risk 

forecasting under conditions of uncertainty, and ensuring relative 

insensitivity to incomplete equipment data, taking into account both 

partial and complete failures.  
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Figure 1.15 - Structural Diagram of Diagnostics, Assessment, and 

Forecasting of Technical States in CCS 

The informatization of assessment and forecasting of technical 

states should be based on artificial intelligence methods.  

The intellectualization of evaluating and forecasting the technical 

states of systems with reasoning based on cases and diagnostic 

features remains a necessary direction for the development of modern 

technologies.  

This approach ensures operational efficiency of CCS at different 

stages of their lifecycle and is a pressing issue. 

 

1.4 Conclusions for Chapter One 

 

The conducted analysis of existing models, methods, and 

information systems for diagnostics, assessment, and forecasting of 

technical states in complex CCS demonstrates that known structural 

models and methods only consider complete failures of operability 
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while ignoring partial failures. They are also constrained by increased 

algorithmic and computational complexity, as well as the need for 

complex preprocessing of diverse data, which reduces the 

effectiveness of CCS operation. 

Promising modeling methods for diagnosing technical states 

include Bayesian belief networks, which account for uncertainties, 

stochastic processes, and incomplete CCS data.  

Additionally, cognitive simulation modeling methods can assess 

structural and functional vulnerabilities of system equipment. Within 

IISs, case-based reasoning methods are identified as prospective 

approaches for evaluating and forecasting technical states of complex 

systems. 

Hence, there is an urgent scientific and practical task to enhance 

the efficiency of CCS operations through the intellectualization of 

diagnostics, assessment, and forecasting of technical states under 

conditions of uncertainty and relative insensitivity to incomplete 

equipment data, considering both partial and complete failures. 

Research Objective 

The goal of this study is to improve the operational efficiency of 

critical application CCS through the development of models and 

methods for diagnostics, assessment, and forecasting of technical 

states in such systems. 

Research Tasks 

To achieve this objective, the following tasks must be addressed: 

 Analyze models, methods, and information systems for 

diagnostics, assessment, and forecasting of technical states in critical 

application CCS. 

 Develop stochastic models and a diagnostic method for the 

technical states of critical application CCS. 

 Conduct research and analysis of the stochastic models and 

diagnostic method for the technical states of critical application CCS. 

 Develop a method for assessing and forecasting the technical 

states of critical application CCS. 

 Design an intelligent information system for diagnostics, 

assessment, and forecasting of the technical states of critical 

application CCS. 
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CHAPTER 2 

DEVELOPMENT OF STOCHASTIC MODELS AND 

METHODS FOR DIAGNOSTICS OF THE TECHNICAL 

CONDITION OF COMPLEX CRITICAL APPLICATION 

SYSTEMS 

 

2.1 Development of a Stochastic Structural Model and Method 

for Diagnosing the Technical Condition of Complex Critical 

Application Systems 

 

2.1.1 Problem Statement for Developing a Stochastic Structural 

Model and Method for Diagnosing the Technical Condition of 

Complex Critical Application Systems 

 

The operational efficiency of ship-based CTSs can be assessed 

based on reliability in the form of the risk of equipment failures. In 

this regard, the evaluation of equipment failure risk must account for 

the CTS structure (hierarchy and topology), functional states (partial 

or total loss of functionality), as well as incomplete system data. 

Operating CTSs involves uncertainties (incomplete information about 

external and internal factors affecting systems and their technical 

condition, and uncertainty in system behavior). Based on this and as 

noted in Section 1.2, models and methods for diagnosing the 

technical condition of complex systems fall under stochastic and 

conceptual approaches. 

As derived from the analysis in Section 1.2.1, the most promising 

approach for diagnosing the technical condition of complex systems 

is the intelligent Bayesian Network Method, which simplifies and 

accelerates the development of corresponding models. In the 

development of diagnostic models for the technical condition of ship-

based critical complex systems, the following considerations are 

made: 

• A hierarchical structure is adopted. 

• Interactions between equipment are modeled using 

GeNIeRate [61]. 
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This approach enables aggregated information about equipment to 

provide insights into the overall system. Variants of object status in 

terms of equipment failure risk are highlighted based on Harrington's 

desirability function. For describing loss categories resulting from 

failures, a verbal form may be used, allowing numerical assessments 

to be matched with various damage classes based on Harrington's 

scale. On this scale, critical damage is denoted as Dcrit, with the 

following classifications: 

• 0.1·Dcrit: minor damage. 

• 0.29·Dcrit: insignificant damage. 

• 0.51·Dcrit: moderate damage. 

• 0.72·Dcrit: significant damage. 

• 1.0·Dcrit: critical damage. 

Thus, for the effective operation of CTS equipment in various 

failure states, the conceptual stochastic diagnostic models being 

developed should demonstrate robustness to incomplete data and link 

types of technical conditions of complex systems with their 

diagnostic indicators in the form of failure risks. Results obtained 

using diagnostic models should facilitate intelligent assessment and 

prediction of the technical condition of complex systems. 

 

2.1.2 Development of a Stochastic Structural Model and Method 

for Diagnosing the Technical Condition of Complex Critical 

Application Systems 

 

The foundation for developing a conceptual stochastic model and 

an intelligent diagnostic method for technical condition in the form of 

a dynamic Bayesian network involves using diagnostic features of 

CTS, along with a model for describing the intellectualization of 

failure risk diagnostics, encompassing: 

• Subsystems (S), 

• Components (C), 

• Elements (E), 

• Inter-system connections (IS), 

• Inter-component connections (IC) 

• Inter-element connections (IE). 
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The model includes sets of functional elements and connections of 

complex systems based on diagnostic features. 

The proposed conceptual stochastic diagnostic model for the 

technical condition of ship-based complex systems, presented in 

graphical and probabilistic form, appears as follows: 

 

        ,         (2.1) 

 

where  G - is a cyclic directed graph ( ЕTVG ,,= ,   ivV = – 

the sets of vertices and edges of the digraph; T – time;   ijeE =   – 

the set of edges connecting the vertices of the digraph; i – the 

sequential number of the graph vertex, i=1,2,…,k, ij – the sequential 

numbers of the incoming and outgoing functional connections); 

 ixX =  – the set of parameters of the digraph vertices; 

 iji еvfF ,=  – the function representing connections between 

the digraph vertices; 

Q – the domain of parameters for the digraph vertices; 

FE, FC – functional equipment (subsystems, components, 

elements) and connections included in the CTS structure; 

   – sets of diagnostic risk assessments of failures 

for FE and FC; 

L – the mapping of connections between the sets 

  based on the fault tree of the CTS 

diagnostic model. 

 

The sets of FE in CTS, considering hierarchical levels, are defined 

as: 

                                       (2.2) 

 

where: 
 fe

fe

m

n  – the TS of each FE; 

i – the index of FE; 
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fem
 – the index of the hierarchical level of FE; 

FEI
 – the total number of FE; 

FEM  – the number of hierarchical levels of FE. 

 

The technical state of each FE in CTS is determined by: 

       
},,,,{ 0

jFE
on

iFE
inFEFE

fe аaWW fm

i  =


       (2.3) 

 

where: 
0

FE
W ,

f

FE
W  – full and partial functionality of FE; 

jFE
on

iFE
in

аa  ,   – the technical states of the incoming and 

outgoing FC in FE; 

fem  – the hierarchical level of FE; 

in,out – indices of incoming and outgoing FC in FE. 

 

Partial functionality of FE under various degrees of loss is 

determined by: 

             
},1;,1;1,0|{

,

FEfeFE

mi

f

f MmIifWW fe

FE
====



       (2.4) 

 

In (2.4), f=0 indicates the functional state of CTS, and f=1 

represents the complete failure of CTS. 

 

The sets of FC in CTS are defined as: 

            },,1;,1;,1;,1|{ ,,, SsZzBbAaFC szba

FC =====       (2.5) 

 

where: 
 qzba

FC

,,, – the technical state of each FC; 

a – the index of inter-component connection; 

z – the index of inter-system connection; 

b – the hierarchical level index for inter-component 

connections; 
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s – the hierarchical level index for inter-system 

connections; 

A – the number of inter-component connections; 

Z – the number of inter-system connections; 

B – the number of hierarchical levels for inter-component 

connections; 

S – the number of hierarchical levels for inter-system 

connections. 

 

The technical condition of each inter-component and inter-system 

connection:     

     },;;{
)(,)()(,)(

0,,,  = fe

szbaFCszbaFC

m

i

fszba

FC WW            (2.6) 

where:
0

)(,)( szbaFC
W , 

f

szbaFC
W

)(,)(
  - full and partial working capacity 

of the FC 

Partial performance of the FС at different degrees of its loss:  

 

  

},1;,1;1;,1;1,0|{ )(),(

)(),(

SsZzBbAafWW qzba

f

f

qzbaFC
======= 


    (2.7) 

Sets of diagnostic assessments of the risk of failure of FE and FC 

СTS:    

                                                             

                                        FCFE RRR , ,                                      (2.8) 

},,1,,1,,1|{
)( FEfeFEfefeFE MmNnFEferR

mn
====    

},,1,,1,,1,,1,,1|{
)(),(

SsZzBbAaFCirR fcfcFC szba
======

where:   
)(mnfer   , 

)(),( szbafcr   - risk of failure of each FE and FС 

of the CTS      

A generalised model for determining the risk of FE and FС 

failures:  

 

    =
)(),()(),()(),()(

,,,,,
)()() qzbaqzbaqzbamn FCmnFEFCmnFEFCFE eeDDPPKR ,   (2.9) 
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where:  
)(),()(

,
qzbamn FCFE PP  - are the conditional probabilities of failure 

FE and FC, respectively;  

)(),(
,

)() qzbaFCmnFE DD   - respectively, failure losses FE and FC;   

)(),(
,

)( qzbaFCmnFE ee   - is the weight of FE and FC, respectively, 

taking into account the hierarchy in the CTS 

 

The risk of failure )(mn is the FE of the CTS: 

                              )(
)()()(

tPDR
mnmnmn FEFEFE =                          (2.10) 

 

The risk of failure )(),( qzba is the FС CTS: 

                            )(
)(),()(),()(),(

tPDR
qzbaqzbaqzba FCFCFC =                  (2.11) 

The total risk assessment of the CTS failure, taking into account 

the risk assessment of the FE and FС failures, is determined:  

 

 
= ===

+=
FE

1fe

)(),(

1)(),(1

)(

1)(

)()(RR
)(),()(),()(n(m) qzbaqzbamn fc

QZBA

qzba

fc

FC

fc

fefe

MN

mn

eRe   (2.12) 

 

The probability of failure of FE and FC is determined by the 

following formulas:  

,
)exp(

)exp(
)(

)(

)()(

)()()(

)()( mn

mnmn

mnmnmn

mnmn FE

FEFE

FEFEFE

FEFE
T

T
tP 




 =

−

−
=   (2.13) 

)(),(

)(),()(),(

)().()(),()(),(

)(),()(),( )exp(

)exp(
)(

qzba

qzbaqzba

qzbaqzbaqzba

qzbaqzba FC

FCFC

FCFCFC

FCFC
T

T
tP 




 =

−

−
=  (2.14) 

where        is the failure rate; 

   is the distribution parameter, which is taken equal to рівним 

   based on the test results, рівним    is the estimate 

of the average time to failure. 
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Quantification of FE losses from failure )(mn  of the subsystem 

(component, element) to determine the risk of failure: 

 

              },1,,1,,1|{
)()(

MmNnFEfedD
mnmn feFE ==== ,      (2.15) 

where   
)(mnFEd - losses from the failure of a subsystem (component) 

of the CTS 

 

Quantification of losses incurred by FС from the failure 

)(),( qzba of intersystem (intercomponent) communication: 

 

},,1,.1,,1,,1,,1|{
)(),()(),(

QqZzBbAaFCfcdD
qzbaqzba fcFC ======    (2.16) 

where  
)(),( qzbafcd - losses from failure of intersystem 

(intercomponent) communication 

 

Тo describe the category of losses from failures of inter-system 

(inter-component) connections, a verbal form is used. 

Based on the established conditional probabilities of failures and 

the associated losses for FE and FC (2.10), (2.11), their risk of failure 

is determined. The assumptions and constraints adopted during 

modeling include that FE and FC in CTS have a level of failure risk 

distributed according to Harrington's desirability function. 

The model for the intellectualized evaluation of the technical state 

of complex systems based on diagnostic features using BBN is a 

synthesis of reliability and diagnostic models. In the diagnostic 

model, BBN is used to assess the risk of failure (probability) in the 

system. 

To create a diagnostic model of TS, it is necessary to determine 

the risk of failure (conditional probability) for each node in the 

network. These data are derived from expert knowledge and 

historical data analysis.  

After defining the failure risk (conditional probabilities), the 

model can be used to assess and predict the TS. In the model, the risk 
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of failure for each state of the system is determined using information 

about the system's TS and the risk of failure for each node in the 

network. 

The development of a stochastic diagnostic model for the TS of 

complex systems, which simultaneously accounts for the presence of 

equipment, their interconnections, and the risk of partial or complete 

failure, enabled the proposal of a diagnostic method for the TS of 

critical application complex systems based on BBN. 

The development of the diagnostic method for the TS of critical 

application complex systems based on BBN includes the following 

stages: 

1. Construction of a BBN based on a stochastic diagnostic model 

of the TS of complex systems. 

2. Initialization of the model by extracting failure risk data for 

equipment and their interconnections from the OREDA database. 

3. Conducting research by simulating emergency situations. 

4. Identifying and visualizing structural and functional 

vulnerabilities of the equipment, and analyzing the simulation results. 

5. Transferring the diagnostic data of the TS of the critical 

application complex system to an intelligent information system for 

assessment and prediction of the TS of the complex system. 

The construction of a BBN based on a stochastic diagnostic model 

of the TS of complex systems includes the following steps: 

 

1. Construction of the BBN: 

1.1. Nodes and inter-system (inter-component) BBNs representing 

the subsystems (components) of the CTS are created, taking into 

account the TS: 

1.1.1. Each subsystem (component, element) can exist in the 

following technical states: 
 fe

fe

m

nWork  - operable state nfe- of the nfe subsystem (component, 

element) mfe of the mfe level; 
 fefm

nfeworkNot _  - partial (complete) failure of the nfe - th subsystem 

(component, element) of the mfe - th level. 
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       1.1.2. Each intersystem (intercomponent) link is in states:  

       

 qb

za fc
Work ,

)(
 - is the operable state fcza )( of the b(q) level 

intersystem (intercomponent) link; 

     

 qb

za fc
workNot ,

)(_   - partial (complete) failure fcza )(  of the 

b(q) level intersystem (intercomponent) link 

       1.2. The connections between the BBN nodes, representing 

subsystems (components, elements), inter-system (inter-component) 

connections of the CTS, and diagnostic values R, are specified. 

