
 

Vladimir Vychuzhanin, Alexey Vychuzhanin 

 

 

 

 

Intelligent Diagnostics of Ship Power Plants: 

Integration of Case-Based Reasoning, 

Probabilistic Models, and ChatGPT 
A Universal Approach to Fault Diagnosis and Prognostics 

in Complex Technical Systems 

 

 
 

MONOGRAPH 

 

 

 

 

 

 

Львів-Торунь 

Liha-Pres 

2025 



UDC 004.891.3:629.5.064:004.896 

 V 99 

Author Team: 

V. Vychuzhanin, A. Vychuzhanin

Reviewers: 

Professor Ye Zhengmao, Southern University (USA); 

Professor A. Kupin, Kryvyi Rih National University (Ukraine) 

Recommended for publication by the Academic Council 

of the National University "Odesa Polytechnic" 

(protocol No. 11 dated 27.05.2025) 

Vychuzhanin V. 

     Intelligent Diagnostics of Ship Power Plants: Integration  

of Case-Based Reasoning, Probabilistic Models, and ChatGPT. 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems: Monograph / V. Vychuzhanin, A. Vychuzhanin. – 

Lviv-Torun : Liha-Pres, 2025 – 412 р.

ISBN 978-966-397-516-0 

DOI 10.36059/978-966-397-516-0 

V99 

The monograph highlights the following: integrated approach to diagnosing failures 
in ship's power plants; methodology for determining similarity between cases in the fault 

diagnosis system of ship's power plants; adaptation of the case-based reasoning method 

with integration of probabilistic analysis for diagnosis and prognosis of complex systems' 
technical state; integrated approach to diagnosing complex technical systems, experimental 

validation and multidimensional efficiency assessment; a hybrid model for evaluating the 

accuracy of failure forecasts in ship power plants; integrated modeling of reliability and 

maintenance of spp equipment considering degradation and operational conditions. 

The materials of this monograph will be valuable for postgraduate students, master's 

students, and university instructors specializing in the field of IT technologies. 

UDК 004.891.3:629.5.064:004.896 

ISBN 978-966-397-516-0 © Vladimir Vychuzhanin,  
    Alexey Vychuzhanin, 2025 



3 

CONTENTS 

LIST OF ABBREVIATIONS AND SYMBOLS ................................ 6 

INTRODUCTION ............................................................................... 7 

CHAPTER 1 

INTEGRATED APPROACH TO FAILURE DIAGNOSTICS 

OF SHIP POWER PLANTS BASED ON PRECEDENTS ................. 10 

1.1 Introduction ................................................................................... 11 

1.2 Review of diagnostic and prognostic methods 

for the technical condition of complex technical systems ................... 16 

1.2.1 Case-Based Reasoning  in technical system diagnostics ............ 16 

1.2.2 Probabilistic methods: Bayesian networks 

and Markov models ............................................................................. 17 

1.2.3 Simulation modeling for failure diagnosis and prognostics ........ 18 

1.2.4 Integration of diagnostic methods ............................................... 20 

1.2.5 Integrated approaches to the diagnosis of SPPs .......................... 20 

1.2.6 Need for a new approach ............................................................ 21 

1.3 Integrated approach to diagnosing failures in SPPs ....................... 22 

1.3.1 Creating a case-based.................................................................. 22 

1.3.1.1 Defining case structure ............................................................ 23 

1.3.1.2 Data integration and case based formation .............................. 27 

1.3.2 Methodology for determining similarity between cases 

in the fault diagnosis system of SPP .................................................... 45 

1.3.2.1 Introduction.............................................................................. 45 

1.3.2.2 Methods for calculating similarity between cases ................... 48 

1.3.2.3 A model for determining similarity between precedents 

for diagnosing failures of Bayesian networks equipment .................... 50 

1.3.2.4  Optimization of weights of parameters for estimation 

of similarity of failure precedents ........................................................ 79 

1.3.2.5 Practical application of the method for assessing similarity 

of equipment failure cases in SРР ........................................................ 84 

1.3.2.6 Discussion of results ................................................................ 89 

1.3.2.7 Conclusions.............................................................................. 91 

1.3.3. Development of a technical condition assessment algorithm 

for complex systems based on probabilistic failure estimation ........... 93 

1.3.3.1 Introduction.............................................................................. 93 

1.3.3.2 Materials and methods ............................................................. 96 

1.3.3.3 Results ..................................................................................... 100 

1.3.3.4 Discussion of results ................................................................ 110 

1.3.3.5 Conclusions.............................................................................. 112 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

4 

 

1.3.4 Adaptation of the Case-Based Reasoning method with integration  

of probabilistic analysis for diagnosis and prognosis  

of complex systems' technical state ..................................................... 114 

1.3.4.1 Introduction.............................................................................. 114 

1.3.4.2 Materials and methods ............................................................. 116 

1.3.4.3 Fundamental principles of CBR decision adaptation ............... 117 

1.3.4.4 Formalization of diagnostic method integration ...................... 123 

1.3.4.5 General experimental evaluation of adaptive CBR .................. 130 

1.3.4.6 Discussion of results ................................................................ 144 

1.3.4.7 Conclusions.............................................................................. 146 

1.3.5 Integrated approach to diagnosing complex technical systems: 

experimental validation and multidimensional  

efficiency assessment ........................................................................... 147 

1.3.5.1 Introduction.............................................................................. 147 

1.3.5.2 Purpose and objectives of experimental testing ....................... 149 

1.3.5.3 Test scenarios for the technical condition of the SРР .............. 152  

1.3.5.4 Evaluation of Accuracy, Precision, Recall,  

and F1-Score metrics for various methods of diagnosing  

the technical condition of the SРР ....................................................... 155 

1.3.5.5 Discussion of results ................................................................ 168 

1.3.5.6 Conclusions.............................................................................. 169 

1.3.6 Three-Scenario analysis of fault diagnosis accuracy  

in complex technical systems .............................................................. 171 

1.3.6.1 Introduction.............................................................................. 172 

1.3.6.2 Materials and methods ............................................................. 174 

1.3.6.3 Results ..................................................................................... 176 

1.3.6.4 Discussion of results ................................................................ 217 

1.3.6.5 Conclusions.............................................................................. 219 

1.3.7 A hybrid model for evaluating the accuracy  

of failure forecasts in SРРs .................................................................. 220 

1.3.7.1 Introduction.............................................................................. 220 

1.3.7.2 Materials and methods ............................................................. 223 

1.3.7.3 Methodology for evaluating the accuracy of failure forecasts  

in SРР equipment ................................................................................. 224 

1.3.7.4 Results ..................................................................................... 226 

1.3.7.5 Discussion of results ................................................................ 247 

1.3.7.6 Conclusions.............................................................................. 249 

1.3.8. Dynamics of failure probabilities  

in SРР equipment considering cascade effects .................................... 250 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

5 

 

1.3.8.1 Introduction.............................................................................. 250 

1.3.8.2 Materials and methods ............................................................. 253 

1.3.8.3 Results ..................................................................................... 256 

1.4.8.4 Discussion of results ................................................................ 278 

1.3.8.5 Conclusions.............................................................................. 281 

1.3.9 Integrated modeling of reliability and maintenance  

of SPP equipment considering degradation  

and operational conditions ................................................................... 282 

1.3.9.1 Introduction.............................................................................. 282 

1.3.9.2 Materials and methods ............................................................. 285 

1.3.9.3 Results ..................................................................................... 287 

1.3.9.4 Discussion of results  ............................................................... 313 

1.3.9.5 Conclusions.............................................................................. 316 

1.3.10 Adequacy and verification  

of an intelligent diagnostic model for SРРs ......................................... 317 

1.3.10.1 Introduction............................................................................ 317 

1.3.10.2 Materials and methods ........................................................... 320 

1.3.10.3 Results ................................................................................... 322 

1.3.10.4 Discussion .............................................................................. 355 

1.3.10.5 Conclusions............................................................................ 357 

1.3.11. Discussion of results ................................................................ 358 

1.3.11.1 Impact of method integration on diagnostic accuracy ........... 358 

1.3.11.2 Correlation analysis of predictions and actual failures .......... 359 

1.3.11.3 Impact of Bayesian networks  

on reducing diagnostic errors ............................................................... 361 

1.3.11.4 Impact of simulation modeling on CBR adaptation ............... 361 

1.3.11.5 Evaluation of residual life prediction for components ........... 362 

1.3.11.6 Final analysis of method integration effectiveness ................ 363 

1.3.11.7 Limitations of the proposed method ...................................... 363 

CONCLUSIONS ................................................................................. 364 

CHAPTER 2 

USING CHATGPT FOR THE INTELLIGENT DIAGNOSTICS  

OF COMPLEX TECHNICAL SYSTEMS .......................................... 367 

2.1.Introduction ................................................................................... 367 

2.2 Materials and methods ................................................................... 369 

2.3 Results ........................................................................................... 371 

2.4 Discussion of results ...................................................................... 284 

2.5 Conclusions ................................................................................... 288 

REFERENCES .................................................................................... 390 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

6 

 

LIST OF ABBREVIATIONS AND SYMBOLS 
AI - Artificial Intelligence 

BD - Database 

BZ - Knowledge Base 

BN - Bayesian Network 

CA - Critical Application 

CBR - Case-Based Reasoning 

CCS  - Complex Critical Systems 

CSM - Cognitive Simulation Model 

CTS - Complex Technical System 

DES - Discrete-Event Simulation 

DM - Decision Maker 

DTRS - Data Transmission and Reception System 

FC - Set of Intercomponent, Interelement Connections 

FE - Set of Subsystems, Components, Elements 

IIS - Intelligent Information System 

k-NN - k-nearest neighbors  

L-BFGS-B - Limited-memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm with Box 

MAE - Mean Absolute Error  

MAPE  - Mean Absolute Percentage Error 

ME  - Main Engine 

ML  - Machine Learning  

MM - Markov Model 

MSE - Mean Squared Error  

OLAP - Online Analytical Processing 

OREDA - Offshore Reliability Data database 

PHM  - Prognostics and Health Management 

R² - Coefficient of Determination 

RMSE - Root Mean Squared Error 

RUL - Remaining Useful Life 

SIM - Simulation Modeling 

SPP - Ship Power Plant 

SW - Software 

TC - Technical Condition 

ТМ - Technical Maintenance 

TS - Technical System 

TTF  - Time-to-Failure  

 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

7 

 

INTRODUCTION 

One of the main causes of technogenic accidents involving CTS used 

in transportation, aviation, energy, and other fields remains operational 

equipment failures. An analysis of the results of ship operations shows that 

despite measures taken to ensure maritime safety, the number of accidents at 

sea remains high. A primary reason for many of these accidents is the failure 

of CTS. As a result, such systems are classified as critical application 

systems. Complex technical systems of critical application are hierarchical 

structures with non-trivial internal organization, multifunctional subsystems, 

components, and elements, interconnected with complex links and subject to 

various failure states. A characteristic feature of CTS operation is 

uncertainty, as well as incomplete information about the technical condition 

of the systems. 

Due to increasing demands for safety and reliability of expensive 

maritime CTS, their efficiency depends significantly on extending 

operational life and resource use. Enhanced efficiency can be achieved by 

applying models and methods for diagnosing, assessing, and forecasting the 

TC of complex systems and integrating them into intelligent information 

systems. These IIS enable the evaluation and prediction of TC based on 

diagnostic results. Existing diagnostic models and methods are widely used 

in practice, but they do not always ensure comprehensive operational 

efficiency of CTS. Additionally, current TC diagnostic models often account 

only for full functional failures but overlook partial ones. Partial failures are 

more diverse in their types and locations of manifestation compared to full 

failures. Advanced diagnostic algorithms are required to meet efficiency 

demands in decision-making while considering the continuation of CTS 

operation. 

Promising modeling methods for TC diagnostics include Bayesian 

belief networks, which account for uncertainties and incomplete data of 

modeled CTS, and cognitive simulation modeling methods, which 

additionally evaluate the structural and functional vulnerabilities of system 

equipment. However, cognitive simulation modeling requires improvements 

due to its limitations: lack of universality regarding structural threats and 

vulnerabilities in CTS, and insufficient consideration of the significance and 

criticality of equipment for overall system functionality. 

Known methods for assessing and predicting TC in complex systems 

implemented in IIS include case-based reasoning; analogies; systematic and 

heuristic methods for optimization tasks (e.g., genetic algorithms, artificial 

immune networks, annealing methods, swarm intelligence methods 
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including ant algorithms); and structural representation methods based on 

OWL ontology precedents. Some of these methods face challenges such as 

high algorithmic and computational complexity, the necessity of intricate 

preliminary data processing stages, and limited visualization capabilities for 

interpreting results. A general drawback is the high dimensionality of 

possible tasks during decision-making. 

Improving the efficiency of CTS operation by applying diagnostic, 

assessment, and forecasting models and methods that consider both partial 

and full equipment failures is a critical scientific problem. The aim of this 

research is to enhance the operational efficiency of CTS by developing 

models and methods for diagnosing, assessing, and forecasting the TC of 

critical application complex systems. 

To achieve this aim, the following tasks were identified and resolved. 

Analysis of models, methods, and information systems for diagnosing, 

assessing, and forecasting the TC of critical application CTS. Development 

of stochastic models and a method for diagnosing the TC of critical 

application CTS. Creation of an IIS for diagnosing, assessing, and 

forecasting the TC of CTS. The processes of diagnosing, assessing, and 

forecasting the TC of critical application CTS. 

The models and methods for diagnosing, assessing, and forecasting the 

TC of critical application CTS. To achieve the research goals, mathematical, 

simulation, and computer modeling methods were used, along with expert 

evaluation and theories of information, control, decision-making, graphs, 

artificial intelligence, cognitive analysis, literature content analysis, data 

processing, diagnostics, and forecasting. Methods of theoretical, applied, 

and object-oriented programming were employed in developing conceptual 

stochastic diagnostic models for CTS. Optimization theory methods were 

applied in data transmission modeling, as well as in diagnosing, assessing, 

and forecasting CTS. 

The scientific novelty of the obtained results includes. A stochastic 

diagnostic model for CTS was proposed, which simultaneously accounts for 

the presence of subsystems, components, and elements, their 

interconnections, and the probabilities of partial or complete functional 

failure. This led to the development of a diagnostic method based on a 

Bayesian belief network for critical application CTS. 

A data transmission and reception model for diagnosing, assessing, and 

forecasting the TC of CTS was developed. It considers conflicting 

requirements and competing criteria, enabling the identification of Pareto-

optimal solutions for effective data transmission and reception. 
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Further development was achieved in the diagnostic method for CTS 

based on a Bayesian belief network, enabling the timely identification and 

visualization of structural and functional vulnerabilities, thus enhancing the 

operational efficiency of critical application systems. The case-based 

reasoning method, ensuring TC assessment and prediction to improve the 

performance of CTS. Improvements were made to the cognitive simulation 

model, incorporating simulation-impact impulses, which allows for 

diagnosing equipment TC with consideration of interdependencies and 

mutual influences. 

The practical significance lies in the development of an IIS that 

automates the processes of assessing and predicting the TC of critical 

application CTS in various states of functionality.  

An algorithm was created to detect failures in subsystems, 

components, and elements, including their interconnections, based on risk 

assessments of these failures. This algorithm enables the implementation of 

a targeted IIS operation strategy. A user interface for the knowledge base 

was developed, allowing experts to review formalized data and make final 

risk assessments for equipment failures in CTS. 
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CHAPTER 1 

INTEGRATED APPROACH TO FAILURE DIAGNOSTICS 

OF SHIP POWER PLANTS BASED ON PRECEDENTS 

Abstract 

This section presents an integrated fault diagnosis method for 

SPPs, combining Case-Based Reasoning, probabilistic models (BNs, 

MМs), and cognitive simulation modeling.  

Unlike traditional diagnostic systems, the proposed method 

accounts for cascading failure effects, probabilistic dependencies 

between components, and stochastic equipment degradation. A 

dynamic diagnostic model update mechanism has been developed, 

enabling real-time adaptation of CBR weight coefficients and failure 

probabilities based on operational data. Cognitive simulation 

modeling is applied for predicting complex failure scenarios, 

generating synthetic data, and identifying hidden patterns in fault 

progression. The use of a hybrid diagnostic approach, integrating k-

NN with adaptive weights, BNs, MMs, and simulation models, 

improves diagnostic accuracy and reduces error rates.  

Optimization of diagnostic decisions using L-BFGS-B and 

probabilistic analysis allows for dynamic failure prediction 

adjustments and consideration of equipment degradation processes. 

Experimental testing on an SPP simulation model confirmed the 

effectiveness of the proposed method: diagnostic accuracy increased 

to 92% (13% higher than standard CBR), false positive detections 

decreased by 6.7%, and residual life prediction error remained within 

5–7%.  

The developed method can be applied in intelligent monitoring 

and prognosis systems for SPPs and adapted for other complex 

technical systems, including aviation and industrial power plants. 
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1.1 Introduction 

Modern CTS, used in transportation, aviation, energy, and other 

industries, are hierarchical structures comprising numerous 

functionally diverse subsystems, components, elements, and complex 

interconnections among them. These elements may exist in states of 

either partial or complete loss of operability. The structure of a CTS 

reflects the overall picture of cause-and-effect interactions among the 

system’s constituent parts [1, 2, 3]. 

The operation of such systems is associated with a high level of 

uncertainty, which is difficult to fully describe, understand, or 

predict. CTS possess a set of characteristic properties, including 

nonlinearity, adaptability, self-organization, and integrity [2, 3]. 

Adaptability refers to the system's ability to function in a multitude of 

different states, which is enabled, in particular, by informational 

components incorporating elements of artificial intelligence [2, 4, 5]. 

Self-organization is manifested in the system’s ability to alter its 

properties and return to its original state after deviation. Integrity is 

expressed through the preservation of the system's overall qualities. 

Based on the degree of operational certainty, CTS are classified 

as probabilistic or deterministic; based on the level of organization — 

as well-organized or poorly organized. Depending on the nature of 

interaction with the external environment, CTS are further classified 

as closed or open systems [2, 3]. 

Each device within a CTS is characterized by a set of parameters 

that determine its current state. Changes in the properties of 

individual components, subsystems, or their interconnections may 

cause cascading effects throughout the entire system. The functioning 

of CTS is based on systemic principles [2, 3]: the principle of 

hierarchical belonging (an element to a component, a component to a 

subsystem, a subsystem to the CTS) and the principle that the 

properties of the system cannot be reduced to the simple sum of the 

properties of its individual parts. 

A typical example of a CTS is the shipboard technical complex: 

mechanisms; assemblies; devices; pipelines;  other interdependent 

systems that ensure vessel operation [4, 6]. In particular, the SPP 
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represents a CTS comprising various subsystems, components, and 

elements that are closely interconnected and serve different purposes. 

One of the main causes of man-made accidents during the 

operation of CTS in various industries remains the failure of their 

constituent parts [7]. For this reason, such systems are classified as 

critical. In reliability theory, CTS are regarded as a set of properties 

observed under specific environmental conditions at a given moment 

in time. A failure is considered a random event associated with a 

partial or complete loss of operability. A partial failure is viewed as 

an intermediate state between full operability and complete failure, 

wherein the system loses the ability to perform some of its functions 

due to reduced effectiveness. These systems are considered multi-

state systems. 

External factors increase the load on individual elements of 

CTS, leading to a decline in their functional capacity and overall 

reliability, which, in turn, raises the risk of accidents. Other 

contributing causes include manufacturing defects, violations of 

operational modes, and human error [8, 9, 10]. 

Among the sectors where particularly high demands are placed 

on the efficiency and reliability of critical CTS, maritime and inland 

waterway transport are especially prominent. Ships are equipped with 

dozens of CTS, the condition of which directly affects their 

survivability. This survivability cannot be guaranteed solely through 

adherence to regulatory requirements at the stages of design, 

construction, and operation [11, 12, 13]. 

Databases exist containing information on maritime accidents 

and incidents [14], including the Global Integrated Shipping 

Information System (GISIS) maintained by the International 

Maritime Organization (IMO) [15], as well as the European Maritime 

Safety Agency (EMSA) [16]. For example, according to data from 

the JTSB database, the number of accidents in the Japanese shipping 

zone from 2008 to 2024 shows only a slight downward trend [17]      

(Fig. 1.1). 
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Figure 1.1. Trend in overall marine vessel accident rates 

 

This confirms that the issue of reliability remains relevant both 

for new and aging vessels - especially large ships equipped with 

advanced control and communication systems, which make their 

subsystems more vulnerable [18, 19, 20]. 

Analysis of operational data indicates that, despite the 

implementation of safety measures for maritime navigation, the level 

of marine accidents remains high. One of the most frequently 

occurring causes of shipboard incidents is CTS failure. Marine 

accidents pose a serious threat to human life, the ship itself, the 

environment, and coastal infrastructure [21, 22, 23]. 

Thus, even with adherence to normative and technical safety 

measures, the probability of accidents caused by CTS failures 

remains high. Statistical analysis demonstrates a direct relationship 

between displacement, vessel age, and the risk of technical failure. 

As safety requirements for high-value CTS grow, so do the 

requirements for their operational efficiency, which is determined by 

service life and resource usage. Ensuring the reliable and efficient 

operation of shipboard CTS remains a significant scientific and 

technical challenge. 

Modern ship power plants (Fig. 1.2) are CTS (operating under 

highly variable conditions with stochastic failure patterns [2, 24]. 

Reliable diagnostics of such systems require a comprehensive 

approach that combines historical data analysis, probabilistic 

forecasting, and dynamic system behavior modeling. 
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Figure 1.2. Main propulsion SPP 

 

SPP is designed for the production of mechanical, electrical, 

thermal, and other types of energy. The SPP includes the following 

components: Main SPP (MSPP), which provides propulsion for the 

vessel. It consists of main engines, steam boiler units, steam turbine 

power plants, free-piston gas generators, gas turbine unit turbines, 

nuclear reactors of nuclear power plants, as well as auxiliary 

mechanisms and systems that support their operation; Auxiliary SPPs 

(ASPPs), which supply all types of energy to the ship's systems and 

mechanisms, ensuring the proper functioning of the MSPP. These 

include auxiliary emergency diesel generators, turbo generators, 

auxiliary boiler units, a battery station, as well as their supporting 

auxiliary mechanisms, devices, and systems; Mechanisms and 

devices of general ship systems, including domestic water supply, 

heating and space heating, ventilation and air conditioning, bilge, 

ballast, and fire-fighting systems, as well as systems for collecting 

and treating oily and sewage-fecal waters, and others; Automatic and 

remote control, monitoring, and protection systems for the MSPP, 

ASPP, and mechanisms and devices of general ship systems. 

All types of energy produced by the SPP ensure the vessel’s 

movement at a set speed or the performance of various operational 
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tasks on cargo ships, technical fleet vessels, and special-purpose 

ships. They also ensure the safe and reliable operation of engine 

room mechanisms, deck equipment and systems, electrical lighting, 

navigation aids, automation and signaling control systems, and meet 

the general and domestic needs of the crew and passengers. 

Traditional methods based on strict mathematical models and 

expert rules have several limitations in maritime operations [1]: 

- high variability in operating conditions (loads, environmental 

factors, wear) complicates the development of universal diagnostic 

models [1]; 

- the lack of consideration for probabilistic dependencies 

between components reduces diagnostic accuracy [24]; 

- insufficient historical data leads to uncertainty in identifying 

rare failures [25]. 

To address these challenges, an integrated fault diagnosis 

approach for SPPs is proposed, combining: 

1. CBR [26] - analyzing historical failure data with adaptability 

to new operating conditions; 

2. Probabilistic risk assessment methods [27] - BNs and MMs 

for predicting component degradation and cascading failure effects; 

3. Simulation models [1] - enabling dynamic system behavior 

reproduction and generating missing diagnostic data. 

Key innovations and advantages of the proposed approach: 

- comprehensive failure analysis - integrating CBR, probabilistic 

methods, and simulation modeling allows not only the identification 

of current failures but also the prediction of their progression; 

- adaptability to changing conditions - the proposed method 

operates effectively even with limited historical data by utilizing 

probabilistic forecasting; 

- cascading failure modeling - BN capture component 

dependencies, helping to prevent secondary failures; 

- residual life prediction - MMs estimate equipment degradation 

probabilities based on operational factors. 

Thus, the developed method integrates the capabilities of CBR, 

probabilistic analysis, and simulation modeling, ensuring enhanced 
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accuracy, adaptability, and reliability in diagnosing failures in CTS, 

particularly in SPPs. 

 

1.2 Review of diagnostic and prognostic methods for the 

technical condition of complex technical systems 

In recent years, there has been significant progress in the 

development of diagnostic and prognostic methods for CTS, 

including SPPs. Diagnosing such systems is challenging due to the 

high variability of operating conditions, the stochastic nature of 

failures, and the need to account for cascading effects.  

This review examines modern diagnostic methods, their 

integration, and future development prospects. 

 

1.2.1 Case-Based Reasoning  in technical system diagnostics 

[26, 27, 28] 

CBR is widely used in CTS diagnostics because it leverages 

accumulated experience to assess faults. In this approach, the 

diagnosis is established by comparing the current failure with past 

cases stored in a knowledge base. Key advantages of CBR: 

utilization of historical data for diagnosing new cases; adaptability to 

different operating conditions; ease of interpretation of diagnostic 

decisions. 