 

2. The parameters of the BBN are specified: 

2.1. The risk of failure at the initial moment of time for FE and FC 

of the CTS, assuming that all of them are operational before the CTS 

begins operation: 

 

                     0))(()( 00
)

)
== =



=
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m
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m
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fe
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                     0))(()( 0

,
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2.2. Risk of failure at the initial time point for the FE and FС of 

the CTS, assuming that all of them are inoperable before the CTS 

starts: 

 

    1))_(()_( 00
) == =



=



t

m

nt

m

n
fe

fe

fe

fe
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=



t
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za fcfc
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2.3. The risk of failure of the FEs and FСs of the CTS at the 

current time point, provided that some FEs and FСs failed at a 

previous time point: 

          1))_/()_(( 1)
=−



t

m

nt

mfe

n
fe

fefe
workNotworkNotR ;          (2.19) 
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2.4. The risk of failure of the FE and FC of the CTS at the current 

time point, provided they are in a serviceable condition, and at the 

current time point, provided they were in a serviceable condition and 

at the previous time point: 
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;  (2.20) 
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2.5. The risk of failure of the FE and FС of the CTS at the current 

time point, provided that the FE and FС fail at the current time point 

and are operable at the previous time point:    

               

FEt

m

nt

m

n DeWorkworkNotR
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When developing the model and method of intelligence for 

diagnosing the TS of complex systems, such as the SРР, based on the 

BBN, the input data include: 

1. The schematic diagram and operating principles of the SРР, 

which detail the system's structure and functional capabilities. 

2. The probabilities of failure for FE and FC, which allow 

formalizing variations of scenarios in which a specific element or 

system cannot perform its intended function. 

3. A fault tree, representing a structured set of possible scenarios 

for the cessation of FE and FC TS functioning, along with the 

corresponding levels of failure risk. 

The number of FE and FC TS in the CTS can be determined based 

on the analysis of fault tree models and the associated failure risk 

values (Figure 2.1).   
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The synthesis and analysis of the fault tree are performed from a 

structural perspective, based on the logical schemes of equipment 

interactions within the CTS in terms of maintaining its operability. 

Structural analysis employs statistical data on the reliability of CTS 

equipment. 

In Figure 2.1, R represents the system failure risk; S1-S6 denote 

various combinations of failure sequences; F1-F14 represent system 

elements, event types, and their failures. 

 

 

 
 

Figure 2.1 - Fault Tree of Subsystems (Components, Elements) and 

Inter-System (Inter-Component) Connections of the SРР 

 

Table 2.1 illustrates the correspondence between the designations 

S in the fault tree and FE in the BBN. 
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Table 2.1 - Correspondence Between S and Subsystems 

(Components) in the BBN 

 
 

The developed structure of the BBN for the SРР (Figure 2.2) is a 

multi-level system comprising thirteen subsystems distributed across 

seven levels. P1 and P2 are specialized intermediate nodes designed 

to implement the multi-level structure of the BBN. 

Legend of subsystems and components in the SРР BBN: 

• Input Element – IE; 

• Firefighting System and Compressed Air System – FFS, 

CAS; 

• Manual Control of the Main Engine – MCME; 

• Control Systems and Remote Automated Control of the Main 

Engine – CS, RACSME; 

• Intermediate Component – P1; 

• Ship Power Plant – SPP; 

• Main Engine – ME; 

• Ballast Drainage System – BDS; 

• Emergency Drive for the Propulsion and Steering Complex – 

EDPSC; 

• Control System for the Propulsion and Steering Complex – 

CSPSC; 

• Boiler Room – BR; 

• Power Transmission from the Main Engine to the Propeller – 

TPMEP; 

• Intermediate Component – P2; 
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• Propulsion and Steering Complex – PSC; 

• Output Component – EXIT 

 

 
 

Figure 2.2 - Structure of the BBN for the SРР 
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For the subsystems of the top-level structure of the BBN for the 

SРР, conditional failures are determined based on the impact of 

subsystems from the lower hierarchical levels. 

An example of applying the BBN to interconnected SРР blocks 

IE, CAS, SPP, and their connections IE – CAS, CAS – SPP (Figure 

2.2), using failure rate data, can be presented as follows: 

 

0)( 0

3,2,1

8,3,1 ==tWorkR
; 

1)_( 0

3,2,1

8,3,1 ==tworkNotR
; 

0)( 0

3,2

, ==−− tSPPCASCASIEWorkR
 ; 

                           
1)_( 0

3,2

, ==−− tSPPCASCASIEworkNotR
;              (2.22) 
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3,2
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3,2

_,_ =−− tSPPCASCASIEtSPPCASCASIE WorkWorkR
 

 

The sets of failure risk at the current time, considering the 

previous state of subsystems (components, elements) and intersystem 

(intercomponent) connections, can be within the following ranges: 

• The expected level of failure risk is assessed as minimal, and the 

consequences of the accident are minimal under the following 

conditions: 

                2,01,0))/()_(( 1

3,2,1

8,3,1

3,2,1

8,3,1 −=−tt WorkworkNotR ;     (2.23) 

2,01,0))/()_(( 1

3,1
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3,2

_,_ −=−− tSPPCASCASIEtSPPCASCASIE WorkworkNotR

      
The expected level of failure risk is assessed as acceptable, and 

the consequences of the accident are minor under the following 

conditions: 

             37,02,0))/()_(( 1
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• The expected level of failure risk is assessed as maximal, and 

the consequences of the accident are significant under the following 

conditions: 

 

             63,037,0))/()_(( 1
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• The expected level of failure risk is assessed as critical under the 

following conditions:                     

163,0))/()_(( 1
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8,3,1

3,2,1

8,3,1 −=−tt WorkworkNotR ;      (2.26) 
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Based on the retrospective analysis conducted, it is possible to 

identify the most probable causes of failures and investigate the 

reasons for subsystem, component, and element failures in CTS. The 

use of a BNT for analyzing subsystem and component failure risks in 

CTS is considered adequate. 

Accounting for partial failures of CTS equipment enables the 

identification of failure causes. Conducting preventive maintenance 

before failures occur will enhance system reliability and improve 

operational efficiency. 

The first novelty point is formulated as follows: a stochastic 

diagnostic model for complex systems has been proposed for the first 

time. This model simultaneously considers the presence of 

subsystems, components, and elements, their interconnections, and 

the probability of partial or complete functionality loss, enabling the 

development of a diagnostic method for complex critical systems 

using a Bayesian Network of Trust. 

The presented BBN structure, which supports implementing the 

diagnostic method based on a graph-probabilistic model, reflects the 

essence of the second novelty point: the diagnostic method for 

complex systems based on BBN has been further developed. This 

method facilitates timely detection and visualization of structural and 

functional vulnerabilities, enhancing the operational efficiency of 

critical complex systems. 
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2.2 Development of a Cognitive Simulation Modeling Approach 

for Diagnosing the Technical Condition of Critical Complex 

Systems 

 

From the perspective of technical safety, diagnosing the risk of 

CTS failures is a necessary yet complex task that requires the 

development and application of specialized mathematical tools. 

Solutions to such problems often rely on failure tree analysis. 

 A promising simulation modeling method for studying CTS 

reliability during system transitions between different states is 

Cognitive Simulation Modeling.  

This approach utilizes directed graph models to represent the 

interactions of FE and FC within CTS. 

Based on an analysis of transition graphs for determining the 

states of FE and FC across all hierarchy levels, algorithms for 

decision-making in corresponding software functions were developed 

and implemented.  

In modeling the structural and functional properties of subsystems 

and their connections, the directed graph serves as a structural model 

of FE and FC within CTS. 

The goal of developing a conceptual approach to CSM-based 

methods is to establish methodological foundations for diagnosing 

CTS failure risks under the influence of unpredictable external and 

internal factors.  

The concept of diagnosing CTS failure risks under emergency 

scenarios is based on integrating FE and FC into a unified model.  

This model must ensure failure risk diagnosis for FE and FC, 

considering their interconnections and mutual influences, based on 

their significance and criticality for overall system functionality. It 

must also identify structural vulnerabilities within CTS. 

The transition from a cognitive map to a cognitive model is 

achieved by applying CSM, where structural vulnerabilities in CTS 

equipment are diagnosed via simulation modeling using diagnostic 

impulses.  
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During model testing, a diagnostic impulse (DI) is generated, 

applied to a conditional node (edge) of the CSM, and propagates to 

subsequent nodes (edges), inducing failure states in interconnected 

FE of the CTS. 

The conceptual stochastic CSM for diagnosing complex system 

conditions includes an impulse vector ( ) l,,k,timpk ...1,2 for discrete 

time.  

This is determined by the change in weights of the nodes and 

edges in the directed graph, defining the dynamics of impact 

propagation across the CTS.  

For an impact of imp = 0, the element remains unaffected, while 

an impact of imp = 1 disables the element with 100% probability. 

The proposed conceptual stochastic CSM for diagnosing critical 

ship complex systems is structured as follows: 

 

ССМ=<G,{x_i},F,Q,{FE},{FC},〖R_FE},{R_FC },L,〖imp〗_k(t)〗>  (2.27) 

                                                (2.28) 

 

where     – state of FE та FС СТС 

 

To test the developed software, a CSM of a CTS was created in 

the form of a directed graph, using an internal combustion engine 

(ICE) as an example (Fig. 2.3).  

The directed graph diagram of the ICE example with subsystems 

is shown in Fig. 2.4. 

As a measure of damage, it is proposed to determine the structural 

losses from FE and FC failures in accordance with the method for 

diagnosing structural failure risk in CTS.  

For diagnosing the failure risk of FE and FC in the ICE, it is 

necessary to determine the probabilities of failure for each FE and 

FC.  

Statistical data tied to a specific time 


are used, containing 

information about the number of failures n for FE and FC. 
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Figure 2.3 - Structural diagram of the internal combustion engine 

with subsystems (TAB - traction accumulator battery; ICE - internal 

combustion engine; ZRR - motion mode controller; BS - block for 

summing up voltages and power; OPE - energy converter; PCHM - 

rotation speed and torque converter; MP - mechanical transmission; 

VK - driving wheels; MZI - clutch coupling between the ICE and 

OPE shafts; MZ2 - clutch coupling between the OPE and PCHM 

shafts; ROPE - OPE regulator; RPCHM - PCHM regulator; RICE - 

ICE regulator; Mc - resistance torque on the shaft; Mk - torque on the 

shaft). 

 
 

Figure 2.4 - Schematic of the orientated graph of the ICE 
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The probability of failure of FE and FS of the ICE is determined:     

                          

nv
iPv

i 
=

,

na
j

Pa
j 
=

,                       (2.29) 

where 
pv

i is the probability of failure of the i-th FE; 

    
pa

j  - is the probability of failure of the j-th FC;  

    
nv

i  - is the number of failures of the i-th FE;  

   

na
j

 - is the number of failures of the j-th FC;  

    =
610     - is the period of statistical testing. 

Based on the method of diagnosing the risk of failures during the 

operation of FE and FC of a CTS, an algorithm for diagnosing the 

risk of failures of FE and FC depending on the degree of their mutual 

influence was developed (Fig. 2.5). 

The existing theoretical foundation and the availability of a wide 

range of simulation software, such as Arena, AutoMod, AnyLogic, 

Extend, GPSS World, and others, contribute to the active application 

of CSM for diagnosing the risk of CTS failures [171, 172]. However, 

the known software tools only facilitate the testing process itself and 

do not address the most challenging task of collecting the initial 

information, its interpretation, formalization, and adequate 

correlation with the specific object. Mastering such software 

environments requires significant effort. Based on the concept of 

failure risk diagnosis of FE and FC CTS described in [93], it 

becomes possible to develop software that enables automated risk 

diagnosis of FE and FC CTS failures, taking into account their TC 

[8]. To determine the general boundaries and context of the subject 

area being modeled, at the initial stages of developing failure risk 

diagnosis software for partial and complete loss of CTS operability, 

as well as formulating general requirements for its behavior, a 

diagram of the created software has been developed (Figure 2.6). 
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Figure 2.5 - Algorithm for Diagnosing Failure Risk Based on the 

Impact Degree of CSM CTS Components 
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Figure 2.6 – Use Case Diagram of the Created Software Variants 

 

The developed software allows the user to: 

• Create a CTS model in the form of a digraph, supporting 

features such as specifying the model name, entering a brief textual 

description, setting a new vertex in the digraph and visualizing it on 

the model display panel, building connections between selected 

vertices of the model, activating the current model layout algorithm 

on the panel, and visualizing the resulting structure in the created 

graphical container; 

• Display the previously obtained structure of the developed 

CSM in the form of a digraph with visualization of all edges and 

vertices, providing the possibility of direct import into the program; 

• Add a model to the system serialized in JSON format for 

parsing and display; 

• Perform the procedure for exporting the CSM in the form of 

the created digraph to a graphic file in PNG or JPG format; 
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• Execute the procedure for calculating the numerical values of 

failure risks for FE and FC CTS and visualize the results by 

generating a table format; 

• Display the results graphically, applying value ranking in 

descending order. 

The built use case diagram of the software allows for the design of 

the logical entities of the software implementation through the 

development of corresponding class diagrams.  

The key developed classes of the software are shown in Figure 

2.7. 

 
 

Figure 2.7 – Class Diagram of the Developed Software 
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The classes GraphsOverview, MainWindow, ChartViewWindow, 

GraphsOverviewWindow, GraphWindow, GraphWindowView, 

CalcutePage, MainWindowView, and ChartViewModel implement 

functional interfaces for the flexible adaptation of logic to introduce 

specified functional capabilities for displaying data processing results 

and performing computational operations. 

To implement the described software logic, interfaces for the 

CSM in the form of a digraph are used: 

• IComponentConnector (for ensuring the connection of FE 

components); 

• IContent (for displaying and implementing the dynamic 

combination and description capabilities of the entities in the 

created graphical container on each system interface form); 

• INotifyPropertyChanged (for event binding related to changes 

in the properties of the implemented CSM objects on the 

software panel); 

• IStyleConnector (for modifying and selecting FE connections). 

 

 

 
 

Figure 2.8 – Software Component Diagram 
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Based on the created diagrams, the characteristics of the physical 

representation of the system are described in the form of formalizing 

the order of interconnections between the basic CTS FE components. 

To this end, the component diagram (Figure 2.8) should be 

applied, which defines the software architecture by formalizing all 

the connections between the created software components. 

MainApp is the main module and is designed to invoke other 

modules to process requests for the following processes: building the 

CSM digraph model using the GraphBuilder class by applying the 

Graph# and OxyPlot dependencies, which are external artifacts of the 

project, as well as the GraphLayout class to construct the container 

for interactive visualization of the created model; evaluating values 

of losses and failure risks; displaying calculation results in table form 

for their visual assessment; building and displaying a graphical object 

for ranking results. 

The Graph# and OxyPlot artifacts were used as libraries for 

processing graphical primitives.  

The first of these dependencies contains a number of algorithms 

for fast layout of digraph models, including support for: Force-Scan, 

LinLog, Fruchterman – Reingold, ISOM, Sugiyama, Kamada – 

Kawai, and a simple tree layout. 

To simulate the interaction of objects over time within the 

developed software and to ensure message exchange processes 

between them, a sequence diagram of the software actions has been 

created (Figure 2.9). 

All forms, except for the main one, shown in this diagram are 

independent fragments that dynamically integrate into a single 

collection within the main form through the generation of new tabs. 

The basis of the digraph structure-building method is the 

Sugiyama algorithm, which is based on the following tasks: 

distributing the formed vertices of the digraph into levels to achieve 

minimal length values, while maintaining their direction unchanged; 

minimizing the total number of dummy vertices; minimizing edge 

crossings in the digraph by changing the order of assigned model 

vertices on their respective levels; selecting values for each vertex 

coordinate to reduce the number of edge bends. 
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Figure 2.9 – Software Action Sequence Diagram 

 

To formalize the software functionality, the following functional 

classes have been developed: 

1. Public partial class CalculatePage: UserControl, IContent, 

IComponentConnector for data interpretation and using the results of 

the developed model in the form of a digraph for quantitative 

assessment of CTS FE losses and their failure risks. 

2. Public class ChartViewModel: INotifyPropertyChanged for 

building and visualizing the ranked chart of the obtained CTS FE 

failure risk values. 

3. Class GraphWindowViewModel: INotifyPropertyChanged for 

creating the CSM digraph. 
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4. Public class GraphsOverview: UserControl, IContent, 

IComponentConnector for displaying the digraph model to the user 

interface. 

The interface of the CSM digraph creation form for the developed 

software is shown in Figure 2.10. This form allows selecting one of 

the supported algorithms for building and displaying the digraph 

within the container, assigning it a name as a string, entering its 

textual description, and saving the created model in *.xml format. 

 

 
 

Figure 2.10 – Interface of the CSM Digraph Creation Form for the 

Developed Software 

 

To test the software, a CSM diagnostic model of the CTS as a 

digraph was created, based on the example of vector control of the 

rudder transmission with an electric drive for a ship (Figure 2.11) 

[124]. It includes the following components: 1 - steering machine; 2 - 

worm wheel segment and brake; 3 - worm gear; 4 - rudder tiller; 5 - 

gearbox; 6 - rudder stock; 7 - rudder sector; 8 - semi-axle; 9 - bracket 

for the tray; 10 - bolt; 11 - bolt with nut; 12 - washer; 13 - locking 
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plate; 14, 15, 16, 24, 25 - gears; 17 - carrier; 18 - free epicycle; 19 - 

gear wheels; 20 - free carrier; 21, 22 - shafts; 23 - braking epicycle; 

26 - engine; 27 - spring; 28 - rudder baler; 29 - profiled rudder; 30 - 

drive wheel; 31 - propeller shaft; 32, 33 - low-pressure and high-

pressure turbine shafts; 34 - turbocharging unit; 35 - drive wheel; 36 - 

intermediate gears; 37 - crankshaft drive wheel; 38 - camshaft; 39 - 

connecting rod; 40 - piston; 41 - cylinder sleeve; 42 - cooling water 

chamber; 43 - crankshaft; 44 - charge air cooler; 45 - exhaust gas 

pipeline; 46, 47 - charge air and cooling water pipelines; 48, 49 - oil 

and fuel pipelines; 50 - pushrod; 51 - fuel pump; 52 - oil ring; 53 - 

cylinder head; 54, 55, 56 - exhaust, intake, and fuel valves; 58 - oil 

sump; 59 - cylinder block. 

 

 
 

Figure 2.11 – CSM Diagnostic Model of CTS 

 

From the conducted modeling, it is evident that the most 

vulnerable elements of the system are the steering sector, worm, 

worm wheel segment, brake, and gearbox.  
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Their failure poses the greatest threat to the functioning of the 

entire vector control system of the rudder transmission with an 

electric drive.  

Therefore, constant diagnostics of the CTS is necessary, which 

will help prevent the loss of functionality of FE and FC CTS, and 

reduce the risk of failures. 

To automate the process of building the CSM for diagnosing the 

risk of equipment failure in the ship's CTS, a cross-platform program 

was developed in the Java programming language, using the JavaFX 

graphical framework and XML markup language. After launching 

the developed application, the user selects the operating mode 

(manual – allows step-by-step assessment of parameters by entering 

the necessary data for the selected system (Figure 2.12), automatic – 

activates automatic data processing). 

 

 
 

Figure 2.12 – Interface for Viewing CSM Diagnostic of CTS in 

Manual Mode 
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The following conditional symbols are used for CTS: input 

element – INP; oil subsystem – МР; fuel subsystem – ТР; cooling, 

compressed air, and drive-steering complex control systems – CO, 

CCC, СUDR; ship's power plant – СЕ; fire protection system – PС; 

main engine – GD; remote automated control system for the main 

engine – DAU; ballast-drying system – BOS; boiler room – KU; 

power transmission from the main engine to the propeller – PM; 

drive-steering complex – DR; sanitary water preparation system – 

РСЗР; exhaust gas system – GV. 

An analysis of technical solutions aimed at improving the 

reliability of CTS operations has shown that timely and high-quality 

diagnostics, including remote components for complex technical 

systems during operation, significantly enhance system reliability and 

operational efficiency.  

Software and hardware wireless data transmission in information 

systems integrated with smartphones further enables remote control, 

resource expenditure monitoring, synchronization of CTS equipment 

operations, and coordination of distributed computational processes. 

The relevance of utilizing the open Android operating system as a 

platform for mobile application (MA) development is particularly 

noteworthy.  

Android offers advantages such as: 

• Integration support for third-party services and components. 

• Mechanisms for implementing virtualization. 

• Flexibility in application development using Java MVC 

templates and design patterns. 

• SSL protocol protection for transmitted data. 

• Optimization for mobile traffic data transmission. 

The functionality provided by the Android platform allows for the 

development of mobile applications for remote monitoring and 

failure risk forecasting of technical system components. 

The developed mobile application is designed for use on mobile 

devices with an Android operating system version, a screen size of 

4.5 inches, and a resolution of 800 × 600 pixels or higher. The user 

interface (UI) flexibility is achieved through: 
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• Elements for color-coded interaction and dynamic visualization 

upon activation. 

• Options to adjust text block sizes, fonts, and styles via Typekit. 

• Support for switching between screen tabs using an event-

handling method. 

• Preference for flat design elements over skeuomorphic ones. 

• Clarity and dynamic animations when rendering statistics in 

graphical form. 

• Partial blurring of background activity upon the appearance of 

dialog boxes or informational messages. 

• Placement of all functional elements on a single screen, 

eliminating the need for vertical scrolling. 

• An integrated intelligent keyboard for text data input. 

The choice of a database management system (DBMS) for 

developing and implementing the mobile application depends on 

effective interaction with the mobile client application, complicated 

by the wide array of available solutions. SQLite, with its built-in file 

server support in Android OS, is advantageous for fully offline 

operation.  

However, the mobile application’s operations require continuous 

connection to an external remote server.  

DBMS solutions integrated with standard tools and supported 

libraries enhance the speed and efficiency of the mobile application.  

For long-term scalability based on evolving project requirements, 

NoSQL databases may be selected. 

To achieve the objectives, the mobile application includes tables 

such as equipment, sensors, parameters, CTS equipment failure 

probabilities, failure losses, forecast parameters, and log lists.  

Data types in the application primarily consist of integers, real 

numbers, and large registration data entries.  

Based on the designed ER model, a concrete physical database 

model was implemented using MySQL Workbench or SQL 

Navigator.  

Application usage scenarios are designed and illustrated using a 

mobile application use-case diagram (Figure 2.13). 
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Figure 2.13 – Use Case Diagram for the Mobile Application 

 

The application’s functionalities include: 

• Viewing information on CTS equipment damage. 

• Assessing failure probability and structural/functional failure 

risks. 

• Searching the database by object name or unique ID. 

• Local storage and generation of reports in PDF format. 

• Building CSM. 

• Modifying user interface settings. 

• Viewing forecast results for CTS equipment conditions. 

• Enabling and disabling monitoring, diagnostics, and 

forecasting modules for CTS equipment. 
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• Maintaining a log and providing additional data compression 

for server-transmitted data. 

To formalize the class and object models of the mobile application 

(MA), a project class diagram was developed, illustrating the 

relationships between classes and their instances (Figure 2.14). 

 

 
 

 

Figure 2.14 – Fragment of the MA Class Diagram 
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The MA is launched in a separate thread via the initApp method 

in the Main class. The authorization procedure is handled by the 

Autoriz class, which generates a graphical user activity interface with 

login and password fields. Each class implements the following 

functionalities: 

• Monitoring, diagnostics, and forecasting. 

• Building CSM graphs. 

• Searching and viewing information from sensors monitoring 

CTS parameters. 

• Determining the probability of CTS equipment failures, failure 

risks, and associated losses. 

For a more detailed description of the MA, an activity diagram 

was developed (Figure 2.15). 

The objects in the diagram include: 

• Client-Mobile Application: Interfaces with users for system 

interaction and data visualization. 

• External Server: Synchronizes, processes, and verifies 

statistical data on the performance of CTS components. 

• Management Server: Performs tasks related to data storage, 

processing, backup, and data exchange with the external server and 

data collection system. 

• Data Collection System: Collects data directly from sensors 

located on individual CTS components and transmits the information 

to the CTS management server. 

     The MA is used to verify server activity and establish a 

connection between the server and the client. It sends a package of 

requests to check for key active updates in repositories, validate 

authorization data, and retrieve technical and statistical information 

about the operation of the CTS. 

To implement the prototype interface and develop the program 

code, formalized through UML functionality, an algorithm for MA 

operation was developed (Figure 2.16). 

The application installation package is downloaded to the mobile 

device in *.apk format.  

As a result, all components and dependencies of the application 

are initialized, including checks for connectivity to wireless Internet 
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access points using supported technologies (via the android.net 

package) and operations of the remote server.  

Subsequently, the data update visualization component on the 

server is rendered. 

 

 
 

Figure 2.15 – MA Activity Diagram 
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Figure 2.16 – MA Algorithm 
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When such a procedure is implemented, a new process begins 

installing the necessary packages and updating programs in the 

background.  

The user accesses the system via the login interface by entering a 

username and password. Technical and statistical information about 

the system components is then retrieved. 

After this, the application transitions to the main form, entering 

standby mode and user request mode. In these modes, the execution 

of the program code is triggered through the respective event handler.  

Upon closing the application, an additional dialog box is 

displayed, offering the option to run the MA in the background. If the 

user selects this option, the application runs in a separate process and 

thread, and the GUI is unloaded from the mobile device's RAM. 

 If the application, already running in the background, is 

relaunched, the background mode is terminated, and control is passed 

for access verification to the application mode. 

When the user initiates the final closure of the application in the 

background mode, all actions performed are logged in the local 

working directory copy of the mobile application.  

If the server connection is active, data is sent to the server.  

Afterward, the application is fully unloaded from the mobile 

device’s main memory. 

The amount of MA data stored in the corresponding Cache 

directory must not exceed 2.5 megabytes.  

Otherwise, a caching procedure will be initiated. 

The developed MA consists of the following modules: 

• Initialization of user interface components 

• Verification of the current data module for the application 

version 

• Connection to the remote server module 

• Building and visualization of the CSM system module 

• Reporting module for transformation and export of statistics 

and graphical data from applications 

• Prediction module for creating and training an artificial neural 

network using the backpropagation method, linear normalization 
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function, and tangent activation function. The network is trained with 

error value evaluation 

• Visualization of statistical data 

• Retrieval of data query implementation from the server 

database 

These modules form the core structure of the MA development 

project.  

They are stored in separate packages, which can be extended. The 

prototype implementation of the software client interface is shown in 

Figure 2.17. 

 

 

 
 

 

Figure 2.17 – Mobile Client Interface Prototype 
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The prototype was developed using the SaaS cloud service 

fluidui.com and consists of three tabs: 

• Analytics: Includes components for viewing the list of active 

sensors, retrieving information, and managing the monitoring, 

diagnostic, and predictive modules of  СTS equipment. It also 

supports logging. 

• Monitoring: Features graphical components for the dynamic 

visualization of parameters and system characteristics. 

• Prediction: Contains a table of predicted risk values based on 

the selected time period. 

The developed MA project for monitoring, diagnosing, and 

predicting the risk of СTS equipment failures is complete and 

logically structured. During code development, it is advisable to use 

Gradle configuration to accelerate the processes of refactoring, 

profiling, and integration with the GIT version control system. 

The developed MA simplifies the process of assessing the risk of 

СTS equipment failures.  

Additional content and functional enhancements to the project are 

feasible through Android-Core interfaces. 

As an alternative to the server side, it is recommended to use 

modern cloud services and technologies based on IaaS and PaaS 

models. 

The third point of scientific novelty is formulated as follows: an 

improved cognitive simulation model that uses simulation shock 

impulses, enabling the diagnosis of CTS equipment systems while 

considering their interconnection and influence. 
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2.3 Conclusions to the Second Chapter 

 

In the second chapter, stochastic models and a method for 

diagnosing the CTS of complex systems were developed.  

The models reflect a new approach that takes into account 

uncertainties and incomplete data of the modeled systems, 

considering partial and complete failures of equipment operability, 

the identification and visualization of structural and functional 

vulnerabilities of subsystems, components, and elements of their 

interconnections. The method of dynamic BBN was used for 

modeling. 

A stochastic model for diagnosing the CTS of complex systems is 

proposed for the first time, which simultaneously considers the 

presence of subsystems, components, and elements, their 

interconnections, and the probability of partial or complete failure of 

operability.  

This allowed for the introduction of a method for diagnosing CTS 

based on a Bayesian trust network for complex critical application 

systems. 