However, CBR has several limitations: the need to adapt 

solutions when there is no exact match in the Case Base; limited 

applicability to rare or novel failures; challenges in automatic 

database updates; the necessity of optimizing the case base, 

accounting for probabilistic dependencies between parameters, and 

reducing computational load when processing large datasets. 

A review of existing CBR optimization approaches reveals that 

considerable efforts have been devoted to improving case retrieval 

and case base management. 

In [28, 29], an enhanced similarity search method for CBR-

based diagnostics of aircraft engines was proposed. This approach 

considers attribute interactions, improving diagnostic accuracy. 

However, its high computational complexity and limited applicability 
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(aviation engines) make it less universal. Maria Salamó and Elisabet 

Golobardes [30] introduced Dynamic Case Base Maintenance 

(DCBM), which optimizes case base size without compromising 

accuracy. However, this method does not account for case 

interactions or efficiency in handling large datasets. In [31], a method 

for updating the case base and feature dictionary based on belief 

function theory was proposed. While this method automatically 

adjusts the knowledge base size, its implementation complexity and 

potential increase in computational load remain open issues. Ayed et 

al. developed the CIMMEP method, which removes duplicate cases 

but requires manual configuration [32]. 

Despite extensive research in CBR optimization, challenges 

related to dynamic updates and handling uncertainty remain relevant. 

To enhance the effectiveness of CBR, a structured case base must be 

developed, incorporating not only historical failure data but also 

probabilistic assessments, cascading effect information, operational 

parameters, and simulation-based failure modeling results. 

To overcome the limitations of CBR in diagnosing and 

predicting CTS equipment failures, it is often complemented by other 

methods such as Bayesian networks, Markov models, and simulation 

modeling. 

 

1.2.2 Probabilistic methods: Bayesian networks and Markov 

models [27, 33, 34] 

Probabilistic models are widely used for assessing the technical 

condition of complex systems. BNs allow for the consideration of 

interdependencies between components and enable failure probability 

estimation based on incoming data. MMs, in turn, are used for 

predicting the remaining useful life of equipment and evaluating the 

likelihood of transitions between operational and failure states. 

Advantages of probabilistic methods: consideration of 

uncertainty and cascading failures; ability to update estimates as new 

data becomes available; high accuracy in failure prediction. 

Disadvantages: high computational complexity; challenges in 

model parameter calibration. 
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1.2.3 Simulation modeling for failure diagnosis and 

prognostics [35, 36] 

Various types of simulation modeling are used for diagnosing 

and predicting failures in complex technical systems. The main 

approaches include. Discrete Event Simulation (DES) [37]: used for 

systems whose operation is based on a sequence of discrete events 

(e.g., equipment operation and maintenance); allows for analyzing 

failure impacts, simulating maintenance processes, and identifying 

bottlenecks; commonly applied in reliability forecasting and 

maintenance optimization. System Dynamics (SD) [38]: applied to 

model complex interdependent processes such as equipment 

degradation and the influence of external factors on system 

reliability; uses differential and difference equations to describe 

changes in system states over time. Agent-Based Modeling (ABM) 

[39]: models the system as a collection of interacting agents, which 

can represent equipment components, operators, and maintenance 

personnel; enables the analysis of system behavior under various 

operational and failure scenarios. Monte Carlo simulation [40]: based 

on random variables to model uncertainties in operational, diagnostic, 

and failure prediction processes; used for failure probability 

assessment, risk analysis, and mean time between failure (MTBF) 

estimation. Hybrid simulation [41]: combines multiple approaches, 

such as discrete event simulation with agent-based modeling or 

system dynamics; allows for different levels of detail and complex 

interrelations within technical systems. Cognitive simulation 

modeling [1, 42]: used for diagnosing and predicting failures in CTS, 

particularly under conditions of uncertainty, dynamic changes, and 

insufficiently formalized data; represents the system as a network of 

interconnected factors (cognitive maps) influencing each other with 

varying intensity; enables causal relationship analysis and system 

behavior forecasting based on parameter variations; accounts for both 

quantitative indicators and qualitative aspects, including expert 

knowledge, intuitive perception, and cognitive failure analysis 

strategies. 
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The cognitive model integrates formal mathematical approaches 

(e.g., MМs and BNs) with expert evaluations, which is particularly 

valuable in cases of incomplete or noisy data. It dynamically adapts 

by adjusting predictions based on new experiences, similar to CBR, 

thus improving diagnostic accuracy under changing operational 

conditions. Cognitive simulation modeling helps generate complex 

failure scenarios while considering contextual factors and component 

interdependencies, leading to the identification of hidden failure 

patterns.  

In an integrated approach, it can act as a synthetic data generator 

to enrich the CBR case base, and its results can be used to calibrate 

probabilistic assessments (e.g., adjusting weights in BNs or MMs).  

This strengthens the link between historical data and current 

operating conditions. The inclusion of cognitive simulation modeling 

extends the capabilities of the integrated approach by incorporating 

cognitive aspects of decision-making. This is particularly important 

in working with complex and dynamic systems, where human 

experience plays a crucial role. 

Failure Factor Analysis: modeling the impact of wear, operating 

conditions, and external influences on system reliability; utilizing 

Fuzzy Cognitive Maps (FCM) to account for uncertain dependencies. 

Failure Prediction and Risk Assessment: estimating failure 

probabilities through scenario analysis; integrating with artificial 

intelligence methods (e.g., neural networks) for learning from 

historical data. 

Optimization of maintenance strategies: identifying critical 

system components for prioritized maintenance; supporting 

predictive maintenance (Predictive Maintenance - PdM). 

Evaluation of diagnostic solutions efficiency - analyzing the 

impact of various diagnostic strategies (vibration monitoring, thermal 

imaging analysis, etc.) on failure detection accuracy. 

Advantages of cognitive simulation modeling: integration of 

qualitative and quantitative factors - considers both measurable 

parameters and expert assessments; adaptability - adjusts to changing 

operational conditions, generating data for various scenarios; 
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enhancement of case-based knowledge - creates synthetic data to 

enrich the CBR system database, improving diagnostic completeness 

and accuracy. 

Data obtained from cognitive modeling can be used to calibrate 

weight coefficients in probabilistic models (e.g., BNs and Markov 

processes). This minimizes diagnostic errors and improves failure 

prediction accuracy. 

Simulation models are used to replicate system behavior under 

various operating conditions, including: evaluating component 

reliability in real working environments; generating artificial data for 

training diagnostic models; analyzing operational scenarios and their 

impact on system performance. 

The main limitation is high sensitivity to input data accuracy -

errors in initial parameters can significantly affect modeling results. 

 

1.2.4 Integration of diagnostic methods 

Modern research indicates that combining various diagnostic 

methods enhances the accuracy and reliability of failure predictions 

[1]. Examples of method integration: combining CBR and BNs for 

probabilistic decision correction [43]; using simulation modeling to 

create training data for CBR; applying hybrid models based on 

machine learning and statistical analysis for remaining useful life 

(RUL) estimation [44]. 

 

1.2.5 Integrated approaches to the diagnosis of SPPs 

A SPP is a complex technical system ensuring uninterrupted 

vessel operation, maneuverability, and autonomy [45]. 

Main components of SPP: 

1. SPP - provides vessel propulsion and includes: main engine - 

typically diesel, gas turbine, or steam turbine; reduction gear - 

transmits power from the engine to the propeller shaft; propeller - 

converts mechanical energy into vessel movement; auxiliary power 

units: diesel generators - supply electrical power to the vessel; steam 

generators - used on large vessels for producing steam, e.g., for 

turbines; 
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2. Fuel system - stores and supplies fuel to the engines; 

3. Cooling system - maintains engine temperature control; 

4. Lubrication system - reduces friction in mechanical 

components; 

5. Hydraulic system - operates steering mechanisms and other 

hydraulic devices; 

6. Automation and control system - monitors all components, 

controls parameters, and diagnoses faults. 

Types of SPPs: diesel - most common, economical, and reliable; 

steam turbine – used on large vessels and warships; gas turbine - high 

power-to-weight ratio; nuclear - used on nuclear icebreakers and 

submarines. 

The complexity and scale of marine power plants require a 

comprehensive approach to monitoring and diagnostics. Research 

indicates that integrating CBR, probabilistic models, and simulation 

modeling significantly enhances failure prediction accuracy. 

 

1.2.6 Need for a new approach 

Despite significant progress in diagnostic methods, several 

unresolved issues remain: limited accuracy of traditional methods 

under changing operational conditions; insufficient integration of 

methods in real-world applications; lack of adaptive models capable 

of real-time corrections. 

This study proposes a new integrated approach combining CBR, 

probabilistic models, and simulation modeling for diagnosing SPP. 

This approach aims to improve diagnostic accuracy, detect potential 

failures in advance, and optimize maintenance strategies. 

An analysis of modern diagnostic methods demonstrates that 

integrated approaches provide the most effective solutions. The 

combination of CBR, BNs, MMs, and simulation modeling enables 

consideration of complex operational conditions and enhances failure 

prediction reliability. Developing and implementing such methods is 

a promising direction for improving the reliability of SPPs. 

The objective of this study is to develop an integrated approach 

to the diagnosis of failures in SPPs, combining CBR, simulation 
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modeling, and probabilistic failure risk assessment into a unified 

diagnostic system. This approach will enhance fault detection 

accuracy, account for cascading failure effects, and ensure system 

adaptability to changing operating conditions.  

To achieve this objective, the following tasks must be addressed: 

develop an integrated failure case base for marine power plants, 

combining real historical data with artificially generated scenarios 

obtained through simulation modeling; define a similarity 

measurement methodology between failure cases to ensure the 

correct identification of analogous cases while considering 

probabilistic failure dependencies; design a system health assessment 

algorithm that integrates CBR, probabilistic failure assessment of 

components, and dynamic prediction of remaining useful life; create 

a mechanism for adapting CBR decisions by integrating probabilistic 

failure analysis and predictive maintenance, allowing for the 

consideration of component degradation over time; conduct 

experimental testing of the proposed integrated approach on a 

simulation model of a SPP, evaluating diagnostic accuracy, fault 

prediction efficiency, and the impact of the proposed adaptation 

mechanisms. 

Thus, this study aims to develop a next-generation diagnostic 

system capable of adapting to changing operating conditions, 

incorporating probabilistic failure characteristics, and providing 

enhanced fault diagnosis accuracy in marine power plants. 

 

1.3 Integrated approach to diagnosing failures in SPPs 

1.3.1 Creating a case-based 

The purpose of this study is to develop and justify a 

comprehensive approach to diagnosing failures of SPP by creating a 

case base reasoning precedent base that combines probabilistic 

models and simulation modelling.  

This approach makes it possible to take into account the 

stochastic nature of failures, cascade effects and dynamic changes in 

operating conditions, which increases the accuracy of diagnostics and 

failure prediction. 
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1.3.1.1 Defining case structure 

For the effective application of CBR in diagnosing SPP failures, 

it is necessary to standardize the representation of each failure case. 

The structure of a case must include both quantitative and qualitative 

characteristics of the failure, allowing for accurate comparison, 

classification, and adaptation of diagnostic solutions for SPP 

equipment failures [46, 47]. In this study, the case structure includes 

the following key elements.  

Failure description: failure type: classification of failures by 

category (e.g., mechanical, electrical, hydraulic, etc.). A numerical 

encoding system is used for quantitative assessment (e.g., 1 - 

mechanical, 2 - electrical, etc.); failure causes: a list of possible 

causes identified by experts, indicating their contribution to the 

overall failure scenario; failure consequences: description of the 

impact of the failure on system performance (reduced efficiency, risk 

of accidents, need for repairs). Failure risk assessment.  

Harrington’s desirability function: a generalized desirability 

function is used to classify failure risk levels: 0 - 0.2: minimal risk 

(failures not affecting operation); 0.2 - 0.37: acceptable risk (failures 

allowing operation without immediate repair); 0.37 - 0.63: maximum 

risk (failures requiring repair to continue operation); 0.63 - 1.0: 

critical risk (failures making operation impossible); failure 

Probability: the calculated probability of component failure, based on 

statistical data (e.g., from the OREDA database) and expert 

evaluation. Component characteristics: component condition (Si): a 

discrete value characterizing the state of the component (0 - 

operational, 1 - degradation, 2 - pre-failure, 3 - failure); remaining 

Useful life (Ri(t)): an estimation of the remaining service life of the 

component, calculated using Markov processes; failure Rate (λi): a 

parameter determined based on historical data. 

Diagnostic methods: description of the applied methods (CBR, 

BNs, simulation modeling); including details on the algorithms and 

similarity measures used for case analysis.  

Data sources: sources of information used to generate the case 

(maintenance logs, classification society reports, OREDA database, 
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simulation modeling results). As an example, the structure of an 

individual case can be presented in Table 1.3.1. 

 

Table 1.3.1. Case structure of SPP equipment failures 
Parameter Description Method/Source 

Failure type 
Failure code (1 — mechanical, 2 

— electrical, etc.) 

Expert assessment, 

technical 

documentation 

Failure causes List of identified failure causes 
Log analysis, expert 

opinion 

Failure 

consequences 

Description of the impact on the 

system (efficiency reduction, 

accident risk, etc.) 

Technical 

documentation, reports 

Failure risk 

(desirability) 

Value based on desirability 

function (D=1) 

Harrington function 

calculation 

Failure 

probability 

Failure probability assessment 

(e.g., 0.05) 

Statistical data 

(OREDA) 

Unit condition 

(Si) 

0 (operational), 1 (degradation), 2 

(pre-failure), 3 (failure) 

Expert assessment, 

condition sensors 

Remaining 

resource (Ri(t)) 

Assessment of the remaining 

service life of the unit 
MМs 

Diagnostic 

methods 

Applied algorithms and similarity 

measures 

CBR, BNs, simulation 

modeling 

 

Example case - fuel pump failure: failure description: unstable 

fuel supply, decreased system pressure; cause: wear of the pump’s 

working elements; consequences: loss of engine power, overheating; 

failure probability: 0.32 (based on operational data); measures taken: 

pump replacement, filter inspection, fuel viscosity analysis. 

This case is stored in the case base and can be used for 

diagnosing similar failures in the future. 

Formalized case structure as a JSON object. This format is well-

suited for machine processing and visual representation of 

relationships: 
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{ 

  "failure_case": { 

    "identifier": { 

      "code": "UNQ-12345", 

      "date": "2025-03-19", 

      "source": "OREDA" 

    }, 

    "failure_type": { 

      "category": "mechanical", 

      "causes": ["wear", "fatigue damage"] 

    }, 

    "operational_context": { 

      "working_conditions": { 

        "temperature": "75°C", 

        "vibration": "increased", 

        "load": "90%" 

      }, 

      "operating_mode": "overload", 

      "external_factors": ["oil contamination", "low fuel quality"] 

    }, 

    "failure_risk": { 

      "probability": 0.15, 

      "risk_category": { 

        "method": "Harrington", 

        "level": "high" 

      }, 

      "expected_damage": { 

        "cost": 15000, 

        "safety_impact": "critical" 

      } 

    }, 

    "interconnected_components": { 

      "subsystems": ["fuel system", "hydraulics"], 

      "connection_type": { 

        "mechanical": true, 

        "electrical": false, 

        "informational": true 

      }, 

      "cascade_effects": ["pump damage", "overheating"] 
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    }, 

    "data_sources": { 

      "historical": ["OREDA", "maintenance logs"], 

      "simulation":["Bayesian networks","discrete-event modeling"], 

      "sensor_based": { 

        "IoT": true, 

        "SCADA": true 

      }, 

      "expert_assessments": ["maintenance engineers", "diagnostic 

reports"] 

    }, 

    "diagnostic_methods": { 

      "CBR": { 

        "case_retrieval": "k-NN", 

        "adaptation": "gradient methods" 

      }, 

      "Bayesian_networks": { 

        "analysis": "probabilistic" 

      }, 

      "hybrid_methods": { 

        "CBR_and_machine_learning":["L-BFGS-B", "regression"], 

        "CBR_and_simulation": ["Markov processes", "Bayesian 

networks"], 

        "weight_optimization": ["gradient methods"] 

      } 

    } 

  } 

} 

 

Such a representation reveals: structured approach - data 

relationships are well-organized; flexibility - easily expandable with 

new parameters; readiness for processing - suitable for diagnostic and 

analytical systems. 

This structure includes key failure parameters, data sources, and 

diagnostic methods, allowing for the standardization of the case 

database and improving the efficiency of finding similar cases. 
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1.3.1.2 Data integration and case based formation 

The knowledge base of the diagnostic system includes a case-

based, as well as information on failure probability characteristics, 

cause-and-effect relationships, and equipment degradation models. 

The interaction of these components ensures adaptive diagnostics and 

prediction of the technical condition of SPPs. 

Main components of the knowledge base: case base - contains 

historical data on failures, their causes, consequences, and corrective 

actions taken; probabilistic failure models - used to assess failure 

risks based on statistical data and expert evaluations; simulation 

models - enable the creation of degradation scenarios, including rare 

and cascading failures, which is especially valuable when real-world 

data is scarce. 

Table 1.3.2. Main data categories in the knowledge base 
Data category Description Data source 

Case-based database 

Historical data on failures, 

their causes, and 

consequences 

Operational data, 

maintenance logs, 

operational reports 

Probabilistic failure 

models 

Estimates of failure 

probabilities and their 

cascading effects 

Failure statistics, 

BNs, expert 

assessments 

Simulation scenarios 

Simulated failure 

situations, including rare 

and cascading events 

Discrete-event 

modeling, cognitive 

models 

Repair and 

maintenance data 

Information on performed 

repairs and technical 

maintenance 

Technical 

documentation, 

operational logs 

Anomalies and 

verification 

Data on identified 

deviations in equipment 

operation 

Analysis of real 

operational data, 

statistical anomaly 

control 

Adaptive CBR 

parameters 

Adjustment of parameter 

weights during analogy 

search to improve 

diagnostic accuracy 

Dynamic training on 

new data 
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The developed case base includes over 5,000 records of SPP 

equipment failures, collected from operational reports, technical 

inspections, and emergency situations. The case base structure 

contains information on failure types, operating conditions, 

probabilistic characteristics, and diagnostic procedures. The most 

common failure categories include: fuel system malfunctions (27% of 

cases); bearing failures (18%); gas turbine overheating (15%); 

electrical system anomalies (12%). 

The library of precedents in the knowledge base is shown in 

Figure 1.3.1. 

 
 

Figure 1.3.1. Library of precedents in the knowledge base 

 

The automatic updating of the knowledge base involves several 

key stages: updating probabilistic estimates: adjusting failure 

probabilities and cascading effects using Bayesian probability 

updates and statistical analysis of new data; incorporating new data 

from simulation modeling to refine rare failure probability estimates 

and clarify dependencies between components; data filtering and 

verification - ensuring data quality through statistical analysis 

(anomaly detection, trend comparison with historical data); 

eliminating unreliable data through cross-checking with other 

sources. 

Dynamic adaptation of the diagnostic system: adjusting 

parameter weights in CBR algorithms to improve diagnostic 
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accuracy; automatically updating probabilistic characteristics in the 

knowledge base. 

The knowledge base is integrated with diagnostic and failure 

prediction methods as follows: CBR utilizes the case database to 

identify analogies between new and previously recorded failures; 

probabilistic risk assessment (BNs, MМs) determines failure 

probabilities based on accumulated data; simulation models 

(cognitive modeling, Monte Carlo simulations) generate new failure 

scenarios, improving forecasting and diagnostics accuracy. 

Тable 1.3.3. Components and their interconnections in the SРР 

simulation model 

Сomponent Function 
Related 

components 

Description of 

interaction 

Main Engine 

(ME) 

Moves the 

vessel 

Fuel system, 

cooling system, 

lubrication 

system 

Depends on 

the supply of 

fuel, cooling, 

and lubrication 

Cooling system 

Maintains the 

temperature 

regime 

Main engine, 

pumping system, 

auxiliary 

systems 

Cools the ME 

and other 

components 

Fuel system 

Provides fuel 

supply to the 

ME 

Pumping 

system, filters, 

automation 

system 

Supports ME 

operation, 

monitored by 

automation 

Generator 
Produces 

electricity 

Power supply 

system, batteries 
- 

Pumping 

system 

Maintains fluid 

circulation 

Cooling system, 

fuel system 
- 

Power Supply 

system 

Provides power 

to systems 

ME, automation 

system, auxiliary 

systems 

Provides 

power for 

control and 

automation 

Automation 

system 

Controls 

parameters and 

diagnoses faults 

All systems 

Manages and 

controls the 

operation of 

all systems 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

30 

 

The main engine, cooling system, fuel system, generator, 

pumping system, power supply system, and automation system are 

the core functional components and subsystems of the SРР.  

They form the heart of the vessel's energy complex and ensure 

its operation. The Main Engine serves as the primary source of 

mechanical energy for vessel propulsion. The cooling system 

maintains the engine's operating temperature, preventing overheating.  

The fuel system stores, filters, and delivers fuel to the engine. The 

generator converts mechanical energy into electrical energy to power 

shipboard systems. The pumping system includes pumps for 

delivering fuel, coolant, lubricants, and other working fluids. The 

power supply system distributes electrical power onboard, including 

batteries and the shipboard power station. The automation system 

controls and monitors all SРР components, ensuring safe and 

efficient operation All these components and subsystems function as 

an integrated system, enabling the vessel and its technical systems to 

operate. 

 

 
 

Figure 1.3.2. Failure cause-and-effect graph 
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Figure 1.3.2 illustrates the failure cause-and-effect graph, 

demonstrating how failure of one SРР component can lead to 

malfunctions in other system components.  

For example, ME overheating increases load on the cooling 

system, raising the probability of pumping system failure. The 

integrated SРР diagram (Figure 1.3.2) [48] includes not only primary 

power units (e.g., main engine, power station) but also auxiliary 

systems that ensure their operation and vessel safety. 

An example of a CTS is a SPP, consisting of interrelated 

subsystems, components, and elements with various functionalities. 

Figure 1.3.3 shows a graph representing the structure of an SPP. 

 

 
Figure 1.3.3.  Structure of the SPP 

 

The graph vertices include: input component 1; manual control 

of the main engine 2; subsystems for compressed air 3 and 

propulsion-rudder complex (PRC) control 4; boiler plant 5; power 

station 6; fire protection system 7; main engine 8; subsystems for 

remote-automated control 9 and ballast-drainage 10; power 

transmission from the main engine to the propeller 11; emergency 
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PRC drive 12; PRC 13; subsystems for measuring instruments 14 and 

sanitary water treatment 15; output component 16. 

Thus, complex technical systems represent an organized set of 

numerous functionally interconnected and interacting subsystems, 

components, and elements, linked by nontrivial connections. These 

connections often involve uncertainties in input data, making them 

difficult or impossible to predict, and they exist in various states of 

failure.  

The following relationships can be established between the 

components and subsystems in Figures 1.3.2 and 1.3.3: main engine 

corresponds to the main engine (8); cooling system is not explicitly 

indicated in your structure, but it may be part of the remote-

automated control subsystem (9) or included in the main engine 

support system; fuel system is not directly specified, but it is 

logically linked to the boiler plant (5) and the main engine (8); 

generator may be part of the ship's power station (6); pumping 

system is most likely associated with the ballast and drainage 

subsystem (10) and other subsystems ensuring the operation of the 

propulsion and power system (PPS); power supply corresponds to the 

ship's power station (6); automation system may belong to the 

remote-automated control subsystem (9). 

The simulation model integrates several approaches to failure 

prediction by combining probabilistic and cognitive methods: BNs 

assess probabilistic dependencies between component failures and 

cascading effects; MM the probability of transitions between 

component states (operational→degrading→failed); cognitive 

simulation modeling incorporates expert knowledge, operational 

mode influence, and operator behavior; failure simulation scenarios 

are formed based on data from the OREDA database and operational 

monitoring, allowing for the refinement of probabilistic failure 

models and the analysis of their impact on system reliability. 

Table 1.3.4 presents the parameters of failure simulation 

scenarios, enabling the analysis of system behavior under various 

operational conditions. 
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Table 1.3.4. Parameters of simulation scenarios for SPP 

equipment operation 

Scenario 
Failure rate 

(avg.) 
Load level 

Possible 

consequences 

Normal 

conditions 

Low (0.01 

failures/h) 
Normal (70%) 

Insignificant efficiency 

reduction 

Accelerated 

wear 

Medium (0.05 

failures/h) 
High (90%) 

Accelerated wear of 

key components 

Critical 

failures 

High (0.1 

failures/h) 

Extreme 

(100%) 

Cascading failures, 

SРР failure 

In the integrated method for diagnosing and predicting SPP 

failures, MМs and BNs are used because they complement each 

other, allowing for the consideration of both the temporal dynamics 

of failures and the probabilistic dependencies between system 

components. MМs are applied to predict failure probabilities over 

time and assess the long-term behavior of equipment.  

They represent the system as a set of discrete states (operational, 

degrading, pre-failure, failed) with transition probabilities between 

them. This allows for: determining the remaining lifespan of 

components based on accumulated data; predicting changes in 

equipment condition considering its operation; estimating failure 

probabilities over different time intervals. BNs enable modeling of 

interdependent failures, which is critical for complex technical 

systems.  

They construct a dependency graph between components and 

allow for updating failure probabilities as new data becomes 

available. This provides the ability to: account for the impact of one 

failure on the likelihood of other system elements failing (e.g., a 

cooling system failure may increase the probability of engine 

overheating); adapt diagnostics in real time by refining predictions 

based on incoming information; improve risk assessment accuracy by 

considering cause-and-effect relationships.  