The method for diagnosing the CTS of complex systems based on 

the Bayesian trust network has been further developed, enabling the 

timely detection and visualization of structural and functional 

vulnerabilities and improving the efficiency of complex critical 

application systems. 

To detect and visualize vulnerabilities of CTS equipment with 

consideration for their mutual relationships and influence, uncertainty 

and data incompleteness, partial and complete equipment failures, as 

well as tracking the consequences and system responses to failure 

risks with non-obvious sources, a cognitive simulation model for 

diagnosing the risk of equipment failure was used. This model 

employs simulation impact impulses. 

An improved cognitive simulation model has been developed, 

which applies simulation impact impulses, enabling the diagnosis of 

CTS equipment in systems, considering their mutual connections and 

influences. 

 



 

 
STOCHASTIC MODELS AND METHODS FOR DIAGNOSING, 

ASSESSING, AND PREDICTING THE TECHNICAL CONDITION  

OF COMPLEX CRITICAL APPLICATION SYSTEMS 

 

80 

 

CHAPTER 3 

RESEARCH AND ANALYSIS OF STOCHASTIC MODELS 

AND METHODS FOR DIAGNOSING THE TECHNICAL 

CONDITION OF COMPLEX CRITICAL SYSTEMS 

 

3.1 Research and Analysis of the Stochastic Structural Model and 

Method for Diagnosing the Technical Condition of Complex 

Critical Systems Using the Dynamic Bayesian Network Method 

 

The purpose of studying the developed conceptual stochastic 

model for risk diagnosis of CTS failures (Section 2.1) is to identify 

vulnerable FE and FC of the system, considering their partial and 

complete failures. 

Reducing the problem of diagnosing the risk of FE and FC 

failures in CTS to constructing a Bayesian Network Model (BNM) 

enables the use of the algorithmic apparatus of BNM theory and 

software tools like GeNIe.  

In this case, the comprehensive monitoring of failure risks 

(probabilities) of FE and FC in CTS, hidden variable characteristics, 

and their necessary visualization are addressed using the developed 

model from Section 2.1. 

In the diagnostic model, BNMs are employed to estimate the risk 

(probability) of failure for FE and FC of the system.  

This is based on its operating principles and expert data (sourced 

from the OREDA database).  

The model determines the failure risk for each CTS component, 

considering the current and previous technical states related to the 

risk of failure identified for each interconnected FE in the system. 

The research focuses on a ship's critical CTS—its propulsion plant 

(PP). The structure of the dynamic BNM was developed with 

consideration of the layout and operating principles of the PP, 

consisting of seven levels and seventeen nodes.  

Table 3.1 presents the designations for PP equipment, the 

hierarchical level numbers, and the weight of each subsystem 

(component, element) within the dynamic BNM of the PP modeled in 

the GeNIe environment. 



 

 
STOCHASTIC MODELS AND METHODS FOR DIAGNOSING, 

ASSESSING, AND PREDICTING THE TECHNICAL CONDITION  

OF COMPLEX CRITICAL APPLICATION SYSTEMS 

 

81 

 

 

Таблиця 3.1 Symbols of subsystems, components of the SPP 

 

 

 
The modeling was conducted using the traditional "top-down" and 

"bottom-up" approaches, based on the model's prior characteristics. 
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The following assumptions and constraints were adopted during 

the modeling process: 

• The FE and FC of the CTS are in either partial or complete 

failure states; 

• At the initial time, the FE and FC of the CTS are in a 

functional state; 

• The current technical state of each FE and FC of the CTS 

depends on their current and previous technical states; 

• Time is discrete, with a step size of one hour. 

 

When modeling the DBN of the SPP (Fig. 3.1), for various values 

of the probability (risk) of failure of the input subsystem, the 

probability (risk) values for the failure and operability of the FE and 

FC of the SPP were determined over 20,000 hours of operation. 

Figure 3.1 shows the BNM of the SPP for modeling and 

diagnosing the failures of FE and FC at an input element failure risk 

of 0.26, displaying the operational state and failure risk level of each 

FE and FC of the SPP. 

 Fragments of operational states and failures, for example, 

subsystems CS and SPP, located on the third level of the BNM and at 

the output of the model, are shown in Fig. 3.1. 

Similar studies were conducted for an input element failure risk of 

0.49, showing the operational state and failure risk level of each FE 

and FC of the SPP (Fig. 3.2).  

Figures 3.3 and 3.4 present the calculated values of conditional 

probability and failure risk for the FE and FC obtained from 

modeling results for 2,863, 8,616, 13,079, 16,726, 19,809, and 

20,000 hours of SPP operation, respectively. 

Figures 3.5 and 3.6 present the calculated values of the probability 

and risk of failure for the FE and FC obtained from modeling the 

operation of the SPP over 20,000 hours in the GeNIe environment. 

Retrospective analysis of the study results identifies FEs that are 

in partial or complete failure states.  
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Figure 3.1 - BNM of SPP in GeNIe environment for modelling FE 

and FC failures at the risk of input element failure of 0.26 
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Figure 3.2 - BNM of SPP in the GeNIe environment for modelling 

FE and FS failures at the risk of input element failure of 0.49 
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In studying emergency situations and analyzing CTS events, the 

primary objective is to determine the causes of FE and FC failures. 
 

 

 
 

Figure 3.3 - Conditional probabilities of failure of FE and FC of SPP 
 

 
 

Figure 3.4 - Failure risk of FE and FC of SPP 

 

 
Figure 3.5. - Failure probabilities FE and FC for 20,000 hours of 

operation of SPP 
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Figure 3.6 - Failure risk of FE and FC for 20,000 hours of operation 

of the SPP 

 

The research results indicate that one of the highest failure risk 

values, 0.35, occurs when the input element failure risk varies from 

0.26 to 0.70 over 20,000 hours of subsystem operation in the BP 

subsystem (Fig. 3.6).  

This subsystem is interdependent on the functioning of other SPP 

subsystems (IE, CAS, SPP). 

The maximum failure risk value of 0.43 was recorded when the 

input element failure risk varied from 0.26 to 0.70 over 20,000 hours 

of operation in the ME subsystem. This is explained by the 

significant influence on the ME's technical state by its interconnected 

subsystems: IE – CAS – RACSME, IE – MCME – P1, and IE – CAS 

– P1. 

To identify the potential causes of BP failures, a study was 

conducted using the BP subsystem failure cause investigation scheme 

shown in Fig. 3.7. The factors influencing the technical state of the 

BP subsystem are indicated in Fig. 3.8. 
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Figure 3.7 - Scheme of searching for the causes of failure of the BP 

subsystem 
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Figure 3.8 - Factors affecting the BP vehicle 

 

The search for the causes of failures of the BP subsystem of the 

dynamic BNM was performed in accordance with the algorithm 

shown in Fig. 3.9.  

When searching for the causes of failures of the BP subsystem for 

FE of the SPP BNM (Fig. 3.9), IE, CAS, SPP, BP: IE - CAS, CAS - 

SPP, SPP - BP are sets of failure risk at the initial time point and 

taking into account the dynamics of the TC in time based on a priori 

data on the intensity of failures: 
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Figure 3.9 - Algorithm for finding a fault in the BP subsystem 

 

Failure risk sets at the current moment of time, taking into account 

the previous FE and FC, may be within the limits: 

- the level of failure risk is assessed as minimal, the consequences 

of an accident are minimal for: 
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- the risk of failure is assessed as acceptable, the consequences of 

an accident are insignificant at: 
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ailure risk allocation of FE and FC in a dynamic failure-adjusted 

BNM is as follows: 
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The use of BNM in the process of diagnosing the risk 

(probability) of FE and FC failures aims to obtain posterior 

conclusions.  

This is achieved by recalculating prior data to assess the risk or 

failure probability values, which serve as the initial information for 

analyzing new data.  
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Posterior conclusions are based on the results of data analysis 

processes obtained through the application of BNM. 

Following modeling with prior and posterior data, the 

probabilities (risks) of FE and FC failures in the SPP, which affect 

the main engine's operability and the overall system performance 

over various time intervals within 20,000 hours, are determined 

(Figs. 3.10–3.32). 
 

 
 

Figure 3.10 - A posteriori and a priori estimates of the probability of failure 

of the МСМЕ subsystem 

 
Figure 3.11 - Posterior and a priori estimates of the probability of 

failure of the IE subsystem 
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Figure 3.12 - A posteriori and a priori estimates of the probability of 

failure of the CS subsystem 

 

 
 

Figure 3.13 - A posteriori and a priori estimates of the probability of 

failure of the BP subsystem 

 
 

Figure 3.14 - A posteriori and a priori estimates of the probability of 

failure of the CSPSC subsystem 
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Figure 3.15 - Posterior and a priori estimates of the probability of 

failure of the SPP subsystem 

 

 
 

Figure 3.16 - A posteriori and a priori estimates of the probability of 

failure of the FFS subsystem 

 
 

Figure 3.17 - Posterior and a priori estimates of the probability of 

failure of the BDS subsystem 
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Figure 3.18 - A posteriori and a priori estimates of the probability of 

failure of the ME subsystem 

 

 
 

Figure 3.19 - A posteriori and a priori estimates of the probability of 

failure of the ED PSC subsystem 

 
 

Figure 3.20 - Posterior and a priori estimates of the probability of 

failure of the RACSME subsystem 
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Figure 3.21 - A posteriori and a priori estimates of the risk of failure 

of the SPP input component 

 

 
 

Figure 3.22 - A posteriori and a priori estimates of CSPSC subsystem 

failure risk 

 

 
 

Figure 3.23 - A posteriori and a priori risk assessments of FSS 

subsystem failure 
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Figure 3.24 - Posterior and a priori estimates of the probability of 

failure of the TPMEP subsystem 

 

 
 

Figure 3.25 - A posteriori and a priori estimates of the risk of failure 

of the МСМЕ subsystem 

 

 
 

Figure 3.26 - A posteriori and a priori risk assessments of ME 

subsystem failure 
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Figure 3.27 - A posteriori and a priori risk assessments of SPP 

subsystem failure 

 

 
 

Figure 3.28 - A posteriori and a priori risk assessments of the 

RACSME subsystem failure 

 

 
 

Figure 3.29 - A posteriori and a priori risk assessments of the BDS 

subsystem failure 
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Figure 3.30 - A posteriori and a priori estimates of the risk of failure 

of the BP subsystem 

 

 
 

Figure 3.31 - A posteriori and a priori risk assessments of the 

TPMEP subsystem failure 

 

 
 

Figure 3.32 - A posteriori and a priori risk assessments of ED PSC 

subsystem failure 
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It has been confirmed that the most critical FE and FC with the 

highest predicted probabilities and risks of failure are BP and ME. 

Since the BP and ME subsystems are interdependent within the 

hierarchical structure of the SPP, a thorough examination of the CTS 

was conducted to identify the causes of the high risk (probability) 

values for their failures. 

The use of dynamic BNM enabled the diagnosis of the probability 

(risk) of CTS failures during the modeling of interdependencies 

between different failure probability (risk) values. 

The results of developing the CTS diagnostic model with 

incomplete technological data and its implementation in an intelligent 

system for diagnosing the risk of FE and FC failures in critical MPP 

applications provided prior information about the technical state of 

each subsystem (component) of the complex system. 

Posterior characteristics obtained from the study results during 

the diagnosis of the TS of the SPP over 20,000 hours of operation 

show that the risk values of FE and FC failures vary slightly from the 

prior characteristics. This does not contradict the expert failure risk 

values for FE and FC of the ship's CTS recorded in the OREDA 

database. The TS indicator for the CTS and its FE and FC—posterior 

failure risk—is focused on making a reliable conclusion about system 

failures and their FE and FC. 

The calculation of the posterior distribution of variables provided 

reliability assessments for the CTS to minimize losses from 

subsystem (component) failures and reduce the probability of 

erroneous decisions. The studies confirmed that the developed model 

and method, considering the hierarchical levels of FE and FC for 

intelligent diagnostics of CTS failure risks and identifying the causes 

of failures, allow for monitoring the risk (probability) of failures as 

new information becomes available about FE and FC failure risks in 

the current and future periods over 20,000 hours. 

An intelligent diagnostic method for FE and FC failure risks in 

CTS with varying degrees of operability loss and incomplete system 

data was developed using the CPP as an example. This method relies 

on prior information about failures linking the types of TS of FE and 

FC. 
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The diagnostic results reflecting the failure risks of FE and FC 

confirmed that the model can be considered conceptual. Thus, the 

studies demonstrated that the developed stochastic model and 

diagnostic method of TS, which account for partial and complete 

operability losses with retrospective analysis of their causes, 

identification of the most vulnerable FE and FC, and implementation 

of appropriate measures, enable the exclusion or reduction of repeat 

failures. This approach fulfills the task of improving the efficiency 

and reliability of FE and FC operation in CTS. 

The practical implementation of the proposed method for 

assessing FE and FC failure risks in SPP can be extended to any CTS 

structure of any complexity with varying interdependencies between 

FE and FC. 

 

3.2  Research and Analysis of the Cognitive Simulation Model for 

Diagnosing the Technical State of Complex Critical Systems 

 

The studies in Section 3.1 enabled the diagnosis of FE and FC 

failure risks in CTS but did not address the functioning of systems in 

extreme emergency situations. To diagnose the TS of equipment 

systems considering their interconnections and interactions, as well 

as to track system responses to failure risks with non-obvious causes, 

a cognitive simulation model was developed. 

Cognitive simulation modeling complements the results obtained 

in Section 3.1 by studying models and methods for diagnosing FE 

and FC failure risks under simulated impacts in unpredictable 

external conditions and internal damaging factors in extreme 

emergency situations. 

The goal of cognitive simulation modeling  is to generate and test 

hypotheses about CTS failure risks and derive FE and FC failure 

risks that explain the causes of СTS failures. One advantage of the 

CSM-based information system for CTS is its ability to process 

scenarios with varying probabilities of failure, addressing "What if?" 

questions. 

The studies consider both the position and role of FE and FC in 

CTS and the risk (probability) of their failures under   defeat 
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modelling pulse (DMI) impacts. The influence of DMI on the system 

is modeled as closely as possible to reality. This allows for evaluating 

possible scenarios of development and consequences of FE and FC 

failures in CTS. DMI propagates from the affected FE (a node in the 

digraph) to adjacent FE (nodes), transitioning them to a failed state. 

Each node and edge in the CTS digraph in CSM has a failure 

indicator ranging from 0 (failed) to 1 (operational). DMI is modeled 

as an impulse vector containing DMI values, indicating the degree of 

impact on the respective node in the digraph, ranging from 0 (node 

remains unaffected) to 1 (node completely fails). It is assumed that 

DMI propagates along the edge between two nodes in the digraph 

within a discrete time period. 

To achieve the research objective of diagnosing CTS failure risks 

and identifying causes of FE and FC failures using the method 

implemented in CSM, software was developed. The listing is 

provided in Appendix G. 

The studies utilized a digraph of an ICE as an example, as shown 

in Section 2.2 (Fig. 2.4). The model was activated using GNU Make 

tools, and visualizations were generated with Graphviz. The 

modeling process has the following structure (Fig. 3.33): the initial 

model is defined as a JSON file, which is processed by a Python 

program to generate a set of tables in CSV format and diagrams in 

DOT format. The Make utility processes DOT files using Graphviz 

to produce a set of TS diagrams for the complex system in PNG 

format. 

For the analysis of obtained results, Calc LibreOffice is used. 

Utilizing the JSON format allows for conveniently and efficiently 

defining the structure and configuration of available equipment.  

One of the advantages of working with the JSON format is the 

ability to formalize the complete system specification (with 

numerical characteristics of nodes, configuration, and the digraph of 

inter-node connections) within a single file.  

The JSON file can be edited manually using text editors or via 

automated tools for data collection and processing. 

The propagation of diagnostic impulses through the system can be 

represented graphically or as CSV-based scenarios.  
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Figure 3.33 - Modelling process in the Debian GNU/Linux 

environment 

 

This process generates a separate intermediate protocol file for 

step-by-step DMI propagation, as well as a final CSV file 

summarizing the protocols and calculating numerical failure risk 

metrics for various system changes.  

The generated CSV files contain calculated characteristics for any 

FE of the СTS based on the specified topology.  

These CSV files can be used in various analytical software tools, 

such as spreadsheet editors (e.g., Microsoft Excel or LibreOffice) or 

advanced visualization systems like Gnuplot, R, Statistica, or 

Seaborn. 

By combining JSON, CSV, and DOT formats, the system 

manages configuration and analyzes the СTS considering different 

aspects, including visual, automated, and their combinations. 

Preliminary analysis of the obtained characteristics can be performed 

visually using DMI propagation diagrams.  

Methods employing automated behavior utilize CSV files to 

numerically analyze system characteristics and generate and evaluate 

solutions. 

Thus, the method for diagnosing FE failure risks under various 

operating conditions within the СTS framework is based on 
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describing the state functionalities and the CSM of the system's 

structural FEs.  

This enables an assessment of the operational level of СTS FEs 

based on DMI impacts on the CSM, as well as the influence of 

corresponding FEs on the overall system structure under different 

emergency scenarios. 

The values of the DMI vector are determined sequentially before 

each iteration of its propagation across all vertices and edges of the 

MTS CSM digraph.  

If the DMI does not reach the terminal vertices of the digraph, the 

next computational iteration is performed. 

 In such cases, the obtained DMI vector values are recorded in a 

text file and can later be used to assess the structural failure of the 

CSM TS along the edges or vertices of the constructed digraph.  

After completing the cycle for evaluating the structural failure risk 

of the СTS CSM, the text file is analyzed. 

Based on the obtained DMI vector values, calculations are 

performed to determine the coefficients of structural threats and 

failure risks, which are displayed in the program window and added 

to the text file.  

The simulation results in the CSM form values for structural loss 

assessments and failure risks based on the probabilities of FE and FC 

failures in the ICE. These results are used for ranking the calculations 

(Figs. 3.34–3.37).  

 
Figure 3.34 - Ranking of the results of structural damage values FE 
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Figure 3.35 - Ranking of the results of structural damage values 

FS

 
Figure 3.36 - Ranking of the results of the structural risk of failure 

FE

 
Figure 3.37 - Ranking of the results of the structural risk of failure FS 
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The research results demonstrate that the application of DMI 

significantly influences the process of its propagation across the СTS 

CSM digraph. 

Taking into account such structural features of the digraph as 

connectivity, the presence of loops, vertex vulnerability, and the type 

of FC resource, the most connected FEs of the digraph affected by 

the FCs were identified. 

The findings on structural losses of ICE FEs indicate that the most 

critical FEs are the battery, ignition system, and combustion 

chamber, with high structural damage values resulting from failures 

(1.0, 0.85, and 0.75, respectively).  

Less critical elements include the transmission system and the 

driving wheels, which show slightly lower structural damage values 

from failures (0.15 and 0.05). 

 Among the least vulnerable ICE FEs and subsystems is the fuel 

injection regulator (0.02). Comparatively low structural failure risk 

values for СTS FEs are attributed to minor structural damage caused 

by equipment failures.  

This confirms the correctness of the topology design for the 

arrangement of ICE FEs and FCs during the system's development. 

The developed СTS CSM substantiates the feasibility of using 

DMI for diagnosing the failure risk of FEs and FCs in СTS.  

The advantages of the developed CSM include its simplicity, 

clarity, and applicability for diagnosing the failure risk of a wide 

range of СTS.  

The CSM procedures are easily formalized and transformed into 

computational algorithms and models for diagnosing failure risk, 

which is particularly important for СTS with a large number of FEs 

and FCs. 

Thus, the conducted research revealed that the developed CSM 

reflects a direct relationship between the failure risk of СTS FEs and 

FCs and the system's topology. It also enables the identification of 

the least functional FEs and FCs, whose operation significantly 

impacts the system's performance, efficiency, and reliability. 
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3.3 Conclusions for Chapter three 

 

In Chapter three, the results of research and analysis of stochastic 

models and the method for diagnosing complex СTS systems were 

presented. 

     The goal of the research on the developed models is to diagnose 

СTS vulnerabilities, including subsystems, components, elements, 

and their interconnections over time, considering partial and 

complete functionality failures. The chosen object for the study was 

the ICE. 

The input data for modeling failure risk (probability) diagnostics 

based on the СTS CSM include the object's schematic and operating 

principles, as well as expert evaluations. Cognitive simulation 

modeling was conducted to simulate the impacts on СTS equipment 

under unpredictable external influences, internal damaging factors, 

and extreme emergency scenarios. During the modeling process, a 

damaging impulse was applied to the system in conditions as close as 

possible to real-world СTS operating environments. The cognitive 

simulation modeling was implemented through the development of 

specialized software. 

The procedures of the method are easily transformed into a model 

for diagnosing failure risk (probability), which is crucial for СTS 

with a large amount of equipment.  

This approach enabled the tracking of consequences and СTS 

responses to failure risk (probability) from less apparent sources and 

causes. Using the method for diagnosing failure risk (probability) in 

СTS equipment allows for the identification and visualization of 

structural and functional vulnerabilities. 

Methods for intelligent failure risk diagnostics of subsystems, 

components, and elements under various СTS conditions and 

incomplete data, using technical and technological foundations, were 

confirmed through the example of ICE.  

The developed models can be considered conceptual. Applying 

the research results of the developed models, along with retrospective 

analysis of emergency scenarios, enhances the effectiveness of СTS 

diagnostics and, consequently, the efficiency of СTS operation. 
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CHAPTER 4 

DEVELOPMENT OF A METHOD FOR ASSESSING AND 

PREDICTING THE TECHNICAL CONDITION OF 

COMPLEX CRITICAL APPLICATION SYSTEMS 

 

4.1 Development of an assessment and prediction method based 

on the case-based reasoning method for the technical condition of 

complex critical application systems 

 

The growing complexity of technical systems, the diversity of 

their parameters, and the inadequacy of system descriptions require 

the improvement of management decisions under conditions of 

uncertainty to ensure the efficiency and reliability of FE and FC 

systems, based on the results of assessing and predicting their TC. 

 In order to improve the operation of shipboard critical application 

systems (CAS), decision-making becomes more complex due to the 

need to account for a significant number of various factors.  

Primarily, this includes the need for a large volume of information 

about the system; accounting for the mutual influence of FE and its 

parameters on one another; partial and total failures.  

When operating CAS, an important task remains the development 

and improvement of methods aimed not only at diagnosing the 

system but also at assessing and predicting the system’s technical 

condition.  

That is, the development of IIS for assessing and predicting the 

technical condition of FE and FC of shipboard CAS under adverse 

impacts and disturbing factors is one of the promising directions for 

ensuring the efficiency and safety of such technical systems. 

Based on the analysis of methods for assessing and predicting the 

technical condition of  FE and FC of CAS, the method of structural 

representation was selected due to its advantages, including: the 

ability to formalize the nature of interconnected hierarchical 

interactions between FE systems; effective application for CAS 

operating under stochastic conditions; flexibility in implementing a 

production approach for the formation of knowledge bases in IIS; 

ease of software implementation based on an object-oriented 
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approach; and the support for integrating automation tools to ensure 

interactive interpretation of results. 

 For the practical implementation and operation of the IIS, it is 

necessary to link the proposed models and methods (Sections 2 and 

3) with heterogeneous a priori information, which includes indicators 

for diagnosing the technical condition of complex systems, along 

with an expert system containing computational, experimental, and 

expert data obtained during the operation of the CAS. 

The development of a case-based reasoning method for the 

technical condition of complex critical application systems includes 

the following stages: 

1. Representation of a case with a set of parameters with 

specific values and decisions. 

2. Input of diagnostic data for the technical condition of a 

complex critical system into the IIS for assessing and 

predicting the technical condition of the system. 

3. Obtaining assessment and prediction data for the  technical 

condition of the complex critical system. 

4. Transmitting assessment and prediction data for the technical 

condition of the system to the decision-making process. 

IIS can be implemented either as standalone solutions or as 

modules that complement ready-made general-purpose management 

and decision-making systems with the necessary functionality.  

These systems will enable the operational decision-making 

process during the removal of consequences from adverse impacts 

and disturbing factors, ensuring the effective operation of shipboard 

CAS through the ability to assess and predict their technical 

condition [155, 157]. 

The implementation of the strategy in the IIS for assessing and 

predicting the TC of complex systems (Fig. 4.1) is ensured by 

targeted actions in accordance with the IIS algorithm (Fig. 4.2) to 

find failures in FE and FC based on failure risk assessments. 

 



 

 
STOCHASTIC MODELS AND METHODS FOR DIAGNOSING, 

ASSESSING, AND PREDICTING THE TECHNICAL CONDITION  

OF COMPLEX CRITICAL APPLICATION SYSTEMS 

 

110 

 

 
 

Figure 4.1 - The strategy of the IIS in assessing and predicting the 

TC of complex systems 
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Figure 4.2 – IIS Algorithm for Failure Detection in CAS 
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The foundation for constructing the IIS is the formulation of the 

decision-making task in general terms: 

               ,        (4.1) 

where: F – the number of failures in the FE and FC of the CAS; 

     G – the set of set goals; 

     A – the set of possible alternatives; 

     FR – the set of failure rates in the FE and FC of the CAS; 

     SG,P,C – the set of characteristics, advantages, and criteria for 

ensuring the reliability of FE and FC of the CAS; 

     PC – the set of coordination principles for evaluating 

alternatives, taking into account individual criteria; 

     NS – the required solution to the problem. 

 

The priority F represents the evaluation of the utility of the 

method for achieving the goal.  

This is specified without distinguishing the features on which it 

was made or without the characteristics SG. The characteristics 

include the degree of achievement of the goal. To make the final 

choice of the method for achieving the goal, it is necessary to 

formulate criteria, the number of which is determined by the number 

of features. If the IIS uses multiple criteria, it is necessary to apply 

the coordination principles PC to harmonize the evaluation of 

alternatives for each criterion. 

The problem-oriented knowledge base model in IIS is based on 

the following lists: 

    FE and FC that affect the failure-free operation of the CAS; 

    The state of the CAS during failure-free operation of the FE 

and FC systems; 

    Factors that can change the current reliability of the CAS; 

    Problem states that the CAS may enter under the influence of 

equipment failures. 

The knowledge base is represented as a five-level hierarchical tree 

(Figure 4.3). Considering the hierarchical structure of the knowledge 

base allows for the quick localization of the cause of a defect or 
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failure and reduces the time for assessing the technical condition of 

the complex system.  

Knowledge acquisition and addition occur automatically during 

the training and implementation of the expert system. Knowledge is 

provided by an expert and is also adapted to changes in the subject 

area and its operational conditions.  

This is achieved by replacing the rules or information in the KB 

within the IIS.  

The main limitations of the methods and technologies currently 

used in the IIS relate to solving complex formalized problems due to 

the insufficient effectiveness of: solving training tasks, tuning, and 

adapting to the problem domain; processing incomplete and 

inaccurate input information; data interpretation; and accumulation of 

expert knowledge. These limitations in the IIS are eliminated by 

using the case-based reasoning (CBR) method [162]. 

 

 

 

Figure 4.3 -  Multi-level hierarchical structure of the knowledge base 

tree  
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The development and research of IIS using CBR, with the aim of 

increasing the effectiveness of the implementation of learning 

mechanisms and adaptation to the specifics of the problem 

environment for the relevant specific applications, as well as 

increasing the effectiveness of decision-making in DM based on the 

results of evaluation, forecasting of TC of complex systems is 

relevant. 

Such development and research was carried out taking into 

account: partial and complete failures of FE and FS performance; a 

precedent model of knowledge based on a vehicle dynamics model 

from a serviceable state to complete failure. The TC dynamics model 

takes into account cause-and-effect relationships and the hierarchical 

structure of the TC, which consists of: elements (E); components (C); 

subsystems (S). 

The description of the problematic situation during the operation 

of the СTS consists in the consequences of partial or complete loss of 

FE and FS of a complex system. 