The combined use of these methods allows not only for 

predicting failure probabilities but also for analyzing how they 

change depending on operating conditions, cascading effects, and 

external factors. 
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Thus, this combination of methods should not only predict 

failure probabilities but also take into account how they evolve under 

different operating conditions and external influences. 

Figure 1.3.4 illustrates an example of a BN, showing the 

probabilities of various components SРР failing based on operational 

factors.  
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Figure 1.3.4.  Structure of the Bayesian network for the SРР 

The developed structure of the BN for the SРР (Figure 1.3.4) is 

a multi-level system comprising thirteen subsystems distributed 
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across seven levels. P1 and P2 are specialized intermediate nodes 

designed to implement the multi-level structure of the BN. 

Legend of subsystems and components in the SРР BN: Input 

Element - IE; Firefighting System and Compressed Air System - 

FFS, CAS; Manual Control of the Main Engine - MCME; Control 

Systems and Remote Automated Control of the Main Engine - CS, 

RACSME; Intermediate Component - P1; Ship Power Plant - SPP; 

Main Engine - ME; Ballast Drainage System - BDS; Emergency 

Drive for the Propulsion and Steering Complex - EDPSC; Control 

System for the Propulsion and Steering Complex - CSPSC; Boiler 

Room - BR; Power Transmission from the Main Engine to the 

Propeller – TPMEP; Intermediate Component - P2; Propulsion and 

Steering Complex - PSC; Output Component – EXIT 

Markov processes are used to model the probabilities of 

transitions between different system states. 

Figure 1.3.5 illustrates possible transitions between states 

(normal operation, partial failure, complete failure) and their 

probabilities.  

 
Figure 1.3.5. Markov process graph of SPP equipment failures 
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The Markov process graph (Figure 1.3.5), considering the 

Harrington desirability function, allows the probability of failures to 

be divided into four risk levels, making the model more accurate for 

SPP reliability analysis.  

1. "Normal" state (0.1): аctual risk value: 0.1; Harrington 

classification - minimal risk (0 - 0.2). The value is correct. At this 

level, failures are almost nonexistent, and the probability of 

degradation is very low (1%). 

2. "Degradation" state (0.3): аctual risk value: 0.3; Harrington 

classification: Acceptable risk (0.2 - 0.37).  The value corresponds to 

an acceptable risk level. The equipment can continue operation, but 

there is a probability of deterioration. The probability of transitioning 

to "Pre-failure" is set at 10%, which corresponds to a moderate risk. 

3. "Pre-failure" state (0.55): аctual risk value: 0.55; Harrington 

classification: Maximum risk (0.37 - 0.63).  The value falls within the 

correct range. At this level, operation is possible, but urgent 

maintenance is required. Transitions: failure probability increases to 

25%, which is logical since the equipment is close to failure; the 

chance of returning to "Degradation" is zero, as a pre-failure state 

does not improve without repair. 

4. "Failure" state (0.8):  аctual risk value: 0.8; Harrington 

classification - critical risk (0.63 - 1.0). Fully corresponds to the 

critical risk level. Operation is impossible without repairs. 

Transitions: 50% probability of repair, which is realistic for systems 

where some failures are repairable; the remaining 50% remain in the 

"Failure" state, reflecting the impossibility of restoring some 

components. 

5. "Repair" state (0.4): аctual risk value: 0.4; Harrington 

classification - maximum risk (0.37 - 0.63). The value is borderline. 

After repairs, the equipment does not always fully recover (30% of 

cases transition back to "Degradation"). 

Recovery chances: 5% probability of returning to the "Normal" 

state, which is logical for components that can be fully restored; 65% 

probability of remaining in the "Repair" state (due to prolonged 

repairs or recurring failures).  
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All states correspond to Harrington's risk levels. 

This model enables risk differentiation of failures and helps develop 

maintenance strategies.It allows determining the optimal timing for 

preventive maintenance, reducing the likelihood of the equipment 

transitioning into a critical state.Incorporating Harrington's 

classification into the model enhances the accuracy of failure 

probability forecasts, especially over long operating periods. 

The transition probabilities between states are determined by the 

following formula:  

 

                                           i

ij

ij
N

n
P = ,                                    (1.3.1) 

 

where: Pij – probability of transition from state i to state j; 

            nij – number of recorded transitions from state i to state j; 

            Ni – total number of states recorded in i 

 

The analysis of accumulated data made it possible to establish 

the dependence of equipment failure probability on operating time 

(Figure 1.3.6).  

The curve demonstrates a characteristic increase in failure 

probability as operating hours increase, confirming the necessity of 

using probabilistic models and simulation modeling in developing a 

CBR case base. The obtained data confirm that considering the 

stochastic nature of failures and integrating the CBR method with 

probabilistic models not only allows for failure prediction but also 

improves the accuracy of diagnostics at different stages of the 

equipment's life cycle.The graph illustrates the increasing probability 

of failure as the operating time of the equipment increases. In the 

initial stage (up to 5,000 hours), the failure probability remains low, 

corresponding to the period of normal operation. After 15,000 hours, 

the failure probability rises more sharply, indicating the need for 

more thorough maintenance. By 25,000 hours, the failure probability 

approaches 1, signifying an almost inevitable equipment failure. 
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Figure 1.3.6. Probability of failure with increasing operating time 

of SРР equipment 

 

Integration of CBR, BNs, MМs, and simulation modeling 

The diagnostic system combines multiple complementary 

methods to enhance the accuracy of assessing the technical condition 

of the SРР: 

• CBR is used to identify similar failure cases, allowing for the 

detection of recurring malfunctions. The k-Nearest Neighbors 

method with adaptive weights ensures precise matching of the 

current situation with historical cases, minimizing the probability of 

false alarms; 

• BN adjust failure probability estimates in real time, 

considering interdependencies between components. This allows for 

the assessment of cascading effects and changing operational 

conditions; 

• Markov processes are used for predicting equipment 

degradation and estimating the remaining service life of components. 
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They model the dynamic behavior of the system, allowing for state 

transitions over time; 

• simulation modeling complements the system by generating 

scenarios of rare and cascading failures, expanding the diagnostic 

database and reducing uncertainty in failure prediction. 

Table 1.3.5 presents the distribution of diagnostic methods and 

their functional purposes. 

 

Table 1.3.5. Distribution of diagnostic methods and their 

functional purposes 
Method Analyzed elements Expected result 

CBR 
Components similar to 

recorded failures 

Finding precedents with 

similar symptoms 

Bayesian 

networks 

Interconnected system 

elements 

Probabilistic assessment of 

cascading failure effects 

Markov 

models 

Remaining resource of 

components 

Prediction of component 

degradation 

Simulation 

modeling 

Failure dynamics in the 

system 

Generation of artificial 

precedents to supplement 

the database 

 

Figure 1.3.7 presents a comparison of equipment failure 

probabilities when using traditional diagnostic methods versus 

applying the CBR approach integrated with the case database. It is 

evident that the case base helps reduce the probability of diagnostic 

errors, as accumulated failure experience is utilized to refine 

predictions. This demonstrates that the proposed approach not only 

improves diagnostic accuracy but also enhances the system's 

adaptability to changing operating conditions. 

The graphs visualize the effect of using CBR - reducing the 

probability of diagnostic errors and increasing prediction accuracy. 

Connection to the case base – reflecting the stochastic nature of 

failures, the graphs illustrate the increase in equipment failure 

probability over time. This confirms the need to consider stochastic 

factors in diagnostics, which is implemented in the case database 

through the integration of probabilistic models. 
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Figure 1.3.7.  Probability of equipment failures in SРР with and 

without CBR 

 

Advantage of CBR over traditional methods – The two curves 

show the difference in failure prediction: traditional methods do not 

take into account accumulated experience, leading to a higher 

probability of diagnostic errors. With CBR, the analysis of 

accumulated data and adaptation of diagnostic decisions reduce the 

probability of errors. This clearly demonstrates that the case base 

helps refine predictions by considering previously recorded failures. 

Simulation modeling for improved forecasting - the case base 

allows for the consideration of not only frequent but also rare and 

cascading failures. Failure modeling based on accumulated data 

improves the prediction of potential malfunctions, reducing the 

number of false alarms and increasing diagnostic accuracy. 

Integration of these methods ensures not only accurate fault 

diagnostics but also system adaptability to new operational data, 
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enhancing reliability in forecasting and minimizing the likelihood of 

missed failures. 

Numerical experiments have shown that using a case database 

combined with CBR adaptation increases fault diagnosis accuracy 

from 85% (when using only traditional probabilistic methods) to 92–

95%. The integration of BNs and simulation modeling reduced the 

number of false positive diagnostic decisions by 30%, while the use 

of parameter weight optimization algorithms decreased the mean 

absolute error in failure prediction by 12%. 

 

Table 1.3.6. Impact of the CBR on failure diagnosis accuracy 

Diagnostic 

method 

Accuracy 

(%) 

FP (false 

positives) 

FN (false 

negatives) 

Processing 

time (s) 

Probabilistic 

Methods 

(without CBR) 

85 18% 12% 2.1 

CBR 89 14% 10% 1.8 

Integrated 

approach 
95 8% 5% 1.2 

 

Optimization of the case database. 

To improve diagnostic accuracy and system adaptability, the 

case database is regularly updated and optimized. One of the key 

mechanisms is adjusting the parameter weights that determine the 

degree of similarity between failure cases. Optimization is performed 

using the L-BFGS-B method, which minimizes the error between 

reference and predicted failure similarity values: 

 

              

2)),()((minarg   iStS pred

i

true −= •

            (1.3.2)

 

 

where Strue(i) - the reference similarity value between cases (based on 

expert assessments or failure statistics); 

  Spred(i,ω) - the system-predicted similarity value, dependent on 

the parameter weights ω; 
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   ω - weights of diagnostic parameters that determine the 

contribution of various factors in failure similarity assessment 

The L-BFGS-B method is a modification of the quasi-Newton 

BFGS optimization method, which: allows minimizing a function 

that depends on a large number of parameters; uses an approximate 

representation of the inverse Hessian matrix to save memory; 

supports constraints on parameters, which is important for weight 

optimization (e.g., ensuring weights remain positive and sum to 1). 

Below is the code demonstrating the weight optimization 

process using the L-BFGS-B method from the scipy.optimize library: 

 

import numpy as np 

from scipy.optimize import minimize 

# Data: true similarity values (expert assessment) and predicted 

values (model) 

S_true = np.array([0.9, 0.8, 0.7, 0.6, 0.5])  # True similarity values 

X = np.array([ 

    [1, 0.3, 0.2, 0.1],  # Failure type, probability, risk category, 

affected subsystems 

    [0.9, 0.4, 0.3, 0.2], 

    [0.8, 0.5, 0.2, 0.3], 

    [0.7, 0.3, 0.4, 0.5], 

    [0.6, 0.2, 0.5, 0.4] 

])  # Feature matrix (parameter weights) 

 

# Initial weights (approximate values) 

w_init = np.array([0.3, 0.2, 0.2, 0.3]) 

 

# Constraints: weights must be between 0 and 1 and sum to 1 

bounds = [(0, 1)] * len(w_init) 

constraints = ({'type': 'eq', 'fun': lambda w: np.sum(w) - 1})  # Sum of 

weights = 1 

# Error function (MSE) 

def loss_function(w): 

    S_pred = X @ w  # Linear combination of features and weights 
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    return np.mean((S_true - S_pred) ** 2)  # Mean squared error 

 

# Optimization using L-BFGS-B method 

result = minimize(loss_function, w_init, method='L-BFGS-B', 

bounds=bounds, constraints=constraints) 

 

# Optimized weights 

optimized_weights = result.x 

 

print("Optimized weights:", optimized_weights) 
 

The code generates the initial data: true failure similarity values 

Strue; feature matrix X, where each column represents a diagnostic 

parameter; initial weights w. It defines constraint conditions: аll 

weights are within the range [0,1]; the sum of all weights must be 

equal to 1 (to prevent incorrect scaling).It defines the error function: 

linearly combines parameters using weights; сomputes the mean 

squared error between predicted and true values. The optimization is 

performed using the L-BFGS-B method. The optimized weights are 

outputted, minimizing the error. 

Key Steps in updating the case database: dynamic adjustment of 

parameter weights based on new operational data; filtering outdated 

and irrelevant data to maintain case base accuracy; adapting the case 

base structure according to simulation modeling results. 

This approach ensures more accurate failure case matching and 

enhances the adaptability of the diagnostic system under changing 

operating conditions. The case base development discussed justifies 

the need for structured failure data storage and the creation of a 

unified knowledge base for effective failure diagnosis and prediction. 

The developed case base integrates CBR with probabilistic 

models and simulation techniques, significantly enhancing the 

accuracy of failure diagnostics in ship power plants. The conducted 

analysis revealed the following: the structured storage of diagnostic 

cases allows diagnostic accuracy to reach up to 95% by leveraging 

accumulated and formalized failure knowledge; probabilistic 
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methods address the stochastic nature of failures, which is especially 

critical in complex technical systems; simulation modeling enables 

the inclusion of rare and cascading failure scenarios, broadening 

predictive capabilities; the case base encompasses the most common 

types of failures, such as fuel system issues, gas turbine overheating, 

and electrical subsystem anomalies; systematic accumulation and 

analysis of failure cases facilitate pattern recognition and early fault 

prediction. 

The implementation of the case base has resulted in a 30% 

reduction in false-positive diagnoses and a notable increase in 

diagnostic reliability. Overall, the case base serves as a core element 

of an intelligent diagnostics system for marine power units, offering 

structured data management, decision support, and robust failure 

prediction. The synergy of CBR, probabilistic modeling, and 

simulation enables a more resilient and interpretable diagnostic 

process under real-world operational uncertainty. 

 

1.3.2 Methodology for determining similarity between cases 

in the fault diagnosis system of SPP 

 

1.3.2.1 Introduction 

In modern CTS, timely and accurate fault diagnosis plays a 

crucial role in ensuring uninterrupted operation, safety, and high 

system performance. The increasing complexity and heterogeneity of 

CTS has driven the widespread adoption of intelligent diagnostic 

methods based on reusing accumulated experience, among which 

CBR stands out. CBR-based fault diagnosis involves comparing the 

current situation with previously recorded fault cases, with the 

effectiveness of this approach hinging on accurately assessing the 

degree of similarity between cases. 

Determining similarity between cases is a central challenge in 

CBR systems, as the quality of this assessment directly influences the 

accuracy, relevance, and timeliness of diagnostic conclusions. Over 

recent years, a variety of approaches have been proposed to improve 

similarity assessment accuracy - ranging from classical metric 
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functions to hybrid machine learning methods and logical models. 

However, despite this progress, existing solutions often face several 

limitations: poor scalability, insufficient adaptability to 

heterogeneous data, and limited interpretability of results. For 

example, Neykov and Stefanova [49] demonstrated the applicability 

of rule-based heuristics in CBR systems, emphasizing their flexibility 

and explainability, but also noted challenges in handling large 

volumes of cases and the need for manual tuning of attribute weights. 

Meanwhile, Chen et al. [50] showed that graph neural networks 

(GNNs) can uncover hidden structural similarities in cyber-physical 

systems but require complex preprocessing and often suffer from 

limited decision transparency. An enhancement of the CBR approach 

through aggregation operators such as the Choquet integral was 

proposed in [51], allowing the consideration of nonlinear 

interdependencies between diagnostic features. Although this 

approach improved similarity assessment accuracy, it introduced 

complexity in forming expert preferences. In another direction, Ye 

[52] applied neutrosophic logic with cotangent-based similarity 

measures to handle uncertainty in technical system data, though 

interpreting the results remains a challenge. When analyzing time 

series of sensor data, distance measures such as Dynamic Time 

Warping were examined by Serrà and Arcos [53], proving resilient to 

temporal distortions. Nevertheless, such methods perform poorly in 

semantically rich contexts and tend to be computationally intensive. 

Finally, adaptive fuzzy logic systems described by El Bitar et al. [54] 

demonstrated high adaptability and noise resilience, yet their 

industrial-scale application is constrained by insufficient validation 

on high-dimensional heterogeneous data. According to Mathisen et 

al. [55], learning similarity metrics from data can automate the 

creation of similarity functions in case-based systems. The authors 

proposed two novel approaches: using a pre-trained classifier as the 

basis for the similarity function and a fully data-driven method 

minimizing training time. Both approaches showed high 

effectiveness across 14 different datasets. Researchers Bach and 

Mork [56] noted that in the early stages of developing case-based 
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systems, defining similarity functions is a complex task requiring the 

transfer of implicit expert knowledge into explicit models. They 

emphasized the importance of explainability and transparency in 

development to ensure quality expertise from domain specialists. In 

their work, Verma et al. [57] presented a methodology for modeling 

local similarity functions for various attributes in datasets. The 

authors analyzed the distribution of numerical attributes and 

proposed the use of polynomial functions for modeling their 

distribution, enabling more precise range definitions and improving 

the search for relevant cases. Lin et al. [58] emphasized the key role 

of interpretability in legal case-matching systems. They proposed an 

integrated framework consisting of four modules: key sentence 

identification, case matching, sentence alignment, and conflict 

resolution  ensuring transparency and explainability in the matching 

process. According to Ren et al. [59], effective similarity 

determination between cases is crucial in the design of low-carbon 

products. The authors developed a model that considers both 

similarity and adaptability for reusing knowledge and adapting it in 

the design process. 

Traditional matching methods may overlook: probabilistic 

dependencies between faults, where one failure increases the 

likelihood of others; differences in operating conditions that affect 

component degradation rates; and the dynamic evolution of technical 

states, where equipment transitions to states with higher failure 

probability. To enable accurate identification of typical equipment 

faults and determination of their root causes within ship power 

plants, it is necessary to develop a unified and adaptive methodology 

for assessing similarity between fault cases. This methodology 

should be centered on a similarity metric designed to effectively 

match emerging faults with archived cases and identify the most 

relevant analogs. In this context, analogous cases refer to those 

sharing similar operating conditions, identical types of damage, 

comparable technical parameter values, and similar probabilistic 

characteristics. For instance, two main engine failures may be 

classified as analogous if they occurred at comparable runtime, were 
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accompanied by similar changes in temperature and pressure 

parameters (e.g., oil temperature and fuel pressure), and had the same 

root cause, such as a cooling system failure leading to overheating. 

The developed methodology should account for both 

quantitative and qualitative characteristics of failures, enable 

integration of metric, logic-based, and machine learning components, 

and support processing of heterogeneous data types — symbolic, 

numeric, and temporal. Additionally, it should ensure interpretability 

of results for technical experts and adaptability to changing 

operational conditions. The proposed structured approach to 

similarity metric development encompasses domain-specific features, 

includes parameter normalization, and utilizes optimization 

mechanisms for attribute weight coefficients to improve the 

reliability and accuracy of diagnostics. Special attention is given to 

operational and technical failure parameters (load characteristics, 

runtime, damage types), causal relationships between components, 

probabilistic-statistical indicators (occurrence frequency, prior 

probability), and forecasted changes in the technical condition of the 

object. The aim of this study is to develop a unified and adaptive 

methodology for assessing the similarity degree between fault cases 

within ship power plants. This methodology should integrate metric 

and probabilistic approaches, support heterogeneous data, and ensure 

result interpretability for subsequent application in intelligent CBR 

diagnostic systems. 

 

1.3.2.2. Methods for calculating similarity between cases [28, 

60, 61] 

To search for similar failures in the case database, the k-NN 

method [57, 62] is used. This approach enables the identification of 

the most similar cases based on a predefined similarity metric. The 

choice of this method is justified by the following advantages: 

Flexibility: k-NN works with heterogeneous data types (numerical, 

categorical, probabilistic parameters); interpretability: unlike neural 

network models, it is possible to explain why two failure cases are 

considered similar; adaptability: the method allows adjustment of 
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parameter weights depending on operational conditions; efficiency 

with limited data: does not require a large training set, which is 

critical for diagnosing rare failures. 

Similarity between two cases is calculated based on the 

weighted sum of individual similarities across key parameters listed 

in Table 1.3.7. 

 

Table 1.3.7. Similarity between two cases across key parameters 

Parameter Description 

Similarity 

measurement 

method 

Failure type 
Nature of damage, 

degradation mechanism 
Cosine similarity 

Failure causes 
External and internal 

factors, preceding events 
Jaccard similarity 

Failure probability 
Estimated probability of 

failure 
Euclidean distance 

Failure 

consequences 

Impact on operability, 

cascading effects 
BNs 

Affected 

components 

Failed nodes and 

subsystems 
Jaccard similarity 

 

Similarity measurement methods in k-NN 

Depending on the data type, the following metrics are used: 

- euclidean distance  for numerical parameters (e.g., failure 

probability, remaining useful life); 

- cosine similarity  for textual and vector representations of 

failure categories; 

- jaccard similarity  for categorical data (e.g., list of affected 

subsystems); 

- MМs  for predicting the evolution of failures over time and 

adjusting the significance of parameters; 

- BNs  for accounting for probabilistic dependencies between 

failures; 

- cognitive simulation modeling  for refining parameter weights 

based on failure scenario analysis. 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

50 

 

1.3.2.3 A model for determining similarity between 

precedents for diagnosing failures of Bayesian networks 

equipment 

To search for similar failures in the precedent database, the k-

NN method is used, as described by V. Vychuzhanin [2], Verma et 

al. [57], Zuber and Sirdey [63]. This approach allows the 

identification of the most similar cases based on a predefined 

similarity metric. The choice of this method is driven by the 

following advantages: flexibility - k-NN can handle heterogeneous 

data types (numerical, categorical, probabilistic parameters); 

interpretability - unlike neural network models, it is possible to 

explain why two failures are considered similar; аdaptability - the 

method allows for adjusting parameter weights depending on 

operating conditions; еfficiency with limited data: it does not require 

a large training set, which is critical for the diagnosis of rare failures. 

The similarity between two precedents is calculated based on a 

weighted sum of partial similarities across key parameters, as 

presented in Table 1.3.8. 

 

Table 1.3.8. Similarities between two precedents based on key 

parameters   

Parameter Description 

Similarity 

measurement 

method 

Failure type 
Nature of damage, 

degradation mechanism 
Cosine similarity 

Failure causes 
External and internal factors, 

preceding events 
Jaccard similarity 

Failure 

probability 

Estimated probability of 

failure 
Euclidean distance 

Failure 

consequences 

Impact on operability, 

cascading effects 
BNs 

Affected 

components 
Failed nodes and subsystems Jaccard similarity 
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Similarity Measurement Methods in k-NN. 

Depending on the type of data, the following metrics are used: 

еuclidean distance - for numerical parameters (e.g., failure 

probability, remaining useful life); сosine similarity - for textual and 

vector representations of failure categories; jaccard similarity - for 

categorical data (e.g., lists of affected subsystems); MMs - for 

predicting failure evolution over time and adjusting parameter 

significance; BNs - for accounting for probabilistic dependencies 

between failures. 

To build a formalized model for determining similarity between 

precedents, information on typical failures of SPP equipment and 

corresponding diagnostic features was structured. Table 1.3.9 

presents the classification of failures according to key parameters — 

temperature, vibration level, pressure, and typical manifestations. 

This structure makes it possible to highlight diagnostically 

significant features, which are further formalized into precedent 

parameters. Additionally, Figure 1.3.8 shows a classification error 

matrix that reflects characteristic cases of misclassification of 

observed features into failure types, demonstrating the limitations of 

traditional matching methods and emphasizing the need for a more 

precise similarity evaluation model. 

 

Table 1.3.9. Classification of typical failures and diagnostic 

features   
Failure 

type 
Temperature Vibration Pressure 

Typical 

symptoms 

Failure A >90°C 
2.0–3.5 

mm/s 
>10 bar 

Often associated 

with cooling 

system 

overheating 

Failure B 75–85°C 
1.5–2.5 

mm/s 
6–9 bar 

Related to 

gradual bearing 

wear 

Failure C >85°C 
2.5–4.0 

mm/s 
9–11 bar 

Observed with 

unstable fuel 

supply 
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Figure 1.3.8 presents the classification error matrix, reflecting 

the performance of the CBR system when classifying new precedents 

by failure types based on the applied similarity assessment 

methodology. Along the axes (Fig. 1.3.8), the actual and predicted 

failure types (A, B, C) are indicated. The values on the diagonal of 

the matrix correspond to correctly classified cases: 48 instances of 

type A were correctly identified as A; 42 instances of type B were 

classified correctly; and 46 instances of type C were recognized 

accurately. Classification errors are observed in the following forms: 

3 cases of type B were mistakenly assigned to class A, and 5 to class 

C; 4 cases of type C were classified as B. Type A demonstrates the 

highest classification stability (only 2 errors out of 50 observations, 

accuracy - 96%). 

 
Figure 1.3.8. Classification Error Matrix by Failure Types  

 

This indicates high overall classification accuracy, with the 

share of correct predictions exceeding 90% for all failure types. A 

notably increased probability of cross-classification between types B 

and C may be explained by: partial overlap of features (e.g., similar 

vibration and pressure values under different failure scenarios); 

insufficient discrimination capacity of the current similarity metric in 
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the feature space of these types  or a limited training sample size for 

B and C cases. Such insights allow targeted model enhancement - for 

instance, by refining parameter weights or introducing additional 

features that enable clearer separation of failure types with similar 

manifestations. 