When using the method of reasoning based on precedents for the 

representation of precedents, a fairly simple parametric 

representation, i.e. presentation of a precedent in the form of a set of 

parameters with specific values and decisions (estimates, TC 

forecasts and recommendations to the person making the decision): 

            

   (4. 2) 

where R,P,D are parameters (risk, probability, loss) describing the 

precedent; 

        
 

)()(
,

)(),(
zaCSImnЕCS RRR  - sets of FE and FS СTS failure risk 

assessments and a decision maker recommendations; 

       
 

)()(
,

)(),(
zaCSImnЕCS PPP  - sets of FE and FS СTS failure 

probability estimates and a decision maker recommendations; 
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 

)()(
,

)(),(
zaCSImnЕCS DDD  - sets of estimates of losses from 

failures of FE and FS CTS and recommendations of a decision 

maker; 

      
f

mnЕCS
W

)(),( - assessments of working capacity (partial or full) 

of FE and recommendations of a decision maker; 

    

f

zaCSI
W

)()(
  - evaluations of the operational capacity (partial or 

full) of the FS and recommendations of the OPR: 

RE – sets of refined specific estimates of parameters of TC FE and 

FS СTS, decision-making ( ); 

 SS - saving a set of refined estimates of parameters of TC FE and 

FS STS, adopted decisions; 

RF - sets of refined certain predicted values of parameters of TC 

FE and FS of СTS, decision-making ( ); 

FF - preservation of a set of refined forecasted values of TC 

parameters FE and FS of TC, adopted decisions; 

DR - diagnosis and recommendations of a decision maker [38] 

},,1,,1,),(,1),(|{ )()(),(),(),(),( )()( CScsЕCSеcsеcsеcs MmNnЕCSеcsrR
mnmn

====   (4.3) 

},,1,,1,,1|{ )()(
)()()()(

ZzAaIirR CScsiI
zacszacs

====  

where 
)(),( mnеcsr - is the risk of failures of FE СTS; 

)()( zacsi
r - the risk of FС СTS failures; 

),( еcsn  - FE number in СTS; 
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)(csm  - the number of the hierarchical level of FС СTS; 

),( ЕCSN  - number of FE СTS; 

)(CSM - the number of hierarchical levels of FС СTS; 

S, C, E – FE СTS; 

IS, IC – FC СTS; 

n, m – number, hierarchical level in the СTS; 

a – number of intercomponent communication; 

z  - is the number of intersystem communication. 

A - the number of intercomponent connections; 

Z -  is the number of intersystem connections 

  ,
)exp(

)exp(
)(

)(

)()(

)()()(

)()( ),(

),(),(

),(),(),(

),(),( mn

mnmn

mnmnmn

mnmn ЕCS

ЕCSЕCS

ЕCSЕCSЕCS

ЕCSЕCS
T

T
tP 




 =

−

−
= (4.4)                                      

)()(

)()()()(

)()()()()()(

)()()()( )exp(

)exp(
)(

zaCS

zaCSIzaCS

zaCSzaCSzaCS

zaCSzaCS I

I

III

II
T

T
tP 




 =

−

−
=

where λ - is the intensity of failures; 

 – distribution parameter, α≈1/(To) ,̂ (To) – estimate of average 

service life before failure 

Quantitative assessment of damage from failure ),( еmn - 

subsystem, component, element to determine the risk of failure: 

},1,,1,),(,1),(|{
)()( ),(),( MmNnЕCSеcsdD

mnmn еcsЕCS ==== ,  (4.5) 

where   
)()( mncsd - losses from failure of FE CTS 
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Quantitative assessment of losses from failure )(za  - FС 

determination of the risk of failure: 

      },,1,,1,,1|{ )()(
)()()()(

ZzAaIidD CScsII
zacszaCS

====     (4.6) 

where 
)()( zacsi

d - is the loss from failure FС 

Performance of FE at different degrees of its loss: 

 },1;,1;1,0|{ )()(),(),(

, )()(

)(),( CScsЕCSеcs

mn

f

f MmNnfWW cscs

mnЕCS
====



    (4.7) 

Functional capacity of FС at different degrees of its loss: 

   };,1;,1;1,0|{ ,

)()(

ZzAafWW za

f

f

zaCSI
==== 


          (4.8) 

In the process of functioning of FE CTS in emergency scenarios, 

taking into account Harrington's generalized desirability function, 

they can be in one of the following TС [38]: 0 - 0.2 - the level of risk 

and consequences are minimal, which do not affect the operation of 

СTS (RMi); 0.2 - 0.37 - the level of risk is acceptable and the 

consequences are insignificant, allowing the operation of the СTS 

without repair (RA); 0.37 – 0.63 – the level of risk is maximum, the 

consequences are significant, but allowing the operation of the СTS 

during repair work (RMa); 0.63 - 1.0 - the level of risk is critical, the 

consequences are catastrophic, preventing the operation of the СTS 

(RC).  

Taking into account [39] for the hierarchical structure of СTS, TС 

transitions are possible in the form of a TС matrix (Fig. 3). In Fig. 3, 

ke, kc, ks are the weight (significance) coefficients of an element, 

component, subsystem in the structures of the СTS. 
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Figure 4.4 - CTS TС matrix 

4.2  Development of the Data Reception and Transmission Model 

for Diagnosis, Assessment, and Prediction of the Technical 

Condition of Complex Critical Application Systems 

To successfully address the issue of effective, failure-free 

operation of CAS in emergency operating modes, it is necessary to 

utilize information technologies with software and hardware modules 

for receiving and transmitting the results of diagnostics, assessment, 

and prediction of the TC of complex systems [1, 174, 175].  

The quality of the data reception and transmission system (DRTS) 

is determined by a set of characteristics that influence its operational 

efficiency: topology; bandwidth; performance; acceptable error 

margin in data reception and transmission; effectiveness of 

information protection in the system; risk of failure of DRTS devices. 

When developing the data reception and transmission model for 

diagnosing, assessing, and predicting the TC of complex critical 

systems, it is necessary to consider the presence of multiple 

conflicting requirements and competing criteria.  
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To justify the choice of the DRTS topology, it is necessary to 

solve the task of multi-parameter, multi-criteria optimization of 

information parameters aimed at increasing performance, minimizing 

errors and failure risks in subsystems, components, and elements of 

CAS, and maximizing the protection of the received and transmitted 

information. 

The application of optimization methods to solve practical multi-

criteria, multi-parameter optimization problems [176, 177] must 

account for: large problem dimensions (tens and hundreds of 

variables and constraints); topological complexity of the optimized 

function; significant computational costs; the need to solve the 

problem in a multi-criteria context, using unrelated models. 

The operation of an open platform for DRTS may rely on ISO 

standards in the field of Condition Monitoring and Diagnostics of 

Machines [178].  

Using a standard base ensures the unification of approaches to 

receiving and transmitting information.  

The reception and transmission of information are carried out 

based on one of the standards for digital DRTS, such as IEEE 802.15, 

WiMax, IEEE 802.22, UMTS, LTE. 

The quality of the DRTS model’s operation is determined by a set 

of characteristics influencing its performance: topology {Fo}; 

bandwidth {B}; performance {T∑}; acceptable error margin in data 

reception and transmission {σ}; effectiveness of information 

protection in the system {ZΣ}; risk of failure of DRTS devices {RΣ}. 

It is assumed that the model describing the DRTS is linear, with 

both deterministic and concentrated stochastic parameters.  

The set of quality indicators of the model can be represented as a 

vector, whose coordinates are the individual indicators, and their 

given values need to be improved to the required level. 

A model for data reception and transmission during the diagnosis, 

assessment, and prediction of the TC of complex critical systems is 

proposed as a function of its functionality: 
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                                                  (4.9) 

 

}}{},{},{},{},{},{{ 0 = ZRBTFH   

The generalized quality indicator of the DRTS operation is 

determined based on the results of optimizing the information 

parameters and its reliability characteristics. The objective function 

for optimizing the information parameters of the model is a multi-

parameter optimization of variables that affect the performance of the 

DRTS: 

      ),,(max)(max)( SCLFF o  == ,                   (4.10) 

 maxmin LLLLLL o = ,  maxmin CCCCCC o = ,   

  

 oo CCSSS = 0 ,where  L – the length of the data 

transmission and reception paths; 

C – the compactness of the system structure; 

S – the degree of centralization of the system structure; 

000 ,, CКD
 – normalized individual criteria of the system 

topology performance, obtained by converting the indicators 

into dimensionless form. 

The objective function for optimizing the DRTS operating time: 

),,,,,,,,,(max)(max)( 21

1

СLNTGRPPTDCCCKO

p

l

S ТТТТТTTTTТTT
ino

=

 ==  , (4.11) 
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 
maxmin SoSoSoS TTTTTT

ino
= ,  

maxmin KOKOKOKO TTTTTT = , 

 
maxmin 1111 CCCC TTTTTT = ,  

maxmin RPRPRPRP TTTTTT = ,

 
maxmin DCDCDCDC TTTTTT = ,  

maxmin 2222 СССС TTTTTT = , 

 
maxmin CCCC TTTTTT = ,  

maxmin LNLNLNLN TTTTTT = , 

 
maxmin TGTGTGTG TTTTTT = ,  

maxmin PTPTPTPT TTTTTT = , 

 
maxmin ЗЗЗЗ TTTTTT = ,  

maxmin LLLL TTTTTT =  

)(min)( DTT  = , ),(max)( LК TnT  = ,  

),(max)( fBT LNLN  = ,       ),(max)( fBT TGTG  = ,  

),(max)( fBT КСКС  = ,  ), ,(max)( КСTGLN ВВВB  = , 

 
maxmin LNLNLNLN BBBBBB = ,  

maxmin TGTGTGTG BBBBBB = ,  

 
maxmin KCKCKCKC BBBBBB = , 

where   ТSoi –   the performance of the CAS equipment; 

 KOT
 – the performance of the switching device;  

 
1CT , 

2CT  – the performance of the servers on the 

transmission and reception sides of the DRTS; 

CT , DCT  – the performance of the coder and decoder;  

PTT  – the performance of the transmission path;  

RPT  – the performance of the reception path; 

LNT  – the performance of processing network flows in the local 

network; 
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TGT  – the performance of processing network packets in the 

transit gateway; 

DT - the delay of signals in redundant nodes; 

f  –  the size of network packets; 

LNВ  – the bandwidth of the local network; 

TGВ  – the bandwidth of the transit gateway; 

КСВ  - the bandwidth of the communication channel; 

n  – the length of the code combination; 

LТ – the time required for receiving and transmitting the code 

combination. 

The objective function for the error in data reception and 

transmission: 

                       ),,(min)(
0 СПДSn
 =                      (4.12) 

where     
0nS  - data errors; 

DRTS  - data errors during reception and transmission; 

The optimization task for protection is to ensure the maximum 

level of security with the minimum risk of potential breaches of the 

DRTS, i.e. 

        )(min)( , аMR ТRZ  = , )(max)( fNZ  =                (4.13) 

fof NN    , aoa TT   ,  НpR MRMR = ,  

dcbaiMR pppppp = , 

where MRR  – multiplicative risk criterion for the probability of a 

DRTS breach; 

MRp  – the probability of a breach of the information system, 

determined based on expert data; 
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ip
 – the probability that a given information system is on the list 

of potential targets; 

 ap - the probability that the system will be selected from the list 

and attacked; 

bp  – the probability that the bordering technologies will be 

breached; 

cp  –the probability that attacks will intensify; 

dp  –  the probability that the DRTS will be damaged; 

Н  – potential losses from information security breaches; 

fN  – the number of functions characterizing the functionality of 

the DRTS; 

aT -  – average access time to DRTS protection objects;; 

0fN , 0aT  - limitations on functionality and performance. 

The objective function for the risk of device failure in the 

DRTS: 

 

             
,,(min)(

0 DRTSS RRR
n

 = ,,
0 non SS Hp ))(, ii SPR ,     (4.14) 

where  
0nSR  – risk of device failure in the DRTS; 

      DRTSR   – average risk of failure in the DRTS; 

      0nSp  –  probability of device failure in the DRTS; 

      0nSH  – losses from device failure in the DRTS; 

      iR  – conditional risk during data reception and transmission 

in the TC; 

     
)( iSP  – conditional probability of error during data reception 

and transmission 
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The developed model is designed to optimize the information 

parameters of the DRTS to ensure its effectiveness.  

The method used, which allows for the investigation of the 

developed model and optimization of the information parameters of 

the DRTS in the TC state, is based on considering the presence of a 

set of conflicting requirements for such a system.  

The complexity of solving multi-criteria optimization problems 

lies in the fact that the criteria compete with each other.  

The problem can be solved using the Pareto optimality principle 

[179, 180].  

A characteristic of the Pareto optimal set is the ability to "discard" 

consciously unsuccessful alternatives that are inferior to others on all 

criteria.  

As a result of solving the optimization problem, a set of 

alternative solutions is determined that satisfy the Pareto optimality 

principle and meet the imposed constraints.  

This strategy for solving optimization problems significantly 

differs from known nonlinear programming approaches, offering 

higher efficiency and substantially broader capabilities. 

The sequence of optimization of the information parameters of the 

DRTS includes the following stages: 

• determination of the set of independent parameters, as well as 

the conditions that define the acceptable values that the variables can 

take; 

• obtaining the objective function as a measure of ensuring the 

quality of the optimization object with the given variables; 

• selection of the method and solution to the optimization 

problem. 

To investigate the model of multi-criteria and multi-parameter 

optimization of the information parameters of the DRTS, algorithms 

implemented in freely distributed software [181], based on response 

surface technology, were used.  

A distinguishing feature of this technology is the efficiency of 

finding an optimal solution when investigating DRTS models, which 

are simulated at high levels of complexity and hierarchy, including 
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achieving mathematical modeling (2D and 3D problems) and the 

possibility of rapid integration.  

The program is designed for the numerical solution of multi-

criteria parametric optimization problems of complex functional 

dependencies under functional constraints and operates with target 

functions (4.10) – (4.14).  

The ranges of numerical values for the quality indicators of the 

DRTS are given in Table 4.1. 

The solution to the optimization problem of the DRTS 

information parameters lies in finding the maximum efficiency of the 

system under certain conditions of its indicators.  

To optimize the information parameters of the DRTS for the 

ship's TC, a software structure for its operation has been developed 

(Fig. 4.5).  

As an example, the results of solving the bandwidth optimization 

problem for the DRTS are presented.  

The bandwidth of the DRTS is determined by the maximum 

transmission capacities of the communication channels of the system, 

which receive and transmit data from the local networks and the 

transport gateway of the DRTS. 

 

 

Table 4.1 - Ranges of numerical values of DRTS quality indicators 
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Figure 4.5 - The structure of the DTS in RD software 

The maximum capacity of a communication channel with additive 

noise is determined by Shannon: 

                           )1(log2
NW

S
WB


+= ,                    (4.15) 

where W  – is the bandwidth of the communication channel, kHz; 

  
NS / – signal-to-noise ratio in the recipient's receiver, dB 

The target function of the DRTS  throughput:: 

 

                            )/,(max)( NSWB  =                          (4.16) 

 

As shown in Fig. 4.6, the solution to the optimization problem of 

the DRTS information parameters based on the developed model 

allows finding several Pareto-optimal solutions for the quality 

indicator (criterion) – bandwidth. 
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Figure 4.6 – Scatter diagram of the set of Pareto-optimal solutions 

for bandwidth with respect to the set i and j. 

Since all points in the non-dominated set in the criteria space are 

equivalent according to the Pareto set of the solution space, the main 

role in supporting decision-making based on the results of multi-

criteria optimization is played by the Decision Support System 

(DSS). 

Based on the consideration of preferences, the DSS determines the 

unique Pareto-optimal solution, which is considered the final result of 

the selection procedure. By performing linear convolution for the two 

criteria iii and jjj, and taking into account equation (4.16), the best 

optimal solution is determined – the bandwidth of 1.735 kHz, with a 

signal-to-noise ratio of 42.5–52.5 dB. 

When formulating and solving the optimization problem for the 

information parameters of the DRTS TC, a set of independent 

parameters, conditions defining their permissible values, obtained 

objective functions, and a method for solving optimization problems 

were defined. The developed model for optimizing the information 

characteristics of the DRTS TC allows: 

• Monitoring the DSS state of the TC in real-time, which will help 

avoid accidents during its operation; 

• Reducing the risk of failure of the DRTS equipment. 

The fifth point of scientific novelty is formulated: for the first 

time, a model for data reception and transmission during the 
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diagnosis, assessment, and forecasting of the technical condition of 

complex systems for critical applications has been developed, which 

takes into account the presence of conflicting requirements and 

competing criteria, allowing the identification of Pareto-optimal 

solutions to ensure the efficiency of data reception and transmission. 

 

4.3. Conclusions to Chapter Four 

 

In Chapter Four, a method for assessing and forecasting the TC of 

complex systems for critical applications was developed. 

The method is based on: presenting a precedent with a set of 

parameters with specific values and decisions; obtaining evaluation 

data and forecasting TC of a complex system; and forming 

recommendations to ensure the effective operation of the equipment 

in the system. 

The method of reasoning based on precedents was further 

developed, which allowed for the evaluation and forecasting of the 

technical condition and improved the operational efficiency of 

complex critical systems. 

When receiving and transmitting various diagnostic, evaluation, 

and forecasting data for the TC of complex KА systems, their 

effective reception and transmission must be ensured while reducing 

the redundancy of the information during processing, maximizing its 

protection, and minimizing errors.  

To solve this issue, a model for receiving and transmitting 

diagnostic, evaluation, and forecasting data was developed, along 

with the solution to the multi-parameter, multi-criteria optimization 

of information parameters affecting its performance, using the Pareto 

optimality principle. 

For the first time, a model for receiving and transmitting data 

during the diagnosis, evaluation, and forecasting of the TC of 

complex critical application systems has been developed, which 

accounts for the presence of conflicting requirements and competing 

criteria, enabling the identification of Pareto-optimal solutions for 

ensuring the efficiency of data reception and transmission. 
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Chapter 5 

DEVELOPMENT OF AN INTELLIGENT INFORMATION 

SYSTEM FOR DIAGNOSTICS, ASSESSMENT, AND 

PREDICTION OF THE TECHNICAL CONDITION OF 

COMPLEX CRITICAL SYSTEMS 

 

5.1 Design of an Intelligent Information System for Diagnostics, 

Assessment, and Prediction of the Technical Condition of 

Complex Critical Systems 

 

Decision-making methods in an intelligent information system 

(IIS) based on precedents involve using analogies with previously 

solved problems to find and adapt solutions to new situations. Such 

methods include the stages that form the CBR (Case-Based 

Reasoning) cycle: 

1. Capturing cases from the case library (CL). 

2. Indexing (organizing cases for finding similar instances). 

3. Searching for the most relevant cases for the new task. 

4. Adapting (modifying the retrieved case to fit the current 

task). 

5. Evaluating and implementing (verifying the adapted solution 

for suitability and implementing it if necessary). 

Advantages of case-based reasoning: adaptability; the ability to 

work with incomplete information; versatility; and learning 

capability. Cases can be represented in various forms, including 

textual descriptions, diagrams, tables, prototypes, usage scenarios, 

and UML-based modeling. Each method can be effective depending 

on the context and project goals. 

The representation of cases is implemented as follows. In the 

proposed CBR cycle (Fig. 5.1), to support knowledge exchange, the 

initial task formulation block receives a set of input parameters of the 

diagnosed TS and an ontology array representing a structured 

description of the domain of marine CTS.  

As a result, the structure of the new case object is generated, and 

its content is extracted using the nearest neighbor method based on 
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the similarity (proximity) evaluation of the analyzed scenario with 

the TS and considering data in the knowledge base. 

Based on this procedure, a solution object is formed, which can be 

modified for its targeted adaptation, taking into account all aspects of 

partial and complete failure scenarios (FE and FC) of the CTS by 

applying a transformational method [181]. 

 

 
 

Figure 5.1 - CBR Cycle Structure 

 

The updated precedent is verified for logical consistency, 

considering the use of predicate productions and applying the 
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ontological reasoning approach via the Hermit reasoning system 

[181]. The resulting solution is exported as a separate object 

containing recommendations for the decision-maker (DM) and 

metadata.  

Subsequently, the precedent is stored in the case base, which is a 

component of the knowledge base (see Fig. 5.1). 

The decision-making sequence (Fig. 5.2) using the proposed CBR 

cycle, with consideration of operations for processing and structuring 

precedent data within the framework of the applied software system, 

is carried out as follows: 

 
 

Figure 5.2 - Decision-Making Sequence Diagram 
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When the software system is launched, the main user interface 

form is initialized, providing the ability to import input data for task 

formulation. Next, control parameters and configuration options for 

the operation of all modules involved in the information processing 

cycle are set, including the Data Processing Module (DPMod), 

Precedent Extraction Module (PEMod), and Adaptation Module 

(AMod). 

A request is then made to transfer the generated data arrays to the 

DPMod, where data processing procedures are conducted step by 

step (including consistency checks and fragmentation). A collection 

for storing precedents is created, taking into account metadata (such 

as a brief textual description of the target purpose, its identifier, 

creation date, and some statistical indicators). 

After this, a request is made to retrieve a specific precedent via 

the PEMod, where actions for metric evaluation are performed using 

the nearest neighbor method. The result is sent to the DPMod as a 

collection based on an associative array. After verification and 

validation, the DPMod sends the processed collection to the AMod 

for adaptation procedures. 

Adaptation uses a transformation method, aligning the precedent 

with a set of rules and considering logical productions of 

correspondence. As a result, the updated precedent collection is 

returned to the DPMod for generating a list of final decisions and 

validating them.  

The results are output as text records and graphical 

representations. The serialized solution (in JSON format) is sent to 

the main interface form for further initiation of precedent data 

transmission, storage in the knowledge base, and providing the user 

with a notification about the transaction results. 

For creating precedents, simple parametric representation suffices, 

i.e., presenting the precedent as a set of parameters with specific 

values and a solution (diagnosis and recommendations for the 

decision-maker). 

Various methods are known for extracting and modifying 

precedents. The most common include: 

• Nearest Neighbor (NN) method [182]; 
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• Precedent extraction based on decision trees; 

• Precedent retrieval based on knowledge [157, 183]; 

• Precedent extraction considering their application. 

These methods utilize diverse metrics. Among the primary 

metrics, the nearest neighbor method is applied, enabling easy 

calculation of the similarity between the current problem situation 

and precedents in the case library. The nearest neighbor method uses 

simple coordinate-wise comparison of the current situation with the 

precedent, where each parameter describing the precedent is 

considered as one of the coordinates. 

The distance DCTD_{CT}DCT between the point corresponding 

to the current situation and the point corresponding to the precedent 

is calculated.  

The effectiveness of the nearest neighbor method depends on the 

choice of metric. If precedent CCC and current problem situation 

TTT are defined in an n-dimensional property space, the similarity or 

proximity S(C,T)S(C, T)S(C,T) between precedent CCC and 

situation TTT can be determined using one of the metrics for 

calculating the distance between two points xiCx_i^CxiC and 

xiTx_i^TxiT, such as the Euclidean distance: 

 

                                                (5.1) 

To determine the similarity degree value (SIM), the maximum 

distance DmaxD_{max}Dmax is calculated within the chosen metric 

using the parameter range limits for describing the precedents. 

Subsequently, the similarity degree value is determined using the 

parameter range limits for describing the initial and final precedents, 

i=1,…,ni = 1, \dots, ni=1,…,n.  

The similarity degree value can be calculated as follows: 

 

                            SIM = 1 – DСТ/ Dmax                                                              (5.2) 
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5.2 Implementation of the Intelligent Information System for 

Diagnostics, Evaluation, and Forecasting of the Technical 

Condition of Complex Critical Systems 

 

The implementation of the intelligent information system with 

CBR (Fig. 5.3) integrates the developed models and the diagnostic 

method for TS with a database (DB), a knowledge base (KB), and an 

expert system. The expert system contains computational, 

experimental, and expert-provided data obtained during the operation 

of the CTS. 

 
Figure 5.3 - Structural diagram of the implementation of the method 

of reasoning based on precedents for evaluating and forecasting the 

TC of a complex short-circuit system 

The software structure development began with a schematic 

representation of the primary interacting modules of the IIS. The 
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structural diagram of the modules and their interconnections (Fig. 

5.3) visually represents the interaction of FE and FC within the IIS. 

During the development of the IIS, the control and executive unit 

(CEU) was selected as the object for TS evaluation and forecasting. 

When assessing the reliability of the SPP, it was taken into account 

that CTS is characterized by a large number of diagnosable 

parameters. These parameters differ in informativeness and 

accessibility, particularly under conditions of insufficient information 

for TS assessments, as well as by specific and diverse operating 

conditions under uncertainty. 

The Core Components of the Intelligent Information System (IIS): 

The cores of the IIS are: 

• DB: A structured storage of all system-related data. 

• KB: Includes methods for calculating reliability indicators 

(risks and probabilities of failures) and a set of decision rules for 

selecting appropriate decision-making methods. 

• Model for the Intellectual Evaluation of TC of FE and (FC in 

CTS. 

The IIS includes: 

• User Interface Module: Facilitates interaction between the user 

and the system. 

• KB with a Precedent Library and DB: Supports decision-

making. 

• Query Formalization Module: Structures and processes user 

requests. 

• Recommendations Module for Ensuring CTS Efficiency: 

Provides actionable suggestions based on evaluations. 

• Libraries of Structural Schemes for Marine CTS: Contains 

predefined structural templates. 

• Expert Evaluation Formalization Module: Standardizes expert 

input into actionable data. 

• Knowledge Formalization Module: Structures and organizes 

the knowledge base. 

The implementation of the developed strategy in the IIS ensures 

targeted actions in support of decision-making to identify FE and FC 

failures based on established TC evaluations. 
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Knowledge Base: 

The KB model is production-based, while its software 

functionality is object-oriented. The developed KB is represented by 

rules derived from: 

• Intelligent data analysis (a multi-level hierarchical structure of 

the knowledge base tree). 

• Expert evaluations. 

• Results from applying diagnostic models for the technical 

condition of complex systems. 

The KB operates according to the developed decision-making 

sequence (Fig. 5.2) and considers the CTS TC matrix (Fig. 4.4). All 

data and expert evaluations are retrieved from the database based on 

queries. As a result, the KB generates evaluations of TC for 

subsystems, components, elements, and their interconnections. 

These evaluations are passed to the Recommendations Module for 

ensuring effective CTS operation and subsequently to the Decision 

Maker (DM) for managing the technical condition of the complex 

system. 

Database: 

The DB contains: 

• CTS Structure Database: Stores structural information. 

• Failure Risk Criteria Database: Contains risk evaluation metrics. 

• Complex Systems TC Database: Records conditions of technical 

systems. 

• Degradation Processes Database: Tracks wear and aging 

patterns. 

• Risk Mitigation Measures Database: Details actions to reduce 

failure risks. 

The precedent library consists of: 

• Incident Precedent Library: Documents cases of minor issues. 

• Emergency Situation Precedent Library: Contains data on 

critical failures. 

Diagnostics of Problematic Situations: 

Diagnostics of full or partial equipment failures and their 

interconnections in CTS is performed by simulating diagnostics 

based on risk (probability) of failure and failure-related losses. Using 
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the diagnostic data, the KB and precedent library provide established 

TC evaluations of the complex system and form recommendations 

for DM decision-making. 

Forecasting and Recommendations: 

Based on these evaluations, the system forecasts the TC of the 

complex system. The results may include a list of actions performed, 

additional comments, and links to other precedents. 

Hierarchical Structure and Logic Implementation (Fig. 5.4): 

The hierarchical structure of the program logic for data processing 

modules by precedents and reasoning includes the following 

interfaces for abstraction levels and object behavior polymorphism: 

• IData: Manages the path to the location of input data sets, 

initializes data structures and collections, normalizes data, checks for 

missing rows, and defines structures. 

• IOntology: Stores attributes, classes, and relationships, 

assembles ontology structures, and validates them. 

• IPrecedent: Handles properties of situation scenarios, problems, 

and solutions, and manages the process of precedent creation, 

storage, serialization, and logical consistency checks. 

Each class implements a different version of the logger() method 

to ensure the logging of intermediate results during the execution 

of computational operations over time. 

• The DataLoader class implements the IData interface, handling 

data loading into the system and performing operations such as 

creating collections of precedents, verifying data integrity, executing 

necessary transformations, filtering, aggregating, setting up 

structures, and issuing status messages based on the outcomes of 

these actions. 

• The OntologyMaker class implements the IOntology interface, 

working with a partial collection of ontologies in a dynamic array to 

aggregate individual ontology elements. This class is designed to 

construct the logical base structure of the system for each precedent. 

It also provides visualization of the ontology in a graph-oriented 

form. 

• The PrecedentExtractor and PrecedentAdapter classes 

implement the IPrecedent interface, overriding methods for managing 
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precedent data. These methods are utilized in the processes of 

extraction and adaptation performed by the extractPrecedent() and 

adaptPrecedent() methods, respectively. The result of these processes 

is a Precedent object. 

• A separate KnowledgeBase class is implemented to manage 

CRUD operations with rules. 

 
Figure 5.4 - Hierarchical structure of the key program logic of 

fragments of data processing modules regarding precedents and 

considerations 

Using instances of these classes, a Decision object is created. The 

state of the Decision object is described by private properties 

decisionDescription and decisionRate, while its behavior is expressed 
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through public methods for creating, displaying, and saving the 

decision results. 

The IIS with the CBR cycle was implemented using the Visual 

Studio development environment, the .NET 4.7 framework, 

WinForms technology for creating graphical user interfaces, and 

functional libraries such as Hermit for ontology support and JSON 

handling [170]. 

An interface of the main form of the software system, featuring a 

tab for managing the precedent creation process within the proposed 

CBR cycle for assessing and forecasting the technical condition of 

systems (demonstrated using the example of a marine CTS), is shown 

in Fig. 5.5. 