To establish the relationship between features and failure types, 

three scenarios can be identified. Failure A (bearing overheating) is 

associated with prolonged load, accompanied by an increase in 

temperature and vibration. Failure B (hydraulic shock in the cooling 

system) occurs during abrupt mode changes due to unstable pressure 

and temperature. Failure C (injector defect) is characterized by 

reduced fuel pressure and unstable engine operation. These examples 

demonstrate that comprehensive parameter analysis allows for 

accurate differentiation of failure types and identification of their 

causes. In the tasks of diagnosing failures in CTS, including SPP, the 

model of case representation and comparison is a key element of 

intelligent decision support. Traditionally, similarity between cases is 

evaluated using Euclidean and Manhattan distances in feature spaces 

based on the numerical representation of failure parameters [64, 65]. 

Some studies also consider categorical features, but often without 

adapting the metrics to their nature [66]. More advanced approaches 

suggest the use of ontologies or logical representations [67]; 

however, these require complex verification and are not always 

robust to incomplete data. The model proposed in this study differs 

from existing approaches in several key aspects. First, it employs 

specialized metrics tailored to the type of diagnostic parameter: 

Euclidean distance for numerical features, cosine similarity for 

categorical features, and Jaccard distance for multiple-value features, 

ensuring adequate similarity evaluation. Second, the model 

incorporates a weighting system that reflects the diagnostic 

significance of each feature, thereby improving the accuracy and 

interpretability of the results. Third, it allows for weight optimization 

using numerical methods, which enables adaptation of the model to 

real expert assessments and empirical data. Finally, the model is 

designed to operate with limited training samples, which is 
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particularly important under SPP operational conditions, where the 

number of recorded failure cases is limited, and the data may be 

incomplete or heterogeneous. 

The overall similarity measure between two cases A and B is 

defined as a weighted sum of individual similarity coefficients. 

For two cases  Аi= (x₁, ..., xₙ) and Bi = (y₁, ..., yₙ), the similarity 

Si(A,B) is calculated using the formula [68]: 

 

                         
),,(),(

1 iii

n

i i BAsimBAS = =


                     (1.3.3)
 

where |1,0|),( iii BAsim  is the partial similarity measure for the i - 

th feature; 

           ωi is the weight of the i-th parameter 

The partial similarity functions are defined as follows: 

Absolute difference similarity (for numerical features 

normalized to [0,1]): 

 

                         )min()max(
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                (1.3.4) 

 

Cosine similarity (for categorical features, such as failure type, 

encoded using one-hot encoding) [69]: 

                   ||||||||
),(cos. →→




=

ii

ii
iii

BA

BA
BAsim

                    (1.3.5) 

 

 Euclidean similarity (for normalized numerical parameters, 

such as failure probability or risk category) [70, 71]: 

 

                          
||1),(. iiiieuci BABAsim −−=
                      (1.3.6) 

 

Jaccard similarity (for set-based features, e.g., failure 

subsystems) [72]: 
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                      (1.3.7) 

For practical implementation in the context of SPP diagnostics, 

the following specification of the similarity measure is used. The 

formal definition of similarity between cases is implemented using 

the k-NN method, which calculates the similarity between cases. The 

parameter weights are optimized to reflect their relative importance: 

 

                           
),,(),(

1 iii

n

i i BAdBAS = =


                     (1.3.8) 

where  - weight of the i-th parameter; 

     ),( iii BAd  - dissimilarity measure of the i - th parameter 

between cases Ai and Bi; 

      n - total number of parameters 

 

The developed similarity model for comparing a current case  Ai 

and a precedent Bi is represented as: 

),,(),(),(),( ...... iiicomponentsisiiiyprobabilitisiiitypesis BAdBAdBAdBAS ++= 
  
(1.3.9) 

where ),(. iiitypes BAd  - the similarity measure for failure types; 

   ),(. iiiyprobabilit BAd  - the difference in failure probabilities; 

   ),(. iiicomponents BAd  - the similarity estimation for the affected 

components; 

   
isisis ... ,,   - weighting coefficients that determine the 

importance of different aspects when comparing precedents 

 

The similarity components are calculated as follows: 

 

,1),(. =iiitypes BAd  if types are identical, ,5,0),(. =iiitypes BAd  if in the 

same cate category, ,0),(. =iiitypes BAd if types differ 
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|)()(|1),(. iiiiiyprobabilit BPAPBAd −−= ,   
|)()(|

|)()(|
),(.
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BCAC

BCAC
BAd




= , 

where )(),( ii BPAP  - are the failure probabilities for the respective 

components; 

    )(),( ii BCAC  - are the sets of components involved in the 

failures.  

This formulation allows a quantitative accounting of subsystem 

overlap, which directly impacts the assessment of case similarity. 

For normalization of the final similarity metric, the following 

expression is applied: 

 

isisis

iiicomponentsisiiiysprobabilitisiiitypesis

iitotal

BAdBAdBAd
BAD

...

...... ),(),(),(
),(





++

++
=

        

Such normalization ensures that the resulting similarity score 

remains within the range [0,1], enabling consistent comparison of 

different case pairs and facilitating further interpretation within the 

diagnostic decision-making process. 

The coefficients 
isis .. ,  and is.  optimized using numerical 

methods aimed at minimizing a loss function that reflects the 

classification error based on known labels (for example, the mean 

squared error between the predicted similarity value and the expert-

assessed value). This allows the model to be adapted to the specifics 

of a particular domain and the structure of the case database. 

To improve the accuracy, interpretability, and adaptability of the 

similarity assessment model between cases, the following 

enhancements have been implemented: 

1. Weight correction based on failure frequency. 

This extension allows the model to take into account the rarity of 

specific failure types in the dataset, automatically increasing the 

importance of rarely occurring but potentially critical scenarios. This 

is particularly important for the diagnosis of low-probability but 

high-risk conditions, which standard methods may overlook due to 

their low occurrence rate. 
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The weight correction formula is defined as: 

                                 ),
)(

1
1log(~

..

itype

isis
Af

aa +=                           (1.3.10)                                                                                 

where   )( itype Af  - the relative frequency of occurrence of failure type 

iA  in the case database 

 

This adjustment ensures automatic balancing of the model: the 

rarer a particular failure type is, the higher its weight when 

calculating the final similarity measure. This enables the model to 

better handle the diagnosis of infrequent but significant cases, 

preventing bias toward frequently occurring but less critical failures. 

Such a correction can further be extended to other parameters, 

including probabilistic and structural characteristics, which would 

additionally enhance the flexibility and reliability of the case-based 

reasoning system. 

2. Temporal Degradation Factor 

This extension accounts for the influence of the temporal aspect 

(e.g., the difference in operating time until failure) when assessing 

the similarity between cases. Incorporating this factor allows the 

model to prioritize cases that are closer in terms of operational time, 

making the reasoning process more context-aware. The temporal 

degradation factor is calculated as: 

                           |),|exp(),(deg BiAiiigadation TTBAd −−=                 (1.3.11) 

where  
BiAi TT ,  – the operating time until failure for cases 

iA  and 
iB ; 

      – the degradation coefficient, which controls the sensitivity 

of the model to temporal differences. 

 

The adjusted similarity score is defined as: 
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                      ),(),(),( deg iiradationiiii BAdBASBAS =                      (1.3.12) 

Тhe introduction of this multiplicative temporal context reflects 

the idea that two cases with identical features but differing 

significantly in failure time are diagnostically less similar than cases 

with both matching features and close failure times.  

Figure 1.3.9 illustrates how the temporal degradation coefficient 

varies depending on the difference in operational time between two 

cases. The figure presents three scenarios corresponding to different 

sensitivity levels of the model to temporal discrepancies, controlled 

by the value of the λ parameter. The curve with the smallest   

(0.00005) shows a slow decrease of the coefficient, which reflects a 

model with stable memory - it "trusts" even older cases. Conversely, 

at a large   (0.0005), the model quickly depreciates old cases, 

focusing on the most recent data. 

 
Figure 1.3.9. Change of the temporal degradation coefficient 

depending on the difference in operating time between two 

cases  
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Thus, the choice of   directly affects the behavior of the model: 

a low   implies high stability, which is useful in the presence of 

stable patterns; a high   ensures adaptability to new conditions, 

which is necessary in the case of dynamically changing technical 

states of the SPP system. This emphasizes the importance of 

calibrating the temporal component when designing CBR systems, 

especially in the context of variable load and operating modes. 

 

3. Contextual smoothing of components supplements the 

comparison of SPP system components with information about the 

proximity between components (for example, if two components are 

technically related). This reduces information loss in cases of partial 

mismatch. 

                   ,
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                  (1.3.13) 

where |),(| iij BAAd   is the number of adjacent, functionally related 

subsystems; 

    is the smoothing coefficient; 

   N  is the total number of possible components 

 

4. Nonlinear activation (e.g., tanh) allows the saturation effect 

to be taken into account in cases of strong similarity and helps to 

soften sharp boundaries. This is used for better interpretation of the 

final similarity in extreme cases. 

  
)),(),(),(tanh(),( ...... iiicomponentsisiiiyprobabilitisiiitypesis BAdBAdBAdBAS ++= 

(1.3.14) 

The proposed formalized model for assessing similarity between 

cases (1.3.9) is integrated into the classical CBR architecture, which 

includes four key stages: retrieval, adaptation, application, and 

update. At the retrieval stage, the model is used to search for the most 

relevant analogs in the case base. 
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Stage 1. Calculation of similarity between cases. 

For a new diagnostic case 
iA , represented by a feature structure 

(failure type, probability, subsystems, etc.), the similarity measure is 

calculated for all cases 
iB  from the knowledge base according to 

formula (1.3.9). If additional modules (temporal degradation, 

probabilistic correction, etc.) are activated, the final value is modified 

accordingly: 

              ,
),(),(),(

),(
...

deg

isisis

iiiiiradationii

iinorm

BAPBAdBAS
BAS

 ++


=           (1.3.15) 

where  |1,0|),( iii BAP  - is the probability of co-occurrence of the 

values 
iA  and 

iB  in the cases, extracted from empirical data or an 

expert model 

Stage 2. Nearest neighbor search (k-NN). 

Based on the obtained values  ),( ii BAS , the k nearest cases with 

the highest similarity values are selected. After constructing and 

formalizing the similarity metric between cases across the set of 

parameters, the presented model is integrated into the k-NN search 

algorithm. Using k-NN not only enables the application of the 

similarity metric but also implements a decision-making process 

based on it. 

Advantages of the approach: local analysis: decisions are made 

based on similar cases, which is especially important given the high 

variability of operating modes of marine power plants; flexibility: the 

method can be adapted for specific diagnostic goals (for example, 

predicting time to failure or classifying the failure type); scalability: 

adding new cases does not require restructuring the model, only a 

local recalculation of similarity. For the diagnosis of a new case (the 

observed equipment condition): the global similarity measure 

),( ii BAS  is calculated between the new case and each case in the 

database according to formula (1.3.9); the k cases with the highest 

similarity (equivalently - with the minimum distance according to the 
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metric) are selected. A diagnostic conclusion is then formed based on 

the k nearest cases. Possible approaches include: majority voting - the 

most frequently occurring failure type among the nearest neighbors; 

weighted voting - taking into account the similarity level of each 

neighbor; aggregated parameter values - for example, averaging the 

time to failure, temperatures, pressures, etc. The application of k-NN 

requires prior normalization of the parameters involved in the 

calculation of individual similarity measures to avoid domination by 

parameters with larger measurement scales. In addition, the choice of 

the parameter k should take into account: the density of the case base 

(with low density, a smaller k is preferable); the variability and noise 

level in the data (for high noise, it is better to average over a larger 

number of neighbors); the type of task being solved (classification, 

prediction, anomaly detection, etc.). Figure 1.3.10 shows an 

illustration of the nearest neighbor method (k-NN) in the parameter 

space that defines the similarity between cases. Figure 1.3.10 shows 

an example of classifying a new failure case with coordinates (0.5; 

0.7) in the feature space using the k-nearest neighbors method (k=3). 

 

 
 

Figure 1.3.10. Application of the k-NN method in the parameter 

space defining the similarity between cases 
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The dashed lines visualize the connection of the analyzed object 

with the three most similar cases, selected according to the minimum 

distance metric in a pre-normalized feature space with consideration 

of their weighting coefficients. The position of the new case in the 

area dominated by cases of the first class allows the model to classify 

it as a failure of the first type based on the neighbor voting strategy. 

This example demonstrates the key advantages of the k-NN method 

for diagnosing complex technical systems: the ability to work with 

nonlinearly separable data, robustness to noise through aggregation 

of information from several neighbors, as well as clear 

interpretability of the results. 

Special attention must be paid to the correct tuning of the 

method's critical parameters - the optimal value of k, proper 

normalization of features, and the selection of an appropriate 

similarity metric that considers the scale and informativeness of 

various parameters. The presented approach ensures the 

consideration of the local distribution characteristics of the data and 

increases the robustness of the results to variability in input 

parameters. Its ability to work with incomplete and noisy data, while 

combining visual representation with probabilistic justification of 

decisions, makes the method especially valuable for diagnosing SPP, 

where one typically faces limited historical data, complex nonlinear 

dependencies, and high demands for interpretability of the obtained 

results. 

Stage 3. Aggregation of the diagnostic decision. 

The extracted k-nearest neighbors are analyzed: by the most 

frequently occurring failure type (majority voting); by the average 

probability of failure; by contextually weighted characteristics. A 

final diagnostic conclusion is formed based on the coordinated 

information from the most similar historical cases. Once the k most 

similar cases {B1,...,Bi} have been determined for the new case 
iA , 

their diagnostic characteristics are aggregated. The most typical 

strategies include: 

1.Majority voting for failure type (the failure type that occurs 

more frequently among the nearest cases is selected): 
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To determine the most probable failure type T  among the 

nearest cases, a majority voting strategy is applied. The indicator 

function 
TTi=

1 equals 1 if the failure type Ti in the i-th precedent 

matches type T, and 0 otherwise. By summing these indicators across 

all k nearest neighbors, the method identifies the most frequently 

occurring failure type. The type T with the highest number of "votes" 

is selected as the final diagnosis. 

2. Weighted average failure probability: 

 

                       

,)(),(

),(

1
)(ˆ

1

1


 =

=

=
k

i

iiik

i

ii

i BpBAS

BAS

Ap

                    (1.3.17)

 

where )( iBp  - is the known failure probability for the corresponding 

precedent; 

         ),( ii BAS  - similarity between the current case and precedent
iB ; 

To estimate the failure probability for the current case 
iA , a 

weighted average of known failure probabilities )( iBp  from the k 

nearest precedents is used. Each precedent’s contribution is weighted 

by its similarity score ),( ii BAS . The denominator normalizes the sum, 

ensuring the resulting probability remains within the [0,1] range. This 

approach gives more influence to precedents that are more similar to 

the current case. 

3. Merging of affected components. 

If failure localization is required, it is possible to form an 

aggregated set of the most probable components affected in similar 

cases:    
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
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=                           (1.3.18)                    
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When the objective is failure localization, an aggregated set of 

potentially affected components is formed by taking the union of 

component sets )( iBC  from the k most similar precedents. This 

provides a complete list of all subsystems that were involved in 

similar past failures and may be relevant for the current case 
iA . 

The final aggregated set of components (subsystems) that are 

considered most likely involved in the failure for the current case 
iA , 

taking weights (similarity) into account: 
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                 (1.3.19)

 

 

where с - a specific subsystem of the SPP (for example, “fuel pump,” 

“cooling circuit,” etc.) considered as potentially failed; 


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i

BCcii i
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1

)(1),(  - weighted sum over k nearest precedents; 

)(1
iBCc

 - indicator function: equals 1 if component ccc is present 

in the list of failed subsystems of precedent 
iB , and 0 if not; 

  - significance threshold, which determines how frequently 

and with what weight component c must occur to be considered 

significant 

 

To improve failure localization accuracy, this formula performs 

a weighted aggregation of components based on their presence in 

similar cases. A component c is included in the final set  )( i

score

agg AC if its 

weighted occurrence frequency across the k nearest neighbors 

exceeds a given threshold θ. This approach helps filter out random or 

weakly relevant components, retaining only those that consistently 

and significantly appear in similar cases. 

4. Bayesian hypothesis aggregation. 

Although the main goal of the proposed model is to construct a 

similarity metric between cases, the implementation of diagnostic 
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inference in a CBR system requires a justified decision-making 

method. When several similar cases are available, it becomes 

necessary to aggregate their characteristics. In such conditions, it is 

advisable to apply a probabilistic approach - in particular, Bayesian 

aggregation - for interpreting results and improving diagnostic 

accuracy. 

This model extension logically follows from the task of result 

interpretation after computing the similarity. Additionally, the 

diagnostic decision can be justified in terms of Bayesian inference, 

where the failure type T is treated as a hypothesis, and the retrieved 

precedents as observations: 
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                  (1.3.20) 

where )(TP   is the prior probability of failure type T (according to the 

statistics of the precedent database); 

)|( TBP i
  is the conditional probability of observing precedent

iB   

given failure type T; 

 ),( iii BAS  is a weight reflecting the confidence level in 

precedent
iB    based on its similarity to 

iA
 

 

If it is assumed that the probability of observing a specific 

precedent 
iB  depends on its degree of similarity to

iA  , then: 

 

                                          TTiii i
BASTBP = 1),()|(                         (1.3.21)            

 

which leads to the following posterior estimation: 
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In practice, this means that the failure type with the highest 

posterior probability is accepted as the most likely diagnosis for the 

current case 
iA  . This approach is particularly useful under conditions 

of incomplete data, where precedents may be heterogeneous or lack a 
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complete set of features, and the Bayesian model allows for 

systematically incorporating the degree of confidence. Figure 1.3.11 

presents a visualization of the posterior inference process for 

determining the probability of a new precedent (observed failure) 

belonging to one of the typical failure classes (for example, A, B, C) 

based on the Bayesian model. Bayesian aggregation is applied here 

as an interpretable decision-making mechanism, enabling not only 

the identification of the most probable failure type but also the 

quantitative consideration of uncertainty and the probabilistic 

distribution of hypotheses. The diagram illustrates that, for the 

analyzed case, the highest posterior probability corresponds to failure 

type B. This reflects both the frequency dominance of similar cases 

of type B among the nearest neighbors (resulting from the k-NN 

search in the similarity space) and the high prior probability of this 

failure type within the overall diagnostic statistics of the precedent 

database. The Bayesian aggregation methodology enables the 

weighted integration of two key sources of information: global 

knowledge about the distribution of failures (prior probabilities); 

local similarity of the current case to recorded precedents. 

 
Figure 1.3.11. Visualization of the posterior inference process for 

determining the probability of a new precedent's class affiliation 
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This model is particularly effective when working with limited 

training datasets, as well as in scenarios with diverse failure causes, 

where the same type of malfunction can result from various 

degradation pathways. The use of probabilistic inference: enhances 

interpretability - each step of the decision-making process can be 

justified through the probabilistic model; reduces sensitivity to data 

noise - the unequal contribution of neighbors is regulated not only by 

similarity but also by their probabilistic weight; allows for distributed 

uncertainty between multiple failure types - especially in the 

presence of overlapping features. Thus, the visualization confirms the 

validity of using Bayesian aggregation as an extension to the k-NN 

method, providing more accurate, flexible, and robust classification 

of precedents in the intelligent diagnosis of SРРs. 

Stage 4. Updating the case database. 

After the diagnosis has been verified, the new case - including 

the original feature set and diagnostic results - is added to the case 

database for further enrichment and continuous model training. As 

the database of precedents grows, the system becomes increasingly 

capable of accurately matching new cases to previously observed 

ones, progressively adapting the model to real-world operating 

conditions. During the classification and decision-making stages, the 

mechanism of comparison with the most similar precedents plays a 

crucial role. 

Thus, the proposed similarity assessment model for failure 

precedents in SРРs represents an integrated system that combines 

numerical, categorical, and multi-valued parameters with adaptive 

weights and specialized similarity metrics. The stepwise extension of 

the base formula - through the inclusion of failure frequency, 

temporal factors, functional interconnections of subsystems, and 

nonlinear transformations - ensures not only high accuracy but also 

the robustness of the model against data heterogeneity. The 

additional application of probabilistic aggregation for determining 

the final diagnostic conclusion demonstrates the potential for 

integrating this model into broader intelligent CBR systems. This 

integration opens new opportunities for enhancing diagnostic 
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reliability and decision interpretability, especially under conditions of 

limited training data or high variability in failure mechanisms. 

The optimization of parameter weights enables the model to take 

into account the relative importance of each feature for diagnostic 

purposes. The optimization of coefficients 
isisis ... ,,    is carried out 

using a bounded limited-memory quasi-Newton optimization method 

(L-BFGS-B algorithm), which minimizes the following loss function: 
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where 
iy  is a binary label assigned in the training dataset of M known 

pairs, indicating whether the precedents are considered similar (1) or 

dissimilar (0) 

 

Let us formulate the optimization problem. Assume the training 

dataset consists of N pairs of precedents (i,j), for which the reference 

similarity degree ref

jiS ,
  has been assigned by an expert. For each pair, 

the model computes the predicted similarity value ),(mod

, jiS which 

depends on the weight vector ),...,,( 21 k = .The objective function 

for optimization is defined as: 
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where the minimized value )(L  represents the mean squared 

deviation between the model-predicted and expert-defined similarity 

values. 

The L-BFGS-B algorithm allows for efficient minimization of 

this function under constraints on the weight parameters (e.g., 

0 , 1= i ). The optimization procedure was implemented using 

the L-BFGS-B method from the scipy.optimize library. 
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The optimization process consisted of several stages: formation 

of a training dataset containing pairs of precedents with known expert 

similarity assessments; initialization of weight values; and evaluation 

of the optimization quality using a separate test dataset. Figure 1.3.12 

presents a diagram comparing the initial and optimized weights. 

 
Figure 1.3.12.  Comparison of initial and optimized weights  

The diagram illustrates the comparison between the initial and 

optimized weights of various parameters used in the similarity 

assessment of failure precedents. A significant increase in the 

importance of the "Failure Type" parameter was observed: initial 

weight - 0.30; optimized weight - 0.87. This indicates that the 

parameter has a strong impact on diagnostic accuracy, and as a result, 

its contribution to the model was substantially increased. A reduction 

in the influence of the "Failure Probability" parameter was recorded: 

initial weight - 0.20; optimized weight - 0.02. This suggests that 

failure probability has a lower significance when determining 

precedent similarity, and its weight was nearly nullified. 

 The "Risk Category" and "Affected Subsystems" parameters 

were excluded from the final model. Their initial weights were 0.20 

and 0.30, respectively, but after optimization, both were reduced to 

0.00. This suggests that these parameters have no meaningful 
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influence on the diagnostic outcome and can be safely removed from 

the model. In summary, the optimization process highlighted that the 

"Failure Type" parameter is the key factor when comparing failure 

precedents. In contrast, parameters such as the equipment risk 

category and affected subsystems were found to be insignificant and 

were eliminated from the model. It is important to verify whether 

such a radical redistribution of weights leads to a loss of meaningful 

diagnostic features. It may also be advisable to explore alternative 

optimization strategies that preserve the contribution of all 

parameters to a certain extent. 

Figure 1.3.13 shows a diagram of the influence of 
isis .. ,  and 

is.  

on the final similarity score between precedent pairs. The number of 

the precedent pair is given on the x-axis.  

The conducted visualization of the distribution of the 

components 
isis .. ,  and 

is. within the overall structure of the 

similarity metric S(Aᵢ,Bᵢ) made it possible to identify the nature of 

their influence on the final value of the analogy measure between 

precedents. It is important to emphasize that each weight regulates 

the contribution of a specific comparison aspect: failure type, failure 

probability, and similarity of affected components, respectively. 

As shown in Figure 1.3.13, when the failure types coincide or 

demonstrate high semantic proximity, the value of dtypes(Aᵢ,Bᵢ) 

approaches 1, which significantly increases the impact of the αₛᵢ 

component on the overall measure S, even when the weight itself is 

of moderate magnitude. Conversely, when failure types differ, the 

influence of is.
 becomes negligible - demonstrating the adaptive 

behavior of the model and preventing false matches. 
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Figure 1.3.13.  Diagram of the influence of  

isis .. ,  and 
is.  on the 

final similarity between precedents 

The weights 
is.  and 

is.  exhibit a smoother distribution of 

influence, which is due to the continuous nature of their respective 

distance metrics (differences in probabilities and Jaccard metric for 

components). Their contributions become crucial in cases where the 

failure types differ, but probability values and involved components 

remain similar - highlighting the compensatory nature of the model. 

Thus, the diagram analysis confirms that the model provides a 

flexible and semantically justified weighting mechanism, enabling 

the reliable identification of relevant precedents. The presence of the 

weights 
is . , 

is. , and 
is. not only enhances the adaptivity of the 

system but also improves the interpretability of the model, which is 

critically important for technical diagnostics, particularly under 

conditions of incomplete or heterogeneous data. 
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In summary, the model ensures a flexible and interpretable 

system for assessing similarity between failures while taking into 

account the diverse nature of data. An adaptation of the model for the 

context of CTS diagnostics has been proposed through: the 

integration of heterogeneous features (numerical, categorical, and 

multi-valued); the use of individually selected metrics for each group 

of features; trainable weighting coefficients derived from a labeled 

set of precedents; and the normalization of the final metric to ensure 

interpretability. Together, these elements form an original 

implementation that provides accurate and adaptive similarity 

assessment between technical failures. 

The application of the model in SPP failure diagnostics not only 

accounts for the specific characteristics of failures but also improves 

the precision in identifying similar cases by adapting the weights of 

the parameters. The parameters involved in the similarity calculation 

are listed in Table 1.3.10, where each parameter is assigned a specific 

weight - a significance coefficient for evaluating the similarity 

between precedents. The values of these weights can be adapted 

based on accumulated data using optimization algorithms.  

The weight coefficients 
i  presented in Table 1.3.10 are 

currently defined based on expert assessments, reflecting an 

engineering understanding of the significance of each parameter in 

the diagnosis of SPP failures. These values serve as initial inputs and 

can later be adapted using optimization methods based on 

accumulated data. This separation allows for the construction of an 

interpretable baseline model, followed by refinement of the weights 

to improve the accuracy of precedent matching. 

 

Table 1.3.10. Weight coefficients of parameters used for 

precedent similarity estimation 
№ Parameter Parameter Type Weight wᵢ 

1 Equipment type Categorical 0.10 

2 Operating time before 

failure (hours) 

Numerical 0.15 

3 Oil temperature (°C) Numerical 0.18 
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4 System pressure (bar) Numerical 0.12 

5 Vibration (mm/s) Numerical 0.15 

6 Failure type Categorical 0.20 

7 Operating conditions Categorical 0.10 

 Total (sum of weights)  1.00 

In the future, it is possible to incorporate a probabilistic model to 

interpret the results of precedent comparison. This approach enables 

the consideration of prior probabilities of different failure types, as 

well as the uncertainty and incompleteness of the observed 

parameters. It enhances the model’s capabilities, transforming 

similarity assessment into a tool for probabilistic inference, which is 

especially important under diagnostic uncertainty. 

Approach 1: Probabilistic weighting of parameters. 

The weight wᵢ for a parameter can be defined as a function of the 

probability of occurrence of the corresponding failure: 

 

                                             
),( ii pf=                                      (1.3.25) 

where 
ip  - prior probability of the parameter failure 

 

Approach 2: Extension of similarity measure through 

probabilities 

                           ),,(),(),(
1

iiiiii

k

i

i BAPBAsimBAS =
=

                       (1.3.26) 

where |1,0|),( iii BAP  -  the probability of joint occurrence of values 
iA  

and 
iB  in precedent cases, obtained from empirical data or an expert-

defined model. 

Approach 3: Bayesian interpretation. 

The model may use similarity as evidence in support of a 

diagnostic hypothesis: 

        ),()|()_|( kkk HPHsimilarityPsimilarityobservedHP   
(1.3.27) 

where 
kH   - the hypothesis of membership in a specific failure class. 

In CBR-based diagnostic systems, the efficiency and accuracy of 

precedent matching rely heavily on the correct measurement of their 
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similarity. However, the classical similarity model - based on the 

weighted sum of partial distances - overlooks a critical factor: the 

varying importance of feature matches depending on their 

probabilistic nature and context. To improve the interpretability and 

reliability of results, this study employs a modified similarity metric 

that incorporates a probabilistic multiplier reflecting the frequency of 

joint feature occurrences or their statistical relevance.  

This approach accounts not only for how close the features are 

in value but also for how typical such a match is among known 

failure cases. In Equation (9), the traditional similarity measure is 

adjusted by the coefficient ),( iii BAP , which acts as a credibility filter. 

Even when values 
iA  and 

iB  are numerically close, the final 

similarity score is lowered if their match is statistically rare in 

diagnostic practice. Conversely, moderate similarity may be 

weighted more heavily if it frequently appears in similar failure 

scenarios. For example, if the “oil temperature” differs by only 2°C 

between two precedents, but such values occur under different 

operating conditions, the similarity would be overestimated without 

probabilistic correction.  

The use of the multiplier 
iP  mitigates this effect. Oil temperature 

can be measured in various contexts: in the crankcase of a diesel 

engine - indicating overall thermal state; аt the radiator/heat 

exchanger inlet reflecting cooling effectiveness and thermal load; 

аfter the radiator - critical for assessing the cooling system's 

condition; in the gearbox - especially relevant for ships using electric 

propulsion via gearboxes.  

Advantages of this approach include: flexibility: it does not alter 

the logic of the existing model; improved reliability: incorporates 

real-world probabilities; interpretability: each contribution to the 

final metric has a statistical justification; еase of integration: can be 

implemented using an existing case database. If weight optimization 

or model training is later applied, the probabilistic multiplier may 

either be adapted or replaced with a conditional probability derived 

from Naive Bayes models or decision trees. To evaluate the influence 
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of the probabilistic component on the final similarity score between 

precedents, a comparative plot (Fig. 1.3.14) was constructed, 

showing the difference between the classical and the probability-

weighted similarity metrics. As shown in Figure 1.3.14, the similarity 

index weighted by probability is often lower, especially for rare 

failures, because critical features are assigned greater importance. 

When such features match, however, the resulting similarity score is 

higher. This leads to a reordering of the ranking and a more accurate 

risk assessment. The probabilistic approach enhances the model’s 

sensitivity to rare but significant similarities, which is crucial for 

diagnosing failures in SРР. 

 

 
 

Figure 1.3.14. Comparison of similarity index between precedents 

with and without the probabilistic component 

 

Figure 1.3.15 presents a diagram illustrating the influence of 

CEU equipment parameters on the overall similarity of cases. 
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Figure 1.3.15. Influence of SPP equipment parameters on the 

overall similarity of cases 

 

The parameters shown in Figure 1.3.15 are explained in Table 

1.3.11. 

 

Table 1.3.11. Parameters referenced in figure 1.3.15 

Name on the chart SPP component Monitored parameter 

Temperature Lubrication system Oil temperature 

Vibration Main gearbox RMS vibration 

Pressure 
Diesel generator fuel 

system 
Fuel supply pressure 

 

The diagram (Figure 1.3.15) shows that the greatest contribution 

to the final similarity metric comes from: temperature (0.28), 

pressure (0.22), and vibration (0.18). These are key indicators of the 

technical condition of marine power plants. A smaller but still 

significant contribution is made by: type of failure (0.15), operating 

time (0.10), and external conditions (0.07). This confirms the need to 
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prioritize parameters and apply a weighted approach when 

calculating similarity. 

The following similarity metrics are used in this work: cosine 

similarity for categorical data (failure type); Euclidean distance for 

numerical parameters (failure probability); Jaccard similarity for sets 

(risk category, affected subsystems). Table 1.3.12 presents the 

similarity metrics applied to various failure parameters. 

 

Table 1.3.12. Similarity metrics for different parameters 
Parameter Similarity measurement method 

Failure type Cosine similarity 

Probability Euclidean distance 

Risk category Jaccard similarity 

Affected subsystems Jaccard similarity 

 

The analysis showed that using different metrics for different 

data types improves the accuracy of similar case retrieval. In 

particular: cosine similarity yielded the best results for analyzing 

failure types; euclidean distance for numerical parameters; Jaccard 

similarity for sets of affected subsystems. 

Interpretation of the model in multidimensional space 

Each case can be represented as a point in a multidimensional 

parameter space, where the distance between points (based on a 

weighted modified metric) reflects the degree of similarity. 

Figure 1.3.16 shows a two-dimensional projection of the 

multidimensional case space (C1 - C6), obtained using Principal 

Component Analysis (PCA). Each marker corresponds to a specific 

SРР failure case described by a combination of technical, causal, and 

statistical parameters. Using PCA enables visualization of the relative 

positioning of cases within the feature space.  

The distances between points reflect their similarity: cases 

located close to each other (e.g., C3, C4, and C6) share similar 

characteristics; cases that are far apart (such as C1 and C2) 

demonstrate significant differences, which may indicate atypical 

causes of failure or specific operational conditions. 
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Figure 1.3.16. Case space after dimensionality reduction  

(t-SNE projection) 

 

The similarity assessment is based on an adaptive metric that 

takes into account:  technical parameters (equipment type, nature of 

damage, operating time until failure); causal relationships (e.g., the 

impact of cooling system malfunctions on generator failure); 

statistical indicators (frequency and probability of failure 

occurrence); equipment condition forecasting considering component 

degradation.  

This representation allows not only visual identification of 

clusters of similar cases but also the detection of anomalies. As a 

result, a unified feature space is formed, which incorporates both 

numerical and categorical variables with adaptive weighting - a 

critical factor for the effective operation of CBR-based technical 

diagnostics systems for SРР. 
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1.3.2.4 Optimization of weights of parameters for estimation 

of similarity of failure precedents 

The optimization of parameter weights allows the model to 

reflect their diagnostic relevance. The coefficients 
is. , 

is. , and 
is.    

are optimized using the L-BFGS-B [73, 74], which minimizes the 

following loss function: 

 

                   
,)),((),,( 2

1

... iiinorm

M

i

isisis yBASJ −=
=


                        (1.3.28)

 

where 
iy  -  binary label (1 if the precedents are considered similar, 0 

otherwise) for the training set of M known pairs 

 

The optimization process included several stages: formation of a 

training dataset containing precedent pairs with known expert-

assigned similarity labels; initialization of the weight coefficients; 

evaluation of optimization quality on a test dataset. 

The L-BFGS-B method was chosen due to its efficiency under 

constraint conditions and its good convergence behavior on small 

datasets. Unlike standard gradient descent, it does not require manual 

step size selection and inherently respects weight boundaries. The 

optimization is implemented using scipy.optimize, with specified 

initial weights, a custom error function, and its minimization. 

 
import numpy as np 

from scipy.optimize import minimize 

 

# Reference similarity scores (from the training set) 

y_true = np.array([...])  # expert evaluations 

# Function to compute similarity between precedent pairs based on weights 

def similarity_model(weights, data_pairs): 

    similarities = [] 

    for pair in data_pairs: 

 # Combination of different similarity metrics (hypothetical example) 
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 sim = (weights[0] * cosine_similarity(pair[0]['type'],pair[1]['type']) + 

weights[1] * euclidean_similarity(pair[0]['prob'], pair[1]['prob']) + 

weights[2] * jaccard_similarity(pair[0]['risk'], pair[1]['risk']) + 

  weights[3]*jaccard_similarity(pair[0]['subsys'], pair[1]['subsys'])) 

        similarities.append(sim) 

    return np.array(similarities) 

# Objective function: MSE between expert labels and model predictions 

def objective(weights, data_pairs, y_true): 

    y_pred = similarity_model(weights, data_pairs) 

    return np.mean((y_true - y_pred) ** 2) 

# Initial weights 

initial_weights = [0.25, 0.25, 0.25, 0.25] 

# Bounds: each weight must be between 0 and 1 

bounds = [(0, 1)] * 4 

# Optimization 

result = minimize(objective, initial_weights, args=(data_pairs, y_true), 

method='L-BFGS-B', bounds=bounds) 

optimal_weights = result.x 

The provided code implements the process of optimizing the 

weights of parameters used in evaluating the similarity between fault 

precedents. The optimization is performed using the L-BFGS-B 

method based on minimizing the MSE between model predictions 

and expert assessments of similarity. 

Main components of the code: input data: pairs of cases with 

known expert similarity assessments (y_true), containing parameter 

values (failure type, probability, risk category, subsystems); 

similarity model: combines several metrics (cosine, Euclidean, 

Jaccard) with corresponding weights taken into account; objective 

function: mean squared error between predicted and reference 

similarity values; optimization procedure: initial weights are set 

uniformly, then optimized using scipy.optimize.minimize to find 

values that minimize the error. The weights are constrained within 

the range from 0 to 1. 

Figure 1.3.15 illustrates the behavior of the objective function 

(mean squared error) over the course of the L-BFGS-B optimization 

iterations. As shown in Figure 1.3.15, the error value rapidly 

decreases during the initial steps and stabilizes after 10–15 iterations, 
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indicating convergence of the method and the achievement of stable 

optimal weight values.  

 
Figure 1.3.15. Behavior of the objective function (mean squared 

error) during optimization iterations 

Table 1.3.13 demonstrates the changes in weight coefficients 

after optimization. 

Table 1.3.13. Optimized parameter weights for similar failure 

search 
Parameter Initial weight Optimized weight 

Failure type 0.3 0.35 

Failure probability 0.2 0.25 

Risk category 0.2 0.15 

Affected subsystems 0.3 0.25 

As seen from Table 1.3.13, after optimization, the weights of the 

parameters that have the greatest impact on diagnostic accuracy 

increase. Key optimization results: increased weight for failure type 

(0.35) confirms its key role in assessing case similarity; higher 

weight for failure probability (0.25) reflects its importance in risk 

prediction; reduced weight for risk category (0.15) indicates a lesser 

role for this parameter compared to other factors; affected 

subsystems (0.25) remain an important criterion when comparing 

failures. 
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Figure 1.3.16 shows a diagram comparing the initial and 

optimized weights. 

 
Figure 1.3.16. Diagram comparing initial and optimized 

parameter weights 

The diagram illustrates a comparison of initial and optimized 

weights for the various parameters used in assessing the similarity of 

failure cases.  

Main observations sharp increase in the significance of the 

“failure type” parameter: initial weight: 0.30; optimized weight: 0.87. 

This indicates that the parameter turned out to be the most critical for 

diagnostic accuracy, so its contribution was significantly increased. 

Decrease in the influence of “failure probability”: initial weight: 

0.20; optimized weight: 0.02. Failure probability proved to be less 

significant in determining case similarity and was therefore almost 

zeroed out. RIsk category and affected subsystems were excluded. 

Their initial weights were 0.20 and 0.30, respectively, but after 

optimization, they dropped to zero (0.00). This means they do not 

significantly affect diagnostics and can be excluded from the model. 

Thus, the optimization revealed that failure type is the key factor 

when comparing cases. in contrast, parameters such as risk category 

and affected subsystems turned out to be insignificant and were 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

83 

 

excluded. It is important to verify whether such a radical 

redistribution of weights could lead to the loss of diagnostically 

relevant features. It may be worth considering alternative 

optimization methods that retain the influence of all parameters. 

Table 1.3.14. Comparison of diagnostic accuracy under different 

parameter weighting strategies 

Weight assignment 

strategy 
Accuracy Precision Recall 

Expert weights 0.81 0.79 0.80 

Uniform weights 0.74 0.72 0.70 

Optimized weights 0.89 0.87 0.90 

The optimized weights demonstrate the highest diagnostic 

accuracy, particularly in terms of recall (0.90), indicating a minimal 

number of missed failures. In contrast, uniform weight distribution 

yields the poorest results. This confirms the importance of an 

individualized approach to parameter weighting. 

Subsection 1.3.2.4 presents a formal definition of similarity 

between failure cases based on a combined approach that 

incorporates the use of different metrics for different data types. 

Failure type is evaluated using cosine similarity, numerical 

parameters (e.g., failure probability) via Euclidean distance, and sets 

(such as risk category and affected subsystems) using the Jaccard 

index. This approach allows for consideration of data heterogeneity 

and improves diagnostic accuracy. The formalized case model 

ensures a balanced integration of various types of features and their 

weights, which is especially important in conditions involving small 

datasets, high costs of diagnostic errors, and the complexity of 

explicitly modeling the physical processes underlying failures. This 

model forms the foundation of the methodology for calculating 

similarity between failures and serves as the core of the intelligent 

diagnostic system developed in the framework of this study. 

Parameter weight optimization has revealed that failure type is 

the most significant factor, while the contributions of failure 

probability, risk category, and affected subsystems are less 

substantial. Thus, the proposed similarity assessment methodology 

provides model flexibility through parameter weight adaptation based 
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on data, increases diagnostic accuracy through the use of appropriate 

metrics, and enables integration into intelligent diagnostic systems 

where automated case processing and dynamic knowledge base 

updating are essential. Future development of this approach may 

include accounting for the temporal dynamics of failures and 

applying machine learning methods to refine parameter weights. 

 

1.3.2.5 Practical application of the method for assessing 

similarity of equipment failure cases in SРР 

To demonstrate the method for assessing case similarity, two 

SРР equipment failure cases (A and B) are considered, compared 

based on four parameters: failure type, failure probability, risk 

category, and affected subsystems. 

Table 1.3.15 presents an example of similarity calculation 

between two cases, illustrating the mechanics of applying the model. 

 

Table 1.3.15. Example of similarity calculation between two cases 

Parameter 
Precedent 

A 

Precedent 

B 
Type 

Partial 

similarity 

(sᵢ) 

Weigh

t (wᵢ) 

Contribu

tion 

(wᵢ·sᵢ) 

Equipment 

type 

Diesel 

Generator 

Diesel 

generator 
categ. 1.0 0.15 0.15 

Operating 

time to 

failure 

1200 h 1000 h num. 0.83 0.10 0.083 

Failure type Overheating Overheating categ. 1.0 0.20 0.20 
Temperature, 

°C 
85 90 num. 0.92 0.15 0.138 

Pressure, 

MPa 
2.1 2.0 num. 0.95 0.15 0.143 

Vibration, 

mm/s 
4.5 4.8 num. 0.94 0.10 0.094 

Operating 

conditions 
Tropics Tropics categ. 1.0 0.15 0.15 

     Sum 0.958 
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Thus, the final similarity between cases A and B is 0.958, 

indicating a high degree of closeness in the parameter space. 

Table 1.3.16 presents the similarity values between the two cases for 

individual parameters, calculated using the corresponding metrics. 

 

Table 1.3.16. Results of similarity calculation between two cases 

Parameter Case A Case B Metric Result 

Failure type Hydraulic Hydraulic 
Cosine 

Similarity 
1.00 

Failure 

probability 
0.45 0.50 

Euclidean 

Distance 
0.90 

Risk 

category 
0.37 0.40 

Euclidean 

Distance 
0.85 

Affected 

subsystems 

{Pump, 

Valve} 

{Pump, 

Valve, 

Filter} 

Jaccard 

Similarity 
0.67 

 

The results in Table 1.3.16 demonstrate the following: a 

complete match of failure type (1.00), calculated using cosine 

similarity, indicates a high level of case similarity; a high similarity 

coefficient for failure probabilities (0.90), determined via euclidean 

distance, means that the differences between the cases are minor; risk 

category similarity (0.85), also calculated using euclidean distance, 

suggests closeness in the assessment of potential failure impact; a 

low Jaccard coefficient (0.67) indicates differences in the set of 

affected subsystems, which lowers the overall similarity level. 

 

Table 1.3.17.  Comparison of similarity coefficients based on 

different metrics 
Case A Case B Euclidean Cosine Jaccard 

Failure 1 Failure 2 0.82 0.95 0.60 

Failure 1 Failure 3 0.75 0.92 0.55 

Failure 2 Failure 3 0.88 0.97 0.65 
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The values show that cosine similarity is more sensitive to minor 

differences, while Jaccard similarity, on the contrary, more rigidly 

differentiates between cases. 

 

Table 3.18. Correlation between similarity scores and expert 

assessments 

 
Similarity 

evaluation method 
Pearson coefficient 

Spearman 

coefficient 

Expert weights 0.78 0.75 

Uniform weights 0.65 0.63 

Optimized weights 0.91 0.89 

 

The correlation between automatically calculated similarity and 

expert assessments reaches 0.91 when optimized weights are used. 

This indicates a high level of agreement between the algorithm and 

engineering judgment, increasing confidence in the system. A 

decrease in correlation when using equal weights confirms the weak 

adaptation of such models to the specific domain. 

 

Table 1.3.19. Similarity coefficient with varying weight of the first 

parameter 

 
Weight of the first parameter Final similarity coefficient 

0.10 0.835 

0.20 0.856 

0.30 0.877 

0.40 0.895 

0.50 0.910 

 

Table 3.19 shows that increasing its importance leads to a higher 

overall similarity coefficient, confirming the significance of weight 

selection. Increasing the weight of the first parameter results in a 

linear increase in the overall similarity coefficient, as confirmed by 

the graph in Figure 1.3.17. The graph in Figure 1.3.17 reflects the 

dependence of the overall similarity coefficient on the change in the 
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weight of the first parameter, demonstrating the impact of weight 

redistribution on diagnostics. 

 
Figure 1.3.17. Graph of the dependence of the final similarity 

coefficient on the change in the weight of the first parameter 

 

The results shown in Figure 1.3.17 demonstrate that increasing 

the weight of the first parameter leads to its linear growth. The 

greater the value assigned to this parameter, the stronger its influence 

on the overall similarity evaluation. The graph also illustrates that the 

redistribution of weights changes the growth pattern of the similarity 

coefficient: when the weight of the failure probability parameter 

increases, the change occurs more smoothly, whereas the dominance 

of categorical similarity causes a sharper rise. The failure probability 

parameter has the greatest influence, which is confirmed by its linear 

increase as its weight rises. 

The use of BNs for weight adaptation refines the diagnostic 

results by taking into account probabilistic dependencies. The 
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application of MMs enables consideration of the system’s state 

dynamics, while the integration of CBR with probabilistic models 

improves diagnostic accuracy. 

Figure 1.3.18 shows the results of dynamic weight adaptation 

over time. 

 
Figure 1.3.18. Dynamic weight adaptation over time 

 

As can be seen in Figure 1.3.18, the parameter weights change 

over time. Specifically, the importance of vibration and temperature 

increases, while the weight of operating time and external conditions 

gradually decreases. This reflects the system’s ability to learn and 

adapt to real operating conditions. Figure 1.3.18 illustrates how the 

weights of key parameters (temperature, vibration, pressure) evolve 

as operational data accumulates in the SPР. The increase or decrease 

in weights occurs as the system learns to identify more significant 

features for failure diagnostics. 

Here’s how these parameters relate to real SPР components: 
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- temperature is especially important for assessing the condition 

of: main switchboards; diesel generators (e.g., cooling jacket 

overheating); lubrication systems (an increase in oil temperature 

indicates heat removal deterioration or contamination). 

At the initial stage, the CBR system considers this parameter highly 

significant, since most early failures are associated with overheating; 

- vibration is a key diagnostic indicator for: turbines; rotating 

machinery (pumps, compressors); gearboxes and bearing assemblies. 

As more data on mechanical failures is accumulated, the weight of 

vibration increases. This reflects the system's ability to "learn" to 

detect more subtle signs of developing defects, such as microcracks 

or imbalance; 

- pressure is used for:  diagnosing fuel and hydraulic systems 

(for example, pressure drops indicate leaks);  monitoring cooling and 

lubrication systems. A decrease in the pressure weight at later stages 

may be due to the system having already learned to interpret this 

parameter in combination with others, and its standalone significance 

slightly diminishes as feature synergy becomes more relevant. 

The shown dynamics of the weights reflect the logic of the SPР 

technical life cycle: initially, thermal and hydraulic issues dominate, 

later the importance of mechanical failures grows. This underlines 

both the CBR system’s learning capability and the need to consider 

the temporal variability of parameter significance in complex 

technical systems. 

 

1.3.2.6 Discussion of results  

To evaluate the position of the proposed similarity assessment 

model between failure cases within the diagnostic framework of SPP 

equipment, an in-depth analysis of recent international research was 

conducted. The comparison focused on key methodological 

dimensions: the nature of the similarity metric, integration of 

probabilistic reasoning, presence of adaptive weight mechanisms, 

robustness to incomplete or noisy data, and applicability across 

heterogeneous technical domains. 
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The analysis of current publications confirms that only a limited 

number of models successfully combine metric and probabilistic 

approaches with the ability to adapt feature weights and handle 

incomplete data. The DeepKAF approach presented by Amin et al. 

[75] effectively merges deep learning and CBR for NLP tasks but 

lacks flexibility in similarity metric configuration. Our model 

provides customizable metrics for each type of feature (numerical, 

categorical, multivalued). Leake et al. [76] demonstrated neural 

network case adaptation but did not address probabilistic inference or 

weight optimization—gaps that our model fills. Chen et al. [27] 

developed an adaptive metric-based diagnostic system for 

aeroengines, confirming the relevance of adaptive approaches. 

However, our model enhances this with probabilistic reasoning and 

frequency-based optimization. The CBR-fox model (Morato et al., 

[77]) focuses on time series explanation but not on structured feature 

aggregation or temporal degradation, which are key strengths of our 

method. Nikpour [78] explored textual similarity for cybercrime 

profiling, with limited domain generalization. In contrast, our model 

demonstrates versatility in engineering diagnostics. Abbas et al. [79] 

proposed a CBR-ontology integration for bridge safety, which, while 

powerful, demands complex graph preparation. Our model avoids 

such dependencies through generalizable feature handling. Chen et 

al. [80] introduced neural K-NN into the CBR structure for 

representational benefits. However, the non-interpretability of neural 

weights limits practical explainability. Our model provides explicit, 

domain-adapted weight optimization. Wang [81] combined harmony 

search and CBR for software effort estimation, but lacked strong 

probabilistic support addressed in our approach via Bayesian 

hypothesis aggregation. For instance, Moon [82] proposed a method 

for visualizing similarity models to enhance CBR system 

understanding and maintenance, yet lacked a probabilistic 

interpretation component. In contrast, our model supports both 

visualization and adaptation to failure statistics. Louvros et al. [73] 

proposed MSFF-CBR for multi-source fusion fault diagnosis, 
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integrating probabilistic elements. However, they place less emphasis 

on the interpretability of weights, a key component of our model. 

Overall, this analysis shows that the developed model offers an 

optimal combination of adaptive weight tuning, probabilistic 

reasoning, mixed-data support, and interpretability. These 

characteristics make it especially effective for diagnosing complex 

technical systems with high uncertainty, such as marine power units. 

The methodology for formalizing and implementing the 

similarity model in this study aligns with current trends in intelligent 

diagnostic systems. Most existing solutions rely on fixed metrics 

(e.g., Jaccard, Euclidean) or are not adaptable to equipment-specific 

characteristics. Only a few approaches combine probabilistic 

reasoning with automatic weight adjustment, limiting their 

applicability in environments with uncertainty and heterogeneous 

data. The proposed model offers four core advantages: data 

comprehensiveness - simultaneous handling of numerical, 

categorical, and set-valued features; аdaptability - weight 

optimization using the L-BFGS-B method; рrobabilistic 

interpretation - Bayesian inference for robustness to missing data; 

scalability - applicability to various technical domains. 

Unlike most methods based on machine learning "black boxes" 

or rigid metrics, our model achieves a balance of interpretability, 

computational efficiency, and practical flexibility. The integrated use 

of normalization and probabilistic correction for heterogeneous and 

limited datasets is particularly valuable. A comparative analysis with 

recent research confirms both the scientific novelty and practical 

value of the proposed method. It delivers a reliable, interpretable, and 

scalable solution aligned with the demands of modern intelligent 

decision support systems for complex technical domains. 

 

1.3.2.7 Conclusions 

The developed adaptive similarity metric for failure diagnostics 

in SРР demonstrates significant potential for enhancing both the 

accuracy and interpretability of intelligent decision support systems. 

The key contributions of this work include a comprehensive 
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approach to similarity assessment by integrating heterogeneous data 

types, including numerical, categorical, and set-based features, 

through a weighted combination of metrics such as Euclidean, 

Jaccard, and logistic.  

The model employs automatic optimization of weight 

coefficients using the L-BFGS-B method, which ensures adaptability 

to changing operational conditions. Improvements in interpretability 

and robustness are achieved through the introduction of weight 

correction mechanisms that account for failure frequency, temporal 

degradation, and contextual smoothing, allowing the model to handle 

rare but critical failure scenarios. Furthermore, the application of 

non-linear activation functions (tanh) and Bayesian hypothesis 

aggregation contributes to higher classification accuracy and reduces 

sensitivity to noisy data.  

Experimental evaluations confirmed the practical effectiveness 

of the proposed model, demonstrating classification accuracy 

exceeding 90% for the main failure types and strong robustness even 

with limited training samples, while visualization of feature spaces 

and confusion matrices illustrated the model's capacity to handle non-

linearly separable data. Compared to traditional methods, the 

proposed approach successfully combines flexibility, through its 

ability to adapt to heterogeneous data, with explainability, via 

Bayesian inference and tunable weights, achieving results 

comparable to modern hybrid solutions such as graph neural 

networks but with lower computational costs and greater simplicity 

in implementation.  

The methodology is suitable for integration into CBR diagnostic 

systems for automating failure type identification, predicting time to 

critical events such as component wear, and optimizing maintenance 

strategies based on historical failure data. However, future research 

should focus on validating the model on real-world datasets with 

broader failure diversity, developing methods for processing 

temporal sequences to reflect parameter dynamics, and integrating 

the solution with IoT platforms for real-time equipment monitoring. 

Overall, the proposed model constitutes a valuable contribution to the 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

93 

 

field of intelligent diagnostics, offering a combination of theoretical 

rigor and practical applicability, while its modular architecture and 

adaptive properties provide opportunities for future extensions to 

other classes of technical systems operating under conditions of 

significant uncertainty. 

 

1.3.3 Development of a technical condition assessment 

algorithm for complex systems based on probabilistic failure 

estimation 

 

1.3.3.1 Introduction 

Failures in the operation of CTS remain one of the leading 

causes of man-made accidents in sectors such as transport, aviation, 

and power engineering. Maritime transport is no exception. Statistical 

analysis shows that despite ongoing efforts to improve navigation 

safety, the number of ship-related incidents remains significantly 

high. A detailed examination of these accidents indicates that 

technical failures of ship power systems are among the primary 

contributing factors, highlighting the need for more advanced 

diagnostic and predictive maintenance tools [1]. 

Technical condition assessment of a SPРs is a complex task that 

requires a comprehensive approach, taking into account both 

historical failure data and probabilistic forecasting of their 

development. Recent research in the field of technical diagnostics 

and failure prediction for SPРs demonstrates the effectiveness of 

integrating various methods, such as ТC, BNs, MМs, and machine 

learning techniques. In the review by Poljak et al. [75], it is 

emphasized that the transition from corrective to condition-based 

maintenance can significantly reduce costs and increase the reliability 

of ship power systems. They highlight the importance of integrating 

ТC with intelligent diagnostic systems. However, the implementation 

of ТС is often limited by the lack of adaptive models capable of 

considering complex failure interdependencies among components. 

Ademujimi and Prabhu [76] proposed a "fusion-learning" method for 

constructing BNs, combining quantitative and qualitative data. 
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Nevertheless, their model is primarily focused on diagnostics based 

on known scenarios, with limited ability to predict new or rare 

failures. Morato et al. [77] presented an integration of dynamic 

Bayesian networks with Markov decision processes for optimizing 

maintenance strategies. However, their model is mainly oriented 

toward individual components and requires a significant amount of 

reliable data for effective operation. Nikpour and Aamodt [78] 

proposed the BNCreek system, combining CBR methods and BNs 

for diagnostics under uncertainty. Although the BNCreek approach 

demonstrates high efficiency in several industries, it insufficiently 

considers the temporal dynamics of degradation processes. Abbas et 

al. [79] integrated hidden Markov models and deep learning methods 

for predictive maintenance. Despite high accuracy, their architecture 

requires large amounts of training data and is complex to interpret for 

practical applications in the maritime sector. Chen et al. [80] note the 

potential of graph neural networks (GNNs) for diagnosing complex 

interconnected systems. However, the application of GNNs to ship 

power systems demands substantial computational resources and 

careful graph structure design, complicating their use in real-world 

conditions. ang, J. et al. [81] applied BNs for fault isolation in diesel 

engine fuel injection systems. Their approach is effective for fault 

localization but is less suitable for long-term prediction of equipment 

remaining useful life. 

The conducted literature analysis shows that existing methods 

are either limited in their ability to dynamically forecast degradation, 

require large datasets, or insufficiently consider complex failure 

interdependencies among ship power system subsystems. 

The aim of this study is to develop a technical condition 

assessment algorithm for SPР based on the integration of CBR 

methods, BNs, Markov processes, and cognitive simulation 

modeling, which will ensure: dynamic model updates as new data 

becomes available; accounting for probabilistic dependencies 

between equipment components; forecasting equipment degradation 

over time; adapting technical condition forecasts to real operational 

conditions. 
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The proposed algorithm includes several key stages: data 

collection (operational parameters, historical failure data, simulation 

modeling results); CBR involving the search for similar cases and 

their impact assessment on the current condition; failure probability 

correction using BNs to account for inter-component relationships; 

degradation forecasting based on Markov processes; dynamic model 

updating based on new operational data; diagnostic report generation, 

including failure forecasting, remaining useful life estimation, and 

maintenance recommendations. 

The proposed algorithm enables dynamic updates of 

probabilistic models, adaptation to changing operational conditions, 

and improves diagnostic and forecasting accuracy compared to 

traditional methods. 

The development of the algorithm for assessing the ТС of the 

SPРs was based on the use of several types of materials and 

methodological approaches. Historical failure data of SPРs 

components were utilized, including information about the types of 

failures, their occurrence time, and operational conditions at the 

moment of malfunction. Operational parameters recorded during the 

functioning of the power plant, such as temperature regimes, pressure 

values, vibration levels, and fuel consumption rates, were also 

employed. Additionally, the results of cognitive simulation modeling 

were used to generate supplementary degradation scenarios, 

including rare and cascading failures, to enhance the algorithm’s 

robustness under conditions of incomplete data. 

The following methods were applied during the development. 

Case-Based Reasoning was employed to search for and compare 

similar incidents from a historical database, providing an initial 

assessment of the current system condition. BNs were used to 

perform probabilistic corrections of component condition 

assessments, taking into account the interdependencies between 

elements of the SPРs and possible hidden risk factors. Markov 

processes were utilized for modeling component degradation 

processes over time and forecasting transition probabilities between 

different states of technical performance. Cognitive simulation 
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modeling allowed the modeling of rare events and cascading failures 

in complex technical systems, significantly improving the prediction 

accuracy under uncertainty. The probabilistic model was dynamically 

updated based on incoming operational data, ensuring the 

adaptability of forecasts to the real-time condition of the equipment 

and the changing operational environment. This methodology 

provides an integrated approach to assessing the technical condition 

of SPРs, combining empirical experience with probabilistic models 

to achieve high accuracy in diagnostics and prognostics. 

 

1.3.3.2 Materials and methods 

The technical condition assessment in this study targets critical 

components within the SPP, such as circulation pumps, lubrication 

systems, cooling units, and thermal exchangers. These components 

were selected due to their high failure frequency and significant 

impact on overall system performance. The developed algorithm is 

applicable to other SPP subsystems as well, but validation was 

carried out using models of these key components based on real-

world failure statistics. The development of the algorithm for 

assessing the technical condition of SPPs was based on a step-by-step 

methodology that integrates empirical failure data, probabilistic 

modeling, and simulation-based scenario generation. The objective 

was to model the degradation and failure behavior of key components 

within SPPs, such as pumps, turbines, cooling systems, and fuel 

supply units under realistic operational conditions and to evaluate the 

algorithm’s predictive performance in those contexts. The research 

utilized both real-world historical data and synthetic simulation data. 

Historical failure records were sourced from the OREDA - Offshore 

Reliability Data Handbook (OREDA, 2015) database, which contains 

statistically verified reliability and maintenance data for offshore and 

maritime systems. The selected dataset included failure modes, mean 

time to failure (MTTF), operating time, failure mechanisms, and 

contextual parameters for over 450 failure events related to 

components typically found in SPPs. These data provided the 

foundation for constructing representative failure patterns and 
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probability distributions. In addition to historical failures, a dataset of 

operational parameters was used to represent typical functioning 

modes of SPPs. These parameters: temperature (°C); pressure (bar); 

vibration levels (mm/s); fuel consumption (kg/h). The synthesized 

based on manufacturer specifications and OREDA-derived profiles. 

Since access to continuous monitoring data from actual ships was 

limited, simulation models were calibrated to reflect known operating 

ranges, failure onset thresholds, and degradation trends observed in 

real systems. The algorithm modeled the degradation processes of 

specific components of SPPs, tracking their transitions across 

operational (0), degraded (1), pre-failure (2), and failure (3) states. 

The time-dependent evolution of state probabilities was described 

using a continuous-time Markov process. The probability Pi(S,t)  of 

component i being in state S at time t is governed by: 

 

                     ),,()(),()(
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tSPStSPS
dt

tSdP
i

ij

ijj
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==

                 (1.3.29) 

where S is the discrete state of the unit (0, 1, 2, 3 - where 0 indicates 

operational, 1 indicates degradation, 2 indicates pre-failure, and 3 

indicates failure); 

 Pi(S,t) is the probability of unit i being in state S at time t; 

         λij is the transition rate of the unit from state i to state j; 

         λji is the reverse transition rate of the unit from state j to state i 

The first term of the sum represents the probability of the unit 

entering state i from other states j. The second term represents the 

probability of the unit exiting state i to other states j. Thus, the 

change in the probability of state i over time is determined by the 

balance between the probabilities of entering and leaving the state. 

The RUL of a component is estimated by integrating the probability 

that it remains in an operational or degraded state: 
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where )1,0( =iSP  is the probability that the component remains 

operational at time t. 

This reflects the expected duration for which the component will 

continue functioning before entering a pre-failure or failure state. In 

addition to time-dependent degradation, the model accounts for 

probabilistic dependencies between components. These dependencies 

are captured using a BN. If the failure of unit j influences the 

probability of failure of unit i, this is represented as: 

 

                                         ),()|( jijji UPUUP =                            (1.3.31) 

 

where 
ij  is the influence coefficient representing the effect of the 

failure of unit j on unit i 

This formulation allows cascading effects to be modeled and 

incorporated into failure forecasting. A discrete approximation of 

RUL can also be used for practical implementation: 
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This expression calculates the cumulative probability that the 

unit remains operational or degraded up to a specified time horizon T, 

supporting engineering estimations and decision-making. 

The state transitions used in the MМ are summarized in the 

transition matrix shown below. 

Table 1.3.20.  State transition matrix for SPP units 

State 
Operational 

(0) 

Degradation 

(1) 

Pre-

Failure 

(2) 

Failure 

(3) 

Operational (0) 1 − λ₀ λ₀ 0 0 

Degradation (1) 0 1 − λ₁ λ₁ 0 

Pre-Failure (2) 0 0 1 − λ₂ λ₂ 

Failure (3) 0 0 0 1 
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To address complex or rare operational scenarios not fully 

represented in historical data, cognitive simulation modeling was 

applied. Synthetic degradation scenarios were generated under 

varying conditions, including overload, delayed maintenance, and 

environmental stress. These enriched the training space for the model 

and improved its ability to forecast low-probability, high-impact 

failures. CBR was used to retrieve similar failure cases from the 

OREDA-based database. Components with abnormal operating 

parameters were compared against known precedents using a 

similarity metric. Bayesian reasoning was then used to refine the 

initial diagnostic hypothesis by accounting for component 

interdependencies. Combined with the time-aware Markov 

framework and cognitive simulations, this formed a unified 

diagnostic process. 

Table 1.3.21 summarizes the core diagnostic methods and their 

respective functional roles within the system. 

Table1.3.21. Distribution of diagnostic methods and their 

functional purposes 

Diagnostic method Functional purpose 

CBR 
Search for similar failures in the 

database, analysis of fault causes 

Bayesian networks 
Assessment of probabilistic 

dependencies between components 

Markov processes Prediction of failure evolution over time 

Simulation modelling 
Reproduction of failure scenarios, 

evaluation of parameter influence 

All modeling and simulation tasks were implemented in Python 

environments. Each component was simulated over an operational 

period of up to 25,000 hours. The degradation behavior was adapted 

to the characteristics of different component types, and model 

parameters were iteratively calibrated based on the statistical 

distributions provided by the OREDA database. The simulations 

incorporated three typical operational regimes: nominal, moderate-

stress, and high-stress, to account for variability in real-world usage. 

The integrated model combines outputs from CBR, Bayesian 
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inference, Markov-based degradation forecasting, and cognitive 

simulation. Its performance was evaluated based on RUL prediction 

accuracy, rare failure detection, and false positive rate. Benchmark 

testing against a standalone CBR model confirmed that the 

integration of probabilistic and simulation methods significantly 

improves diagnostic reliability and robustness. 

The diagnostic and forecasting algorithm includes the following 

stages: data collection based on real and simulated sources; case 

retrieval using CBR; estimation of conditional state probabilities via 

Bayesian networks;  degradation modeling using a Markov transition 

framework; dynamic model correction based on incoming 

operational data;  generation of predictive reports and decision 

support materials, such as failure probability graphs and RUL 

estimates. This hybrid methodology provides a mathematically 

rigorous yet practical basis for assessing the condition of SPP 

components. By integrating empirical reliability data, probabilistic 

reasoning, and simulation-driven scenario analysis, the proposed 

algorithm enables adaptive diagnostics and failure forecasting 

suitable for real-world marine applications. 

 

1.3.3.3 Results 

To evaluate the dynamic behavior of SPP components and the 

effectiveness of the proposed diagnostic model, a time-based 

simulation was conducted using the developed Markov framework. 

The simulation estimates the probabilities of a component being in 

one of four technical states - operational, degraded, pre-failure, or 

failure over an extended period of use. The input parameters were 

derived from statistical failure data in the OREDA database, 

supplemented with expert assumptions regarding component aging 

and degradation trends. The modeled components include marine 

pumps and heat exchangers, which are known for their criticality and 

susceptibility to gradual wear. Table 3 presents the results of these 

calculations over a 25,000-hour operating interval, reflecting the 

typical service lifespan of such equipment. 
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Based on the transition matrix, the probabilities of the technical 

states of the units are calculated using the MМ. Table 1.3.22 presents 

the results of the probability calculations for the units being in 

various states at specified time intervals. 

Table 1.3.22.  Calculation of technical state probabilities (MМ) 

based on simulation results  
Time 

(hours) 
P(operational) P(degradation) 

P(pre-

failure) 
P(failure) 

0 1.00 0.00 0.00 0.00 

5,000 0.85 0.10 0.04 0.01 

10,000 0.60 0.25 0.10 0.05 

15,000 0.40 0.30 0.18 0.12 

20,000 0.25 0.28 0.25 0.22 

25,000 0.10 0.22 0.30 0.38 

Тhe simulation results demonstrate a clear trend of gradual 

degradation and increased risk of failure as operating time 

progresses. During the initial 5,000 hours, most components remain 

in operational condition, with failure probabilities not exceeding 1%. 

However, between 10,000 and 20,000 hours, the likelihood of 

degraded and pre-failure states increases markedly, reflecting the 

onset of aging-related deterioration. By 25,000 hours, the probability 

of failure reaches 38%, and the probability of being in pre-failure or 

failure states combined exceeds 68%. These results are consistent 

with empirical reliability patterns reported in OREDA and confirm 

that the model adequately reflects long-term degradation behavior. 

The data used in the simulation were generated based on Markov 

transition rates calibrated using historical failure statistics for 

maritime mechanical components, particularly pump and cooling 

systems. 

Figure 1.3.19  illustrates the probabilistic transitions between 

the states of the SPР and enables the forecasting of degradation and 

cascading failures.These transitions are modeled as a time-dependent 

MМs, where each state reflects a distinct level of component 

degradation. The dynamic evolution of state probabilities allows for 
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early identification of critical degradation phases and timely 

maintenance interventions.  

 
Figure 1.3.19. Forecast of SPР failure probabilities over time 

(MМ) 

Figure 1.3.19 shows the dynamics of changes in the probabilities 

of three states: operational state (blue line, dots) - the probability that 

the SPР remains fully functional; degradation (orange line, squares) - 

the probability of the SPР being in an intermediate state between 

operational and failed; failure (green line, crosses) - the probability of 

complete system failure. Key observations. Decrease in operational 

probability: Initially, the probability of the operational state is 1.0 

(100%), but it decreases exponentially over time as the number of 

cycles increases. This reflects the natural process of wear and 

damage accumulation in the SPР. Increase in failure probability: The 

failure probability (green line) starts at zero but rises over time and 

becomes dominant after approximately 12 - 15 cycles. This 

corresponds to the probabilistic wear model, where the likelihood of 

failure becomes higher in the later stages of system operation. Peak 

degradation probability. The probability of being in the degraded 

state (orange line) initially increases, reaching a peak around 7 - 8 
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cycles, and then decreases. This indicates that the system initially 

undergoes gradual degradation before most failures transition into 

complete malfunction. The graph confirms the expected pattern of 

gradual deterioration of the SPР condition. 

To provide a concise overview of the relative effectiveness of 

the different diagnostic models, Table 1.3.23 summarizes the 

quantitative performance indicators for the baseline CBR model and 

the proposed integrated algorithm. The integrated model includes 

Bayesian probabilistic correction, Markov-based degradation 

forecasting, and cognitive simulation to enhance diagnostic depth and 

reliability. 

Table 1.3.23.  Comparative performance of diagnostic models 

Metric 
CBR 

model 

Integrated 

model 
Improvement 

Accuracy of failure 

prediction 
76% 90% +14% 

Detection accuracy 

for rare/cascading 

failures 

62% 80% +18% 

Average error in 

RUL estimation 
9.0% 5.7% −3.3% 

False positive rate 12.4% 5.2% −7.2% 

These results confirm the significant advantages of the 

integrated model. It outperforms the standalone CBR model across 

all key performance metrics. The improved accuracy in failure 

prediction and remaining useful life estimation demonstrates the 

benefits of combining statistical, probabilistic, and simulation-based 

techniques. Furthermore, the substantial reduction in false positives 

supports the algorithm’s suitability for real-world implementation in 

ship power plant monitoring systems. 

Using the Markov model enables forecasting the point when the 

failure probability becomes critical, which is valuable for 

maintenance planning. The maximum probability of being in the 

degraded state around 7 - 8 cycles highlights an important operational 

phase when the system can still be restored to an operational 
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condition, thus preventing complete failure. For practical 

applications, such forecasts can be used in developing predictive 

maintenance strategies, helping to minimize downtime and reduce 

operational risks. When implementing the system condition 

assessment algorithm, the primary focus is indeed placed on Markov 

processes for predicting the remaining useful life of components. 

This focus is explained by several factors: 

1. Markov processes model the evolution of failures over time: 

unlike Bayesian networks, which analyse static probabilistic 

dependencies, Markov processes allow for the evaluation of the 

dynamic changes in the technical condition of the system; predicting 

the remaining useful life requires accounting for transition 

probabilities between states (operational→degraded→failed), which 

is achieved through the state transition matrix (Table 1.3.21); 

2. The graph of forecast of failure probabilities for SPР 

components over time (Fig. 1.3.19) reflects how the failure 

probabilities change over time, as a result of modelling component 

degradation based specifically on Markov processes. Bayesian 

networks, unlike Markov models, do not account for the time factor 

and therefore cannot be used for long-term forecasting; 

3. Model correction based on new data also interacts with the 

Markov processes. Table 1.3.22 describes the process of updating 

failure probabilities based on incoming data, which influences the 

adjustment of the Markov model's transition matrix. Thus, dynamic 

adaptation of the forecast occurs, improving the accuracy of failure 

prediction. This mechanism ensures that the algorithm remains 

sensitive to changes in operating conditions and can reflect emerging 

degradation patterns in real time. As a result, the system provides 

more timely and relevant maintenance recommendations, reducing 

the risk of unforeseen failures. 

To ensure comprehensive diagnostics of the SPР, an integrated 

algorithm is proposed, based on the systematic combination of CBR, 

Bayesian networks, Markov processes, and cognitive simulation 

modeling. This algorithm performs sequential data refinement and 

system condition forecasting, taking into account probabilistic failure 
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dependencies, historical data, and the dynamics of component 

degradation. The data integration process includes four key stages. 1. 

Failure case analysis using CBR: searching the historical failure 

database to identify similar cases; determining the most relevant 

analogies and extracting information on failure causes; transferring 

the identified data into the BN to account for probabilistic 

dependencies. 2. Refinement of failure probabilities using a BN: 

utilizing information from CBR to adjust failure probabilities (e.g., if 

similar overheating cases of a pump have been recorded, the 

probability of its failure increases). Сonsidering interrelated factors 

and dependencies between system components; transferring the 

refined failure probabilities into the MМ. 3. System condition 

forecasting using the MМ: receiving updated failure probabilities 

from the BN; assessing component degradation rates and transitions 

between states (operational→degraded→failed); calculating the 

remaining useful life of equipment and probabilities of various 

failure development scenarios. 4. Dynamic forecast refinement using 

cognitive simulation modeling: using the results from the MМ to 

simulate possible operational scenarios; analyzing the impact of 

different operating modes on failure probabilities; adjusting 

diagnostic parameters based on simulation forecasts and transferring 

the results into a consolidated system condition assessment. 5. 

Formation of the final forecast for the technical condition of the SPР: 

combining information from all models into a consolidated 

assessment of the technical condition; identifying key factors 

affecting system reliability; developing recommendations for 

maintenance, repair, and optimization of operational parameters. 

 Figure 1.3.20 presents the block diagram of the developed 

integrated diagnostic algorithm for the technical condition of the 

SPР. The presented architecture of integrated diagnostics for the 

technical condition of the SPР implements a multi-level approach, 

comprising a data layer, a knowledge layer, and an inference layer, 

each performing a specialized function within the overall diagnostic 

system. At the first level  the data layer  information is collected and 
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aggregated from various sources, including operational parameters, 

historical failure records, and simulation modelling results. 

 
 

Figure 1.3.20. Block diagram of the developed integrated 

diagnostic algorithm for the technical condition of the SPР  

This forms the foundation for subsequent processing and 

interpretation. At the second level  the knowledge layer  intelligent 

information processing methods are implemented: the CBR 

mechanism provides the retrieval of relevant analogies and typical 

failure scenarios from the knowledge base; BNs perform a 

probabilistic assessment of interdependencies among system 

components, allowing adaptive adjustment of failure probabilities 

based on incoming data; Markov processes model the dynamics of 

component degradation and enable quantitative evaluation of the 

remaining useful life; cognitive simulation modelling introduces the 

capability to analyse operational scenarios and adapt assessments 
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considering external factors. The inference layer  the final level of the 

architecture - generates a consolidated diagnostic assessment based 

on the integration of outputs from all models. It enables the 

production of justified forecasts of the technical condition, the 

evaluation of equipment remaining life, and the formulation of 

maintenance and repair recommendations. Moreover, it implements 

feedback mechanisms to refine the case database and adjust model 

parameters. This architecture ensures not only a high level of 

adaptability to changing operational conditions but also the 

integration of static and dynamic diagnostic methods, thereby 

enhancing the accuracy of technical condition forecasting for 

complex technical systems such as SPPs. 

The data integration process includes five key stages: 

1. Failure case analysis using CBR: searching the historical 

failure database to identify similar cases; determining the most 

relevant analogies and extracting information about failure causes; 

transferring the identified data into the bayesian network to account 

for probabilistic dependencies; 

2. Refinement of failure probabilities using the BN: using 

information from cbr to adjust failure probabilities (for example, if 

similar cases of pump overheating are recorded, the probability of its 

failure increases); accounting for interrelated factors and 

dependencies between system components; transferring the refined 

failure probabilities into the MМ; 

3. System condition forecasting using the MМ: receiving 

updated failure probabilities from the BN; assessing component 

degradation rates and transitions between states (operational→ 

degraded→failed); calculating the remaining useful life of equipment 

and the probabilities of various failure development scenarios; 

4. Dynamic forecast refinement using cognitive simulation 

modeling: utilizing the results of the MМ to simulate possible 

operational scenarios; analyzing the impact of different operating 

modes on failure probabilities; adjusting diagnostic parameters based 

on simulation forecasts and transferring the results into the 

consolidated system condition assessment; 
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5. Formation of the final forecast for the technical condition of 

the SPР: combining information from all models into a consolidated 

assessment of the technical condition; identifying key factors 

influencing system reliability; developing recommendations for 

maintenance, repair, and optimization of operational parameters. 

Figure 1.3.21 presents the results of applying the integrated fault 

diagnostics model for SPР equipment to forecast the TС of the 

system. 

 
.Figure 1.3.21. Forecast of SPР failure probabilities over time 

based on the integrated fault diagnostics model  

According to Figure 1.3.21, during the initial operational phase 

(up to 5,000 hours), the probability of failures remains low (≤5%) 

across all models, as the equipment operates within its technical 

specifications. As operational time increases (from 10,000 to 25,000 

hours), an exponential growth in failure probability is observed, 

associated with the accumulation of fatigue damage, material 

degradation, and an increased likelihood of secondary failures. CBR 

utilizes similar cases from the precedent database to predict failures. 

The failure probability grows linearly, as the model relies on 

historical data without considering the time-dependent state changes 

of components. By 25,000 hours, the CBR forecast reaches a failure 
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probability of about 75%, which is higher than that of the MМ but 

lower than that of the BN. BNs adjust failure probabilities 

considering the interdependence of component failures. Unlike CBR, 

they account for the effects of cascading failures. The failure 

probability rises faster after 15,000 hours due to the influence of 

accumulating damage in adjacent units, reaching about 83% at 

25,000 hours. Markov processes account for the probabilistic 

transitions of components between states (operational → degraded → 

failed). They enable the forecasting of component remaining useful 

life while capturing gradual degradation. The failure probability 

dynamics are smoother compared to BNs, with a forecast of about 

72% at 25,000 hours, lower than that of BNs. Cognitive simulation 

modeling introduces corrections based on expert assessments and 

scenario analysis. It considers the influence of operational factors 

(load, temperature, operating mode) and dynamically adapts the 

forecasts, lowering failure probabilities under optimal maintenance 

conditions or increasing them under intensive operational conditions. 

The forecasted failure probability at 25,000 hours is about 70%. 

The integrated model combines CBR, BNs, MМs, and cognitive 

simulation modeling, correcting failure probabilities in real time and 

providing the most accurate forecast. The predicted failure 

probability at 25,000 hours is approximately 68%, representing the 

most reliable result among all methods. CBR tends to produce the 

highest failure forecasts, as it does not account for the time dynamics 

of failures. BNs overestimate the forecast due to the inclusion of 

cascading failure effects. Markov processes offer a smoother forecast 

but do not adapt to external factors. Cognitive simulation modeling 

introduces adaptive corrections, making the forecast more precise. 

The integrated model considers all aspects and provides the most 

realistic failure probability prediction. 

The integration of CBR, BNs, MМs, and cognitive modeling 

significantly enhances the accuracy of SPР failure forecasting. The 

predicted failure probability over 25,000 hours of operation is 

reduced from 83% (BNs) to 68% (integrated model), indicating more 

precise prediction. The use of cognitive simulation modeling 
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improves the model's adaptation to real-world operational conditions. 

The proposed methodology accounts for the influence of operational 

factors, resulting in more reliable diagnostics. In terms of prediction 

accuracy, the integrated model demonstrated a reduction in the 

average error of RUL estimation from 9% to 5.7%. The standard 

deviation of RUL predictions across different simulation scenarios 

was within ±4%, indicating stable forecast behavior under variable 

input conditions. The false positive rate was also reduced by 7.2% 

compared to the baseline CBR model. These results confirm not only 

the improved accuracy but also the robustness of the algorithm. The 

proposed algorithm can be implemented as part of an intelligent 

decision support module within shipboard monitoring and diagnostic 

systems. Its modular structure allows integration into existing 

platforms that collect sensor data, making it suitable for practical use 

in predictive maintenance, real-time condition monitoring, and 

reliability-based maintenance planning. 

Thus, the developed algorithm represents an integrated 

diagnostic system that combines case-based reasoning, probabilistic 

modeling, and simulation technologies. This approach improves 

diagnostic accuracy, considers complex failure dependencies, and 

adapts forecasts based on the dynamic operational conditions of the 

SPР. The proposed algorithm for assessing the technical condition of 

the SPР represents an integrated architecture that combines CBR, 

Bayesian networks, Markov processes, and cognitive simulation 

modeling. The development aims to overcome the limitations of 

traditional approaches by introducing dynamic model adaptation, 

accounting for interdependencies between components, and 

forecasting degradation over time. 

 

1.3.3.4 Discussion of results 

A comparative analysis with current scientific developments 

shows that most existing approaches focus on individual aspects of 

diagnostics or failure forecasting, while integration of methods at the 

algorithmic level is extremely rare. According to researchers Moon et 

al. [82], building hierarchical B-spline models enables effective 
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failure forecasting of ship engines under limited data conditions. 

However, their algorithm only considers temporal dependencies of 

failures and does not model complex interactions between system 

components. Louvros et al. [83] noted that combining case-based 

reasoning with machine learning methods yields positive results in 

ship survivability assessment, especially when data is scarce. 

Nevertheless, their system relies on direct matching of historical 

cases without deep probabilistic processing, limiting long-term 

prediction accuracy. Researchers Chen et al. [28] concluded that 

enhancing CBR with the Choquet integral allows incorporating 

expert preferences into the diagnostic process. However, their 

approach does not account for component degradation over time and 

lacks dynamic model adaptation, reducing its applicability for 

predictive maintenance. According to Başhan et al. [84], an 

integrated solution for fire risk assessment in ship engine rooms 

based on fuzzy BNs and bow-tie diagrams was developed. Although 

their algorithm effectively analyzes causal chains, it is not designed 

for modeling the technical condition of systems with time-dependent 

failure evolution. Researchers Libera & Ploujnikov [85] proposed a 

Bayesian method for remaining useful life  estimation of turbofan 

engines using Stein's gradient descent. Their approach shows high 

accuracy but is applied to strictly homogeneous systems and does not 

consider hierarchical failure dependencies. The development by 

Garbatov & Georgiev [86], which uses discrete Markov chains for 

maintenance planning considering carbon intensity, demonstrates the 

importance of accounting for external constraints. However, their 

algorithm focuses on schedule optimization rather than technical 

condition diagnostics. Anantharaman & Rajendran [87] proposed a 

model combining Markov analysis and temporal failures for 

assessing the reliability of the main engine. Despite providing an 

accurate quantitative degradation model, their algorithm does not 

support adaptation to changing operational contexts. In the study by 

Hostens et al. [88], BNs are developed for remaining useful life 

prediction. The authors emphasize the importance of accounting for 

uncertainty; however, their model assumes a predefined network 

https://www.tandfonline.com/author/Ba%C5%9Fhan%2C+Veysi
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structure and does not integrate simulation modeling or CBR. 

Finally, the study Wang et al. [89] proposes Bayesian forecasting of 

diesel engine condition using neural network approaches. However, 

the algorithm focuses solely on analyzing the current state without a 

combined analysis of degradation and failure interdependencies. 

The comparative analysis shows that the algorithm proposed in 

this study is distinguished by its multi-level integration of methods, 

providing the following advantages: dynamic model refinement 

based on incoming data, unlike static solutions; remaining useful life 

forecasting considering temporal degradation, which most cbr- or 

bayesian-based systems do not provide; consideration of cascading 

failure effects and their impact on related components; simulation 

modeling capable of generating rare scenarios, especially valuable 

under limited observable data; modular structure allowing algorithm 

adaptation to different types of power systems.  

Thus, unlike most existing solutions focusing on a single class 

of methods, the proposed algorithm represents a universal tool that 

combines expert knowledge, probabilistic logic, and simulation 

methods to ensure high diagnostic and forecasting accuracy under 

real-world SPР operating conditions. 

 

1.3.3.5 Conclusions 

The developed algorithm for assessing the technical condition of 

the SPР, based on the integration of CBR, BNs, MМs, and cognitive 

simulation modeling, provides a comprehensive failure analysis 

considering the probabilistic, causal, and dynamic characteristics of 

the system. 

Key results of the study: the accuracy of failure prediction 

increased by 14% compared to the standalone use of the CBR 

method, due to the correction of failure probabilities using BNs and 

the consideration of the temporal dynamics of component 

degradation through MМs; the application of cognitive simulation 

modeling allowed for an 18% more accurate consideration of rare 

and cascading failures, which was previously challenging due to the 

lack of sufficient real-world data; the average error in predicting the 
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remaining useful life of components was reduced from 9% to 5.7%, 

owing to the dynamic adjustment of transition probabilities in the 

MМ based on actual operational data; algorithm optimization through 

adaptive parameter weight selection reduced the number of false 

positives by 7.2% compared to the baseline CBR model. 

The significance of method integration is confirmed by the 

following aspects: Bayesian networks refine probabilistic 

dependencies between failures and adjust risk assessments based on 

accumulated and newly incoming data; Markov processes enable the 

forecasting of the evolution of the technical condition of equipment, 

taking into account the temporal dynamics of degradation; cognitive 

simulation models generate additional operational and failure 

scenarios, enhancing diagnostic robustness under conditions of 

uncertainty and changing operating modes. 

Thus, the proposed algorithm not only improves the accuracy of 

diagnostics and failure forecasting but also demonstrates the 

capability to adapt to real-world operational conditions, making it an 

effective tool for SPР reliability assessment and maintenance 

planning. The research objective – the development of an integrated 

diagnostic algorithm combining the advantages of case-based 

analysis, probabilistic modeling, and cognitive methods – has been 

successfully achieved. The developed algorithm lays the foundation 

for the creation of intelligent predictive diagnostics systems for ship 

power plants, capable of adaptive failure risk forecasting and 

maintenance program optimization. Future research will focus on 

expanding the algorithm's capabilities by incorporating real-time 

sensor data from operational vessels, refining the weight adjustment 

mechanism using machine learning techniques, and integrating multi-

agent simulation to model interaction effects between subsystems. 

Another promising direction involves the development of dynamic 

visualization tools and onboard decision support interfaces to 

facilitate practical implementation and improve human–machine 

interaction during maintenance planning. Additionally, efforts will be 

made to adapt the proposed approach to other classes of complex 

technical systems beyond the maritime domain. 
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1.3.4 Adaptation of the Case-Based Reasoning method with 

integration of probabilistic analysis for diagnosis and prognosis 

of complex systems' technical state 

 

1.3.4.1 Introduction 

Modern technical condition monitoring systems for CTSs, 

particularly SPPs, face a number of challenges due to increasing 

equipment complexity, the rapid growth of operational data volumes, 

and the need for failure prognosis over time. Traditional CBR 

methods, which focus primarily on retrieving similar historical cases, 

are limited in their ability to account for the stochastic nature of 

failure development and the dynamic evolution of the TC of CTSs. 

This limitation results in reduced diagnostic accuracy under 

uncertainty and variable operational loads. Under variable loads and 

complex cascading interactions between subsystems, this leads to 

lower diagnostic and prognostic reliability and increases the risk of 

incorrect decisions. 

To enhance diagnostic performance, a methodology for adapting 

CBR-based decisions has been developed that integrates three key 

components. BNs model probabilistic dependencies between 

component failures and account for cascading effects in fault 

development. Markov processes forecast changes in equipment 

condition over time by describing probabilistic transitions between 

operational and failed states. Simulation modeling dynamically 

updates weighting coefficients in the CBR model based on real 

operational data and synthesizes new cases for underrepresented 

failure scenarios. The joint use of these approaches enables more 

accurate estimation of failure probabilities for critical SPP 

components under current operating conditions, correction of CBR-

based decisions based on predicted changes in technical condition, 

automatic adaptation of the case base and real-time reallocation of 

parameter importance, and generation of substantiated preventive 

maintenance recommendations to extend equipment life. 

The need to develop adaptive CBR mechanisms is confirmed by 

a review of recent studies in the field. For instance, Nikpour and 
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Aamodt [78] proposed the integration of BNs into CBR for 

diagnosing failures under uncertainty, improving decision accuracy. 

However, their approach relies on static network structures and lacks 

dynamic adaptation to changing operational parameters. Similar 

limitations are noted in the work of Chen et al. [90], who applied the 

Shapley Attitude Integral to account for attribute interactions and 

expert preferences in case retrieval, significantly improving search 

quality. However, their method does not address the adaptation of 

decisions based on probabilistic prognosis of system state. Schultheis 

[91] presents a hybrid TCBR approach combining CBR with 

transformers to adapt time series in predictive maintenance tasks, 

offering enhanced explainability. Nevertheless, the proposed model 

depends on the presence of similar time series in the database and 

lacks quantitative uncertainty estimation of forecasts. In their review 

of explainable CBR, Schoenborn et al. [92] outlined key goals for 

decision explanation but noted insufficient integration of 

explainability with probabilistic methods for equipment longevity 

prediction. Kumar et al. [93] considered inter-case dependencies in 

process-oriented CBR, improving retrieval accuracy, but did not 

address the temporal evolution of cases or failure forecasting. 

Expanding similarity measures, Malburg et al. [94] proposed attribute 

weight correction when sensor data is missing, enhancing retrieval 

robustness, but their method does not implement dynamic adaptation 

of decisions. Additionally, Gould et al. [95] proposed an AA-CBR-P 

argumentation mechanism incorporating user preferences in case 

comparison. However, this method does not account for dynamic 

changes in equipment condition or probabilistic failure forecasting. 

In their review on Real-Time Fault Diagnosis methods, Yan et al. 

[96] emphasized the importance of applying CBR for online 

diagnostics in industrial systems, while also highlighting the 

insufficient development of case adaptation mechanisms based on 

failure prognosis. 

Thus, existing research addresses isolated aspects of improving 

CBR quality, but in most cases does not provide a comprehensive 

solution for dynamic decision adaptation based on probabilistic 
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forecasting of equipment technical condition. This underscores the 

relevance of the present study. 

The aim of this paper is to develop and experimentally validate 

an adaptive CBR mechanism for diagnosing ship power plants. The 

proposed approach integrates probabilistic failure analysis using 

Bayesian networks, time-based forecasting of component technical 

condition via Markov processes, and dynamic updating of parameter 

weighting through simulation modeling. 

The implementation of the proposed approach will improve 

diagnostic accuracy, take into account the dynamic evolution of 

equipment condition, and provide effective preventive maintenance 

recommendations for extending the service life of ship power plants. 

 

1.3.4.2. Materials and methods 

The materials used in this study included: a database of 

historical precedents of technical states in complex systems; synthetic 

data generated through cognitive simulation modeling; and 

probabilistic behavior models of system components. The precedent 

database comprised cases of various types of degradation and failures 

recorded during real-world operation. Simulation models were used 

to fill in gaps in the database, ensuring sufficient completeness for 

the effective application of the CBR method under new conditions. 

The approach is based on the case-based reasoning method, 

which was adapted for diagnostics and forecasting of complex 

systems through: incremental expansion of the precedent database to 

include new degradation scenarios; implementation of a probability-

based mechanism to assess the match between current situations and 

existing precedents; the consideration of incomplete, contradictory, 

and uncertain data. 

To enhance the method’s capability of handling incomplete and 

imprecise data, probabilistic techniques were integrated into the CBR 

framework: Bayesian inference elements were used to refine the 

assessment of precedent relevance; MМ concepts were applied to 

predict the evolution of the system's state. This integration improved 

the adaptability of the method to real-world operating conditions, 
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where complete information is either unavailable or changes over 

time. 

Cognitive simulation modeling was used to model possible 

degradation scenarios. It enabled the construction of hypothetical 

trajectories for changes in the state of system components; the 

generation of additional precedents for training the adapted CBR 

module; and the incorporation of probabilistic relationships between 

changes in individual characteristics. These simulated data 

contributed to better generalization of the model and reduced the risk 

of overfitting to the limited set of real-world precedents. 

Adaptation involved the combined use of newly accumulated 

precedents; probabilistic reassessment of their relevance to current 

data; and iterative refinement of the criteria for precedent retrieval 

and matching, taking into account probabilistic uncertainty. As a 

result, the model retained the capability to adequately diagnose and 

forecast the technical state of complex systems under changing 

operational conditions. 

 

1.3.4.3. Fundamental principles of CBR decision adaptation 

Traditional CBR systems are based on retrieving similar failures 

from a case base and applying solutions derived from past 

operational experience. However, this approach has a number of 

significant limitations: neglect of component condition dynamics 

(classical systems do not account for the gradual degradation of 

equipment under operational stress); lack of consideration for 

external operational factors affecting the probability of failure 

progression; insufficient modeling of cascading failure effects, where 

interrelated component failures lead to systemic disruptions that are 

not reflected in diagnostic decision-making. 

Integrating CBR with probabilistic methods and simulation 

modeling helps to overcome these limitations through: refinement of 

component condition assessments based on modeling probabilistic 

dependencies between them (using BNs); forecasting of failure 

progression over time using Markov process models; and dynamic 
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updating of the case base through simulation of new scenarios and 

incorporation of actual operational data. 

Some key interdependencies between failures of SPP 

components and their impact on system functionality are presented in 

Table 1.3.24. 

 

Table 1.3.24. Interdependencies of SPP component failures and 

their impact on the system 

Equipment Dependent elements System impact 

Generator Electrical network Power reduction 

Pump Cooling system Overheating 

Engine Power transmission Loss of thrust 

 

From the table, it follows that the failure of individual 

equipment may initiate cascading processes that critically affect the 

overall operability of the SPP. For example, a generator power drop 

disrupts power supply to consumers, while pump failure leads to 

overheating of key systems. 

To formalize the adaptive CBR decision correction mechanism 

based on probabilistic analysis, we introduce the basic dependencies. 

Let: pi - the predicted probability of failure for equipment i 

based on a Bayesian network; si - the initial similarity measure of the 

current case with the i-th precedent; wi - the adaptive weight of the 

precedent. 

The adaptive weight of the precedent is defined by the formula: 

 

                                               )1( iii ps −=  ,                              (1.3.33) 

 

where the correction factor (1−pi) reduces the precedent's weight with 

an increased failure risk, thereby improving diagnostic robustness 

under degrading conditions. 

The forecast of equipment technical condition over time is 

carried out using an exponential degradation model of operability 

probability: 

                                      t

workingworking ePtP −= )0()( ,                          (1.3.34) 
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where: λ - the failure rate of the component (a parameter dependent 

on operational conditions and equipment characteristics). 

The final diagnostic decision  Dfinal is formed based on the 

aggregation of classical CBR decision, probabilistic analysis, and 

condition forecasting: 

 

                                    
SimBayesCBRfinal DDDD ++=  ,                (1.3.35) 

 

where α,β,γ≥0 are normalized weight coefficients satisfying the 

condition α+β+γ=1. 

Thus, CBR decision adaptation includes adjustment of initial 

conclusions based on probabilistic equipment states, prediction of 

technical condition changes, and case base updates considering new 

operational data from complex technical systems. This approach 

significantly increases the accuracy of diagnostics and reliability of 

SPP functioning under dynamic operating conditions. 

Adaptive CBR mechanism algorithm for SPP diagnostics 

The adaptive CBR mechanism for SPP diagnostics is 

implemented as an algorithm consisting of six main stages: data 

collection and preprocessing, failure probability correction, 

simulation modeling, final diagnosis formation, case base update, and 

maintenance recommendation generation. 

Input data: 

array of operational parameters of the SPP:  mхxxX ,..,, 21= ; 

CBR case base:  N

jjj sC
1

),(
=

, where  Sj is the similarity measure of 

the case. 

Output data: final diagnosis Dfinal; updated case base considering 

new cases and recalculated weights. 

CBR decision adaptation includes the following stages: 

Stage 1. Data collection and preprocessing. 

At this stage, the parameters of the SPP equipment condition are 

collected and prepared for further processing: reading of input 

parameters X; feature normalization (min–max or Z-score) to ensure 

comparability of values and increase computational stability. 
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Stage 2. Failure probability correction. 

This stage accounts for operational factors and probabilistic 

dependencies between failures: 

for each component, the posterior probability of failure is 

calculated using a BN: 

 

)|( XfailurePp ii =  

 

the weights of the cases are corrected based on probabilistic analysis 

(1.3.33), which improves the relevance of similar case retrieval. 

Stage 3. Simulation modeling. 

To forecast the development of the technical system, simulation 

modeling is applied: generation of K SPP operation scenarios; for 

each scenario, simulation of component state evolution over time 

using the MМ (1.3.34); evaluation of dynamic inference Dsim based 

on failure probabilities across all scenarios. 

Stage 4. Formation of the final diagnosis. 

The final diagnostic decision is formed based on the integration 

of various sources of information: calculation of the base diagnosis 

DCBR using the adjusted case weights wᵢ; aggregation of CBR, 

Bayesian analysis, and simulation modeling inferences (1.3.35). The 

optimal solution is selected as the adjusted diagnostic decision. 

Stage 5. Case base update. 

The system updates the knowledge base based on new data and 

diagnostic results: addition of new cases arising during operation; 

recalculation of diagnostic accuracy metrics (Accuracy, Precision, 

Recall, F1-score) to evaluate adaptation effectiveness; if necessary, 

adjustment of global weighting coefficients α, β, γ controlling the 

contribution of each method. 

Stage 6. Maintenance recommendation generation. Based on the 

formed diagnosis and the predicted equipment state, maintenance 

recommendations are developed to extend the SPP's service life and 

prevent the development of critical failures. 

Figure 1.3.22 illustrates the process of adapting CBR decisions 

considering failure probabilistic analysis. 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

121 

 

 
 

Figure 1.3.22. Adaptation of CBR decisions considering 

probabilistic analysis of SPP equipment failures 

 

The diagram illustrates the general concept of adaptation: input 

data→forecasting→decision correction→recommendations. A step-

by-step flowchart of the adaptive CBR mechanism implementation is 

shown in Figure 1.3.23. It details the stages of equipment condition 

diagnostics and forecasting based on the integration of CBR methods, 

Bayesian analysis, and simulation modeling. 

The flowchart illustrates the sequential execution of the main 

stages of CBR decision adaptation from the collection and 

preprocessing of operational data to the formation of the final 

diagnosis. A key feature of the algorithm is the branching after the 

aggregated inference: based on the diagnosis; maintenance 

recommendations are simultaneously generated; the case base is 

updated to improve the accuracy of future diagnostic decisions. 
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Figure 1.3.23. Flowchart of the adaptive CBR algorithm for SPP 

diagnostics 

 

Key features of the adaptive mechanism include: 

- аssessment of case relevance: standard retrieval of similar 

cases is complemented by probabilistic analysis of component states, 

allowing the selection of safer scenarios in cases of forecasted failure 

risk; 

- сorrection of diagnostic decisions: when new data is received, 

the system automatically refines the diagnosis, suggesting preventive 

or repair actions if risk thresholds are exceeded; 

- аutomatic learning on new data: the case base is dynamically 

updated, and model weights are adjusted based on analysis of 

operational information and forecasting results. 
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Standard CBR methods operate on fixed historical data, ignoring 

probabilistic factors in failure development. The integration of 

Bayesian networks and Markov models transforms CBR into a 

dynamically adaptive system capable of accounting for both the 

current and predicted equipment states, thereby increasing diagnostic 

accuracy and extending the life cycle of critical technical systems. 

 

1.3.4.4 Formalization of diagnostic method integration 

The adaptive SPP diagnostic mechanism is based on the 

integration of three methods. CBR, probabilistic failure analysis 

(BNs), and simulation modeling based on Markov processes. The 

formalization of this integration enables the final diagnostic output to 

take into account both historical data and the forecast of equipment 

condition changes. 

The final diagnosis Dfinal is defined as a function of three 

components: 

                                  
),,,( SimBayesCBRfinal DDDfD =

                           (1.3.36)
 

where f(⋅) is the function defining the integration mechanism of the 

decisions; 

  DCBR - diagnosis based on precedents, determined by the 

similarity function between the current case and historical ones; 

includes the diagnosis and its associated error from the CBR method; 

  DBayes - probabilistic diagnosis based on BNs, taking into 

account the interdependence of component failures; includes 

correction based on failure probability models and associated error; 

 DSim - diagnosis based on simulation modeling, forecasting the 

system’s behavior over time; includes adjustments from the cognitive 

simulation model and its related error; 

 Dfinal - the final diagnostic output combining all three methods. 

A weighted aggregation scheme is used to combine the 

diagnostic outputs: 

                            
,SimdBayesdCBRdfinal DDDD ++= 
                   (1.3.37)
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where αd, βd, γd  are weighting coefficients reflecting the contribution 

of each method. These coefficients satisfy the normalization 

condition:   1=++ ddd   

The weight βd increases if the failure probability from the 

Bayesian network exceeds a threshold value. The weight γd increases 

if the simulation models reveal a high risk of failure, even if CBR 

finds no similar cases. 

The weighting coefficients can be adjusted using gradient 

descent or Bayesian optimization, minimizing the diagnostic error: 

                           

2

,

1

,,, )(minarg ifinal

N

i

itrue DD −= 
=

•


                         (1.3.38)

 

Similarly – Definition of weight coefficients. 

The weight coefficients αd, βd, γd can be determined by various 

methods depending on the available data and the problem 

formulation. 

1. Determining weight coefficients based on diagnostic error. 

If the average diagnostic errors ,,, SimBayesCBR EEE  are known, the 

weights can be set as follows: 

 

SimBayesCBR

CBR
d

EEE

E

/1/1/1

/1

++
= ; 

                                  SimBayesCBR

Bayes

d
EEE

E

/1/1/1

/1

++
= ;                     (1.3.39) 

SimBayesCBR

Sim
d

EEE

E

/1/1/1

/1

++
=

 
 

2. Determining weight coefficients based on confidence 

coefficients. 

If for each diagnostic method the confidence level ,,, SimBayesCBR CCC  

is known, the weights can be calculated as follows: 

                                  SimBayesCBR

CBR
d

CCC

C

++
= ;                                (1.3.40) 
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SimBayesCBR

Bayes

d
CCC

C

++
= ; 

SimBayesCBR

Sim
d

CCC

C

++
=  

 

The higher the accuracy of the diagnostic method, the greater its 

contribution to the final estimate. The confidence coefficients 

,,, SimBayesCBR CCC
 
can be determined based on previous diagnostic data, 

for example, as the proportion of correctly identified failures by this 

method. 

3. Determining weight coefficients based on diagnostic 

accuracy. 

If the accuracies of diagnostic methods are known (e.g., the 

proportion of correctly detected failures), they can be normalized as: 

SimBayesCBR

CBR
d

PPP

P

++
= ; 

                                        SimBayesCBR

Bayes

d
PPP

P

++
= ;                           (1.3.41) 

SimBayesCBR

Sim
d

PPP

P

++
=  

Dynamic weight update. 

If the diagnostic system operates in real-time, weights can be 

updated dynamically based on the probability of successful 

diagnosis: 

)()()1( finalCBRdd PPktt −+=+  ; 

                                  
)()()1( finalBayesdd PPktt −+=+  ;                    (1.3.42) 

)()()1( finalSimdd PPktt −+=+   

 

where ,,, SimBayesCBR PPP  – predicted probabilities of correct diagnosis; 

   k – adaptation rate coefficient. 

 If there is no data on method quality, weights can be set 

uniformly: 
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                                           3

1
=++ ddd 

                              (1.3.43)
 

Proportional distribution based on method accuracy. 

If the relative accuracies of CBR ),( CBRP  probabilistic models )( BayesP   

and simulation modeling )( SimP  are known, then αd, βd, γd are 

normalized as follows: 

)1( d

SimCBR

CBR
d

PP

P
 −

+
= ; 

                                   

)1( d

SimBayes

Bayes

d
PP

P
 −

+
= ;                          (1.3.44) 

)1( d

SimBayes

Sim
d

PP

P
 −

+
=  

 

Definition of αd, βd, γd through inverse errors (the smaller the 

error, the higher the contribution). 

If the average model errors 
SimBayesCBR EEE ,,  are known, the 

distribution is set as: 

)1(
/1/1

/1
d

SimCBR

CBR
d

EE

E
 −

+
= ; 

                                  

)1(
/1/1

/1
d

SimBayes

Bayes

d
EE

E
 −

+
= ;                        (1.3.45) 

)1(
/1/1

/1
d

SimBayes

Sim
d

EE

E
 −

+
=

 
 

If no additional information is available, weight coefficients βd 

and γd are divided equally: 

 

                                        2

1 d
dd




−
==

                                  (1.3.46 )  

 

If the accuracy of diagnostic methods is known, accuracy 

normalization is used. If errors are known, inverse error 
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normalization is used. If there is no data, uniform distribution is 

applied. If a method shows higher accuracy on current data, its 

weight increases. If confidence coefficients are available, they can be 

normalized for weight calculation. If the model operates dynamically, 

weights can be adjusted based on success probabilities. The method 

of choosing weights depends on the available data and system type. 

In the case of marine power plants, the most accurate method would 

be one based on historical diagnostic errors and adaptive weight 

updating as new data becomes available. The optimal method for 

selecting weights depends on the available data: if error data is 

available – use method 1; if accuracy data – method 2; for dynamic 

updating – method 3. Thus, the share of each coefficient is 

determined either based on errors, or on diagnostic accuracy, or is 

dynamically adjusted over time. 

Diagnosis based on CBR. 

The CBR method assesses the similarity of a new failure X with 

known cases Ci in the database. The diagnosis based on case 

retrieval: 

                                
,),()(

1

i

N

i

iiCBR DCXSXD 
=

= 
                         (1.3.47)

 

where ),( iCXS – similarity measure between the current case X and 

precedent Ci; 

     Di – diagnostic result for the i-th precedent; 

     
i  – reliability weight of the precedent. 

Bayesian diagnosis. 

Diagnostic inference based on probabilistic dependencies: 

                                     
k

K

k

kBayes DECPD 
=

=
1

)|(

                              (1.3.48) 
The probability of component Ck failure, considering 

dependencies in the system, is set by Bayes' formula: 

 

                        

,
)()|(

)()|(
)|(
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j

j
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CPCEP
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


=


                              (1.3.49)
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where   )( kCP  - prior probability of Ck failure; 

           )|( kCEP - likelihood of observed data given failure of Ck. 

Simulation modeling predicts the probability of failure over 

time. 

        The probability of component Ck being in a certain state at time t 

is determined by the Markov model: 

 

                                  
,),()1,( transkk PtCPtCP =+
                          (1.3.50)

 

where   
transP   - transition probability matrix 

Predicted failure probability after t hours: 

 

                                       
),,(1)( tCPtD kSim −=

                               (1.3.51) 

where ),( tCP k
 - probability calculated via the Markov process 

transition matrix. 

The developed mathematical model formalizes the integration of 

CBR, Bayesian analysis, and simulation modeling. The final 

diagnostic output Dfinal accounts for both historical data and 

probabilistic forecasts. Optimization of the parameters αd, βd, γd 

allows the model to adapt to specific operational conditions. 

Integration of BNs and Markov processes. 

Integration occurs through correction of component state 

probabilities: 

 

         
),,|(),|(),,|( 11 SimCBRiit

i

tSimCBRtt DDUPUSSPDDSSP = −− 
            (1.3.52) 

 

 

where  )|( 1−tt SSP  - probability of transition of the SPP to state St per 

the MМ; 

     ),|( SimCBRi DDUP  -– corrective failure probability from the BN 

The final diagnosis is obtained by summing over all possible 

states. 

Correction of the CBR decision is performed considering 

predicted probabilities: 
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)()()( tPtPDtD SimdBayesdCBRdj ++=                     (1.3.52) 

     

When the threshold probability of failure is exceeded, automatic 

diagnosis refinement is performed. 

Formula for updating failure probabilities using Bayesian 

analysis: 

                                     
),()|( iijki UPUUP =

                              (1.3.53) 

where 
ij - influence coefficient of failure of component j on 

component i 

Formula for adjusting CBR decisions based on forecast 

probabilities: 

                            
),()()( i

i

Bayesidj DPDPDP  += 

                           (1.3.54) 
where γi - influence coefficients of probabilistic analysis on the final 

diagnosis. 

Table 1.3.25 demonstrates the optimal weight coefficients 

depending on the diagnostic scenario. 

The data were obtained from a statistical analysis of multiple 

marine power plant operational scenarios, where average influence 

values of each diagnostic method were calculated. 

Table 1.3.25. Optimal weight coefficients depending on the 

diagnostic scenario 

 

Operating scenario αd (CBR) ηd (Bayes) γd (Sim) 

Stable operation 

without failures 
0.7 0.2 0.1 

Increased risk due to 

aging 
0.4 0.4 0.2 

High loads and 

overheating 
0.3 0.5 0.2 

Lack of historical 

data 
0.2 0.3 0.5 

Emergency situation 0.2 0.6 0.2 
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Analysis of the data in Table 1.3.25 shows that: in normal 

operating mode, CBR contributes the most, as historical data 

effectively support failure similarity identification; under high failure 

risk, BNs become more influential due to the critical importance of 

considering dependencies between components; in the absence of 

sufficient data, simulation modeling dominates, as it can generate 

artificial scenarios for failure prediction. 

The integration algorithm was implemented in the Python 

environment using the scikit-learn library for CBR and BNs, and 

numpy for simulation modeling. An example of the code for 

calculating the final diagnosis: 

 
import numpy as np 

def update_cbr_decision(prob_failure, correction_factor): 

    return prob_failure * correction_factor 

# Example data 

components = {"Generator": 0.10, "Cooling": 0.15, "Pump": 0.05} 

correction_factors = {"Generator": 0.8, "Cooling": 1.2, "Pump": 1.1} 

# Correction of probabilities 

corrected_probs = {comp: update_cbr_decision(components[comp], 

correction_factors[comp]) for comp in components} 

 

Dynamic weight adaptation is performed based on the criteria of 

minimizing diagnostic error on the validation dataset. 

 

1.3.4.5 General experimental evaluation of adaptive CBR 

The use of the load factor as an independent variable makes it 

possible to conduct generalized forecasts for various types of SРР, 

which increases the universality of the analysis of the obtained 

results. The load factor is a dimensionless quantity showing the ratio 

of the current load to the nominal, which allows generalizing the 

results for different operating conditions of the SРР. 

Figure 1.3.24 presents graphs of changes in the failure 

probabilities of five key SРР subsystems depending on the load 

represented through the load factor. 
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Figure 1.3.24. Changes in failure probabilities of SРР components 

depending on the load factor 

 

For the main engine, Figure 1.3.24 shows that the change in 

failure probabilities corresponds to an exponential increase in failure 

probability as the load factor increases. At reduced loads (factor 0.6 -

0.8), the failure probability remains at 1 - 1.5%, but when exceeding 

the nominal level (factor >1.0), the growth accelerates, reaching over 

5% at 1.4. This indicates nonlinear effects associated with 

overheating, wear, and cavitation. The cooling system operates stably 

at a factor of 0.6 - 1.0, but after 1.1, the failure probability increases 

more rapidly, indicating overload of heat exchangers and 

deterioration of heat dissipation. The power supply system shows 

stability up to a factor of 1.2, after which the failure probability 

begins to increase. This is consistent with cable heating models and 

changes in generator performance. The compressed air system shows 

minimal failure probabilities even at a load factor of 1.2, but after 

exceeding 1.3, the increase becomes noticeable, which is explained 

by compressor wear. The fuel system demonstrates a relatively linear 

increase in failure probability starting at a factor of 0.6. However, 
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after exceeding 1.3, the probability increases more sharply, indicating 

risks of filter clogging and pump overload. 

A load factor exceeding 1.0 becomes a critical zone where the 

failure probability grows faster. The main engine and cooling system 

are most sensitive to increasing load factor, requiring enhanced 

monitoring during overloaded operation. The power supply and fuel 

systems show moderate dependence on the load factor but become 

vulnerable at values above 1.3. The compressed air system is the 

most resilient but is also subject to failures under overload. 

Figure 1.3.25 presents the generalized SРР failure probability, 

showing the integral failure probability of the SРР calculated based 

on the failure probabilities of key components and subsystems. 

 
Figure 1.3.25. Generalized failure probability of the SРР 

 

The data is obtained based on the analysis of probabilistic 

dependencies of subsystem failures (Markov method, BNs). From 

Figure 1.3.25, a decrease in residual life is observed, accompanied by 

an increase in the risk of failures of components and SРР subsystems. 

From this follows how the maintenance strategy changes depending 

on: high residual life (80 - 100%) - operation is recommended; 

medium residual life (40 - 60%) - maintenance or diagnostics; low 
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residual life (<20%) - repair or replacement. Threshold values of 

residual life (80%, 40%, 20%) are selected based on industry 

recommendations for SРР maintenance. 

Figure 1.3.26 illustrates the change in the failure probability of 

the MPS over time. 

 

 
Figure 1.3.26. Change in the failure probability of the SPP over 

time 

 

From the graph (Fig. 1.3.26), it follows that the probability of 

failure gradually increases, reflecting equipment degradation 

processes, the influence of operational factors, and the accumulation 

of failures in subsystems. The failure probability forecast is carried 

out over a 1000-hour operation interval, which allows assessing the 

short-term dynamics of equipment degradation. 

Figure 1.3.27 presents a graph showing how the failure 

probability changes after the correction of the CBR decision. The 

graph in Fig. 1.3.27 shows how the failure probability changes after 

the correction of the CBR decision. The graphs show the initial 

failure probability (without prediction) and the corrected failure 
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probability (taking into account the Bayesian network and MМ). The 

initial failure probability shows how the component failure 

probability of the SРР increases over time in the absence of 

corrective actions. The failure probability increases linearly (0.05 + 

0.02*t), which reflects the natural degradation process of equipment 

without forecasting and preventive measures. This scenario is typical 

for traditional diagnostic methods, where failures are recorded post 

factum, without predicting their occurrence. 

 

 
Figure 1.3.27. Changes in failure probabilities considering 

decision correction 

 

Figure 1.3.28 shows how probabilistic forecasts affect the 

adaptation of CBR decisions. Without adaptation, diagnostics rely 

only on historical data, which leads to high uncertainty. With 

adaptation, probabilistic models are taken into account, which 

improves diagnostic accuracy. It shows how the CBR model reduces 

the risk of SРР equipment failure. 
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Figure 1.3.28. Changes in generator failure probability (with and 

without CBR adaptation) 

 

The graph "Without CBR adaptation" illustrates the natural 

increase in generator failure probability without the use of 

forecasting and decision correction mechanisms. The graph "With 

CBR adaptation" shows how applying CBR in combination with 

Bayesian analysis and the MМ reduces the failure probability 

through decision adaptation. Without adaptation, the failure 

probability increases exponentially due to accumulated generator 

wear. CBR adaptation allows for the consideration of predicted 

failures by offering corrective actions (e.g., preventive maintenance 

or load adjustment), which slows the growth of failure probability. 

The graphs (Fig. 1.3.29) show how diagnostic accuracy 

(Accuracy, Precision, Recall, F1-score) changes when using CBR 

decision adaptation compared to the baseline approach. Quality 

metrics (Accuracy, Precision, Recall, and F1-score) were calculated 

on a validation set of 500 failure and malfunction cases, split 70/30 
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for training and testing. The graphs clearly demonstrate the 

advantages of the adaptive mechanism. 

 
Figure 1.3.29. Changes in fault diagnosis accuracy of marine 

power plants using the adaptive mechanism 

 

Without adaptation, diagnostic accuracy decreases with an 

increasing number of diagnostic cycles. This indicates model 

degradation without parameter correction. With adaptation, accuracy 

steadily increases and reaches a high level, confirming the 

effectiveness of the adaptive mechanism. 

Table 1.3.26. Impact of operational load on the failure probability 

of marine power plants 

Component Load (normalized) Failure Probability 

Generator 0.8 0.12 

Pump 0.9 0.15 

Engine 1.0 0.22 
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For each new diagnostic case: CBR searches for similar cases in 

the database; BN adjust the failure probability considering 

component dependencies; Markov processes predict the failure 

probability over time; simulation modeling is used to generate 

additional data when statistics are insufficient. 

Tables 1.3.27 and 1.3.28 demonstrate how the final diagnostic 

decision changes under different values of failure probability and 

remaining component life. 

 

Table 1.3.27. CBR decision correction depending on risk and 

remaining resource 

Component 

Failure 

probability 

(before 

correction) 

Failure 

probability 

(after 

correction) 

Remaining 

resource 

Generator 0.10 0.08 1500 hours 

Cooling 0.15 0.18 1200 hours 

Pump 0.05 0.06 1800 hours 

 

 

Table 1.3.28. Final diagnostic decision depending on failure 

probability and remaining resource 
Remaining 

Resource 

(hours) 

P failure (from 

BN) 
Final Diagnosis 

>10,000 <0.1 Equipment is operational 

5,000 – 10,000 0.1 – 0.3 Monitoring required 

1,000 – 5,000 0.3 – 0.6 Scheduled maintenance recommended 

<1,000 >0.6 
High failure risk, immediate repair 

required 

 

Table 1.3.29 complements Tables 1.3.27 and 1.3.28 by 

demonstrating how the final CBR diagnostic decision is corrected 

depending on the level of risk and remaining resource. 
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Table 1.3.29. CBR decision correction depending on risk and 

remaining resource 

Remaining 

resource 

(%) 

Low 

failure risk 

Medium failure 

risk 
High failure risk 

>80% 

Standard 

CBR decision 

applied 

Minor correction 

of failure 

probability 

Minor correction of 

failure probability 

50–80% 

Minor 

correction of 

failure 

probability 

Correction 

based on BNs 

Correction using 

BNs and MМs 

<50% 
Correction 

using BNs 

Correction using 

BNs and MМs 

Simulation 

modeling applied 

for prediction 

refinement 

 

From the table, it follows that with a high remaining resource 

(>80%), CBR decision correction is minimal due to low failure 

probability. As the resource decreases (50–80%), probabilistic 

dependencies must be considered, requiring BNs.  

When the remaining resource is below 50%, a comprehensive 

approach using MМs and simulation modeling is applied to refine 

failure probability forecasts.  

The results in Tables 1.3.27 - 1.3.29 confirm that the integration 

of CBR with probabilistic models and simulation modeling allows 

for dynamic adaptation of diagnostics based on the actual state of 

components.  

In particular: with high remaining resource (80 - 100%) CBR 

operates with minimal correction; in the 50 - 80% range, it is 

important to consider probabilistic dependencies, requiring BNs; 

when remaining resource is <50%, diagnostic accuracy significantly 

improves with the application of MМs and simulation modeling. 
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Thus, the proposed CBR decision adaptation mechanism 

improves diagnostic accuracy and reduces the risk of false decisions 

through dynamic adjustment of probabilistic estimates. 

Figure 1.3.30 shows the cycle of cognitive simulation modeling, 

which integrates expert knowledge and probabilistic models for the 

generation and validation of synthetic failure cases. In the first stage 

(Expert Knowledge Formalization), rules and ontologies are 

formalized to reflect cause-effect relationships and failure 

development scenarios.  

Then, a large set of synthetic cases is generated (Synthetic Case 

Generation), covering both typical and rare failure scenarios.An 

automated selection module (Automated Selection) applies an 

entropy-based criterion to filter the most informative scenarios, 

reducing the data volume and improving training quality. The 

selected cases are integrated into probabilistic models (Integration 

into Probabilistic Models), including BNs and Markov processes, to 

update failure probability estimates. 

During the consistency check stage (Consistency Check), 

synthetic data is compared against the underlying expert rules, and 

inconsistent cases are discarded. 

After this, the CBR mechanism and Bayes/Markov parameters 

are updated (Update CBR & Bayes/Markov), allowing the system to 

adapt to new data. Iterative repetition of the cycle (Iterative Learning 

& Convergence) continues until satisfactory stability of predictive 

metrics is achieved, ensuring continuous improvement in diagnostic 

and failure prediction accuracy.  

Thus, the proposed approach combines the strengths of expert 

knowledge with the power of probabilistic methods in a unified 

adaptive process. 

To evaluate the contribution of the cognitive module to adaptive 

CBR, a series of experiments was conducted on a dataset comprising 

1,200 historical cases and 10,000 synthetic scenarios generated by 

the cognitive simulation module. Synthetic data was selected based 

on maximum entropy of expert assessments, allowing the selection of 

the most "significant" and rare failure cases. All scenarios were 
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modeled using BNs and MМs under train/test conditions (70/30 split) 

with 5-fold cross-validation, ensuring statistical reliability of the 

results. 

 

 
Figure 1.3.30. Cycle of Cognitive Simulation Modeling for the 

Generation and Validation of Synthetic Cases 

 

An important enhancement to the adaptation mechanism is the 

use of a cognitive simulation model, which enables generation of 
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synthetic training data. When encountering novel, previously unseen 

failure scenarios, the cognitive model replicates expert decision-

making, generating synthetic data. The module produced 5,000 - 

10,000 synthetic cases using cognitive simulation, selecting the most 

“essential” scenarios based on expert assessment entropy. In marine 

power plants, severe failures are rare and typically lack historical 

data.  

These generated “exotic” cases help prepare the system for such 

low-probability but critical situations. Synthetic scenarios undergo 

automated verification for compliance with physical and expert rules 

(consistency check), and their impact on the model is calibrated using 

Bayesian posterior updates. Additionally, key parameters of synthetic 

and real data are statistically compared, and the model is tested on 

real cases via cross-validation. These data fill gaps: in the case base 

and enable the system to account for rare and complex situations; 

adjustment of probabilistic distributions: The synthesized data is used 

to update probability distributions in BNs and to recalibrate the 

transition matrix in the MМ.  

Adjustments are made by introducing additional conditional 

dependencies into the BN and updating the Markov transition matrix 

based on newly generated data; integration of expert knowledge: The 

cognitive simulation model serves as a bridge between traditional 

diagnostic methods (CBR) and probabilistic models, allowing the 

system to consider both quantitative and qualitative aspects of 

failures. 

To quantitatively assess the effectiveness of the proposed 

approach, a series of experiments was conducted. The results are 

summarized in Table 1.3.30.  Table 1.3.30 illustrates the impact of 

cognitive modeling on prediction accuracy. It presents key metrics 

comparing the standard approach (“CBR + Bayes + Markov”) with 

its cognitive module extension. Data from forecasting model 

comparisons used in the diagnostic system are shown. Average 

prediction error was evaluated using standard probabilistic methods 

(without cognitive modeling) and with cognitive enhancements that 

account for complex parameter dependencies. 
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Table 1.3.30. Failure prediction metrics with and without the 

cognitive module 

Approach 
MAE 

(%) 

RMSE 

(%) 
R² 

Average 

prediction 

error (%) 

Without cognitive modeling 0.085 0.112 0.78 12.5 

With cognitive modeling 0.052 0.074 0.89 7.8 

 

MAE and RMSE showed a reduction of 39% and 34%, 

respectively. The R² increased from 0.78 to 0.89, indicating improved 

explanatory power of the model. The average prediction error 

decreased from 12.5% to 7.8% (an improvement of 4.7%), p < 0.05.  

The data analysis confirms that the use of cognitive modeling 

reduces the average failure prediction error by 4.7%, demonstrating 

its effectiveness. This is particularly important in cases with 

insufficient historical data or complex interdependencies among 

system parameters. 

 

 
Figure 1.3.31. Box plot of failure prediction error distributions: 

without and with the cognitive module 
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Figure 1.3.31 presents a box-and-whisker plot of the distribution 

of failure prediction errors before and after the integration of the 

cognitive module. This visualization allows for a quick assessment of 

key characteristics of both samples and their comparison.  

The median indicates the central error value: approximately 

12.5% without the cognitive module and reduced to about 7.8% with 

it. This reflects a significant shift of the distribution center toward 

lower errors following the integration of the cognitive component. 

The interquartile range (IQR) in the left group spans roughly from 

11% to 14%, whereas in the right group it narrows to 6%–9%. 

The whiskers show the range of values excluding outliers. Their 

length is significantly greater on the left (from ~8% to ~16%) than on 

the right (from ~5% to ~12%), indicating a reduction in error 

variability after the cognitive module is added. Outliers are less 

frequent in the right box plot, reflecting improved model robustness: 

the reduction of abnormally high errors confirms that the cognitive 

module effectively handles rare and complex failure scenarios. 

Comparing the box plots before and after integration provides a 

visual assessment of the statistical significance of the changes. Non-

overlapping boxes (IQRs) and medians suggest a meaningful 

difference between distributions. 

This compression of the distribution and shift of the median 

confirms that the cognitive module improves prediction accuracy by 

reducing both average and maximum error values - critical for timely 

decision-making in real-time operations.  

When analyzing box plots, it's important to consider the sample 

size (n = 100 per group) to ensure the statistical reliability of median 

and quartile estimates.  

The box plot remains one of the most compact and informative 

methods for comparing groups on the distribution of continuous 

variables, combining key statistics (median, IQR, whiskers, outliers) 

in one chart. Figure 1.3.31 clearly demonstrates that the cognitive 

module not only shifts the error distribution toward lower values but 

also reduces variability and extreme cases, making the predictions 

more accurate and reliable.  
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As shown, the integration of the cognitive component 

significantly reduces both the median error values and their spread, 

further confirming the model’s robustness to variation in failure 

scenarios. 

An additional test was conducted using a simplified cognitive 

module (without entropy-based case selection), which yielded an 

average error of 9.3%, confirming that the key factor behind the 

improvement lies in the selection logic of the most "informative" 

scenarios. The integration of the cognitive module increased the 

processing time per request from 50 ms to 75 ms on a standard server 

(Intel Xeon, 16 GB RAM), which remains acceptable for real-time 

online diagnostics. 

The achieved 4.7% increase in accuracy is comparable to the 

results of Montero-Jiménez et al. [76], where integrating an 

ontological module into a CBR architecture improved diagnostic 

accuracy by about 5%. Thus, cognitive modeling not only 

complements the adaptive CBR mechanism but also enhances its 

flexibility in predicting the technical condition of complex systems, 

aligning with the goals of this study. 

 

1.3.4.6 Discussion of results 

This study proposes an adaptive