 

 
 

Figure 5.5 - The interface of the main form of the software system 

with the tab for managing the process of creating precedents 
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The system includes a main menu for navigating between 

processes such as connecting data sources and the knowledge base 

(File menu), managing and processing data (Data Processing menu), 

selecting and executing computational operations (Operations menu), 

configuring system modules and settings (Settings menu), and 

accessing reference information about the system's functionality 

(Help menu). 

The functionality supports working with data from precedents, 

ontologies, rules, and decisions. For the hierarchical representation of 

the structure of marine CTS, as well as their FE and FC, a dedicated 

graphical widget is provided in the form of a tree of nodes.  

Data entry for precedents is carried out through a corresponding 

text field.  

Options are available for providing a detailed description of 

parameters, constructing a summary crosstab for all values of marine 

CTS and their equipment, as well as forms for extracting, adapting, 

and validating the created precedents. 

A table is implemented to display the results obtained from 

precedents, including similarity evaluations, descriptions, and a brief 

set of typical recommendations.  

For easier management, a quick navigation component is provided 

for performing CRUD operations and search functionality within the 

table. 

Visualization tools are introduced to highlight the most suitable 

options for adapting precedents to specific CTS operational scenarios 

after completing all analytical procedures. The system supports local 

saving of visualization results in PDF and CSV formats. 

The results of risk evaluations for subsystem failures of the 

studied SEU, formulated considering the created precedents, are 

presented in Figure 5.6. 

The results of failure risk prediction for the FE and FC of the 

SEU—for instance, for the Main Engine subsystem—can be viewed 

in the interface block for risk prediction review by navigating to the 

web page labeled Predictions (Figure 5.7). 
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Figure 5.6 - The interface of the risk assessment form for the 

analyzed subsystems of the ship's power plant 

 

 
Figure 5.7 - Main Engine subsystem failure risk prediction block 
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Figure 5.8 -  User interface 

 

A block is provided for displaying the prior and posterior failure 

risk values for the Main Engine, as well as a widget for showing the 

dependence of the predicted prior and posterior failure risk values for 

the Main Engine.  

The user interface for the view form of the module displaying the 

results of the system's generated decisions is shown in Figure 5.8. 

The system supports navigation through decision scenarios, as 

well as components for displaying data regarding decisions, causes of 

violations, consequences of scenarios for further system operation, 

and a list of recommended actions for improving the performance of 

the ITS.  

Options for opening log files to view intermediate stages of 

computational operations and calculations are provided, along with 

options for saving results to the database. 
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For managing the process of constructing a failure tree model, 

components have been developed to configure the parameters for 

node construction methods, graph visualization algorithms, graphical 

representations, and report generation. Functionality is provided for 

building decision trees, viewing their structure, and editing the model 

in editor mode. 

A drawback of the precedent-based method with the CBR cycle is 

the increased time for finding the closest precedent.  

Therefore, a comparative analysis of the time required to find the 

nearest precedent was conducted, depending on the size of the 

precedent database, considering data caching during the initialization 

of the data structure as a collection of an associative array.  

The graph showing the time required to determine the complex 

system's state as a function of the number of precedents is shown in 

Figure 5.9.  

The time spent on finding the closest precedent for 10,000 

precedents in the knowledge base was about 370 ms.  

The first closest precedent from 5,000 precedents was found in 

approximately 50 ms. 

 

 

 
 

Figure 5.9 - Time to determine the TS of a complex system 

depending on the size of the precedent base 
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As the number of precedents in the precedent library increases, 

the time required to determine the state of a complex system 

increases as well, but it does not significantly affect the overall time 

spent on assessing the subsystems of the investigated marine power 

plant.  

Despite this drawback, the study showed the potential application 

of the CBR-based reasoning method and its appropriate use for 

decision-making in real operational conditions.  

The developed IIS demonstrates high performance. 

In order to assess the time costs for constructing the knowledge 

base within the implementation of the proposed method, a 

comparison of the execution time of computational processes was 

conducted using the developed IIS under the following system 

modes: single-threaded, dual-threaded, and quad-threaded (Figure 

5.10). It is important to note the overall exponential nature of the 

dependency between the execution time of computational processes 

for the assessment and forecasting of the state of the complex energy 

system (CES) and the number of precedents in the KB.  

Thanks to the distributed computing mode, it becomes possible to 

reduce the time costs by up to 28% when using two isolated data 

threads, and by up to 42% when the computational load is divided 

into four separate data threads. 

 
Figure 5.10 - Execution time of computational processes based on the 

number of formed precedents 
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The interface of the main form of the software system, with the 

tab for managing the process of creating precedents, implements the 

functionality for determining the operability of the IIS with the CBR 

cycle and the implementation of its embedded functions. 

Considering partial and complete equipment failures of the ship’s 

CKS in the IIS will allow the OPR to make decisions aimed at pre-

failure maintenance of complex systems, thereby extending the 

operational life of systems and increasing their operational 

efficiency. 

Thus, the development and research of the IIS with CBR, 

designed for effective assessment and forecasting of TS of complex 

systems, was conducted by ensuring the IIS’s performance. 

The effective operation of the IIS with CBR is based on the use of 

the precedent-based reasoning method. The IIS with CBR consists of: 

an interface module; a knowledge base with a precedent library and 

database; a query formalization module; a recommendations module 

for ensuring the efficiency of the CKS; a library of structural 

diagrams for the CKS; expert evaluation formalization modules and 

knowledge formalization modules.  

Experimental studies of the IIS for TS assessment and forecasting 

of complex systems showed that the time spent to retrieve the nearest 

precedent with 10,000 precedents in the knowledge base was about 

370 ms. 

The decision-making process, using the proposed IIS with the 

CBR cycle system, which considers operations for processing and 

structuring data according to precedents within the functioning of the 

developed software system, demonstrates high performance, 

facilitates operation with incomplete information, and supports 

learning for decision-making.  

Thanks to the distributed computing mode, it becomes possible, 

when using two isolated data threads, to reduce time costs by up to 

28%, and up to 42% when the computational load is divided into four 

separate data threads. 

When the proposed IIS is operational, partial and complete 

failures of the operability of subsystems, components, elements, and 

their interconnections in the CKS are taken into account. 
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The increased efficiency of CKS operation is ensured by the fast 

evaluation and forecasting of TS, as well as the OPR’s actions aimed 

at making decisions regarding pre-failure maintenance of complex 

systems at the early stages of failure development. 

 

5.3 Efficiency of Complex Technical System Operation Based on 

Diagnostics, Assessment, and Forecasting of Equipment 

Technical Condition 

 

      As a result of the conducted research based on diagnostic data of 

the TS equipment of the complex system, the IIS has performed an 

assessment and determined the predicted values of failure risk 

(probabilities) for FE, FC. Table 5.1 shows the obtained probabilities 

of failure and the probability of maintaining the operability of the 

CKS upon detection of partial equipment failures during 20,000 

hours of system operation. 

 

Table 5.1 - Probability Characteristics for Partial Equipment Failures 

in the CKS 

 
 

The operational efficiency of the CTS is determined by a scalar 

value (E), which depends on the effectiveness of its functional 

subsystems, components, elements, and their interconnections: 

 

                                                                        (5.3) 

 

The operational efficiency of the CTS is determined by the 

probability of maintaining system functionality, which does not 

exceed the threshold probability value P0P_0P0, at which a complete 

system failure occurs: 
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                                                                     (5.4) 

 

The threshold failure probability P0P_0P0 is determined from 

Harrington's generalized desirability function [99], and the range of 

0.63 - 1.0 represents the critical probability (system operation 

becomes impossible). 

The failure probability is calculated using the well-known formula 

from reliability theory:   

                                  



−−= 

T

dtttP
0

)(exp1)(  ,                 (5.5) 

where -  The failure intensity, which depends on the operating time 

of the system, 

 

      For n partial failures, the probability of maintaining the 

operability of the system, which determines the effectiveness of the 

system's operation: 

           (5.6) 

When equipment with partial failure is detected and preventive 

maintenance is carried out, its failure intensity decreases (λ(t)−Δλ(t)). 

The probability of maintaining the system in an operational state 

increases (Table 5.2). 

 

Table 5.2 - Probability characteristics for partial failures during 

preventive maintenance of the system's equipment. 
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Figure 5.11 shows the results of the obtained probabilities of the 

operational capability of the system in the case of detected partial 

failures and detected partial failures with preventive measures. 

 

 

 
 

 

Figure 5.11 - Probabilities of the operational capability of the system 

in the case of: detected partial failures - 1; detected partial failures 

with preventive measures - 2. 

 

The operational efficiency of the equipment in the system, with 

partial failures and preventive maintenance, is determined by: 

 

                   ,         (5.7) 

 

 where Pcf(t) is the probability of no complete failure; 

Pei(t) is the probability of no external influences leading to 

complete failure of the system equipment; 

Pdm(t) is the probability of errors by the operator; 

Per(t) is the probability of error-free expert assessments. 

 

The results of the calculation of the operational efficiency of the 

CTS, determined by the probability of maintaining operability, 

considering partial equipment failures and preventive maintenance, 



 

 
STOCHASTIC MODELS AND METHODS FOR DIAGNOSING, 

ASSESSING, AND PREDICTING THE TECHNICAL CONDITION  

OF COMPLEX CRITICAL APPLICATION SYSTEMS 

 

149 

 

do not exceed the threshold probability at which a complete failure of 

the CTS occurs, as defined by the generalized desirability function of 

Harrington.  

The probability of maintaining the system in working condition 

increases by 3%. 

Thus, when partial failures are detected and preventive measures 

are taken for the CTS, the probability of maintaining operability 

increases, which, in turn, extends the system equipment's operational 

lifespan and improves the operational efficiency of the FE and FC. 

 

5.4 Conclusions to Chapter Five 

 

In Chapter Five, the development of an IIS for the diagnosis, 

evaluation, and forecasting of complex systems of the complex 

technical systems was carried out. The design of the IIS focused on 

ensuring the operational efficiency of the CTS using a method of 

CBR. 

The design of the IIS with CBR links the developed models and 

methods for diagnosing, evaluating, and forecasting the CTS of 

complex systems with an expert system that includes computational, 

experimental, and expert-derived data obtained during the operation 

of the CTS.  

The cores of the IIS are: a database;  

- a knowledge base with a library of precedents, methods for 

calculating probability indicators, failure risks, and a set of decision-

making rules; a query formalization module;  

- a recommendation module for ensuring CTS effectiveness; 

libraries of structural schemes of the CTS; 

-  a module for formalizing expert assessments; and a knowledge 

formalization module.  

The implementation of the developed strategy within the IIS is 

supported by targeted actions according to decision-making 

processes aimed at identifying equipment failures based on the 

established evaluations of their CTS. 

To test its functionality, the full cycle of the IIS’s operation, 

including the evaluation and forecasting of the failure risk 
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(probability) of the CTS, was simulated using the developed 

knowledge base, applied to a ship's energy installation.  

The obtained risk (probability) assessments of subsystem, 

component, and element failures, which do not contradict expert 

evaluations, indicate the effectiveness of the diagnostics, evaluation, 

and forecasting of complex systems, accounting for both partial and 

complete failures. 

The results of the operational efficiency calculations of the 

complex technical system, determined by the probability of 

maintaining operability, taking into account partial equipment 

failures and preventive maintenance, do not exceed the threshold 

probability at which complete failure of the CTS occurs, as defined 

by the generalized desirability function of Harrington.  

The probability of maintaining the CTS in operational condition 

increased by 3%. 
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GENERAL CONCLUSIONS 

 

The research is dedicated to solving an important scientific and 

technical problem: increasing the operational efficiency of complex 

technical systems  through the use of results from the development of 

stochastic models and methods for diagnosing, evaluating, and 

forecasting system equipment failures, taking into account partial and 

complete failures. 

1. An analysis of existing models, methods, and information 

systems for diagnosing, evaluating, and forecasting CTS showed that 

the known structural models and diagnostic methods only account for 

complete system failures but do not consider partial failures. These 

models have limitations (increased algorithmic and computational 

complexity, the need for complex preprocessing of diverse data), 

which reduces their effectiveness in improving the operational 

efficiency of CTS. 

2. Stochastic models and methods for diagnosing CTS were 

developed that simultaneously account for subsystems, components, 

elements, their interconnections, and the risk (probability) of partial 

or complete failure, as well as uncertainties and incomplete data. This 

led to the development of a diagnostic method for complex CTS 

based on BВN. The improvement of the cognitive simulation model, 

which applies simulation impulse effects, allows for diagnosing 

system equipment with consideration of their interrelations and 

influence. Further development of this method enables timely 

identification and visualization of structural and functional 

vulnerabilities, enhancing the operational efficiency of complex 

systems. 

3. Research and analysis of stochastic models and diagnostic 

methods for vulnerable subsystems, components, elements, and their 

interconnections in CTS, considering partial and complete failures, 

were conducted. The simulation used a ship's energy installation 

(SPP) as an object. The input data for the risk (probability) failure 

modeling based on BВN included the system's scheme, operational 

principles, and expert assessments. Cognitive simulation modeling 

was used to simulate internal and external impacts and to track 
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responses to risks (probabilities) of equipment failures with unclear 

sources and causes. The application of this diagnostic method using 

incomplete data revealed and visualized structural and functional 

vulnerabilities, confirming that the developed stochastic models can 

be considered conceptual. 

4. A method for evaluating and forecasting complex CTS was 

developed, based on the further development of the reasoning method 

based on precedents. This method ensures the evaluation and 

forecasting of CTS and improves the operational efficiency of 

complex systems. 

5. An information intelligent system for diagnosing, evaluating, 

and forecasting complex CTS was developed. The IIS, using CBR, 

links the developed models and methods for diagnosing, evaluating, 

and forecasting with an expert system containing computational, 

experimental, and expert data. The IIS's implementation supports 

targeted decision-making to identify equipment failures based on 

CTS evaluations. The obtained risk assessments of subsystem, 

component, and element failures, which align with expert 

evaluations, confirm the effectiveness of the diagnostics and 

forecasting of complex systems, considering partial and complete 

failures. The results of the efficiency calculation for the IIS, using 

CBR and considering preventive maintenance, show that the 

probability of maintaining operability increases by 3%. 

6. The scientific results of this research in the form of 

information and software have been implemented in the operations of 

the Maersk shipping company (Denmark) and have been reflected in 

the scientific activities and educational processes at the Department 

of Information Technology at the National University "Odessa 

Polytechnic." 

_____________________________________________________ 
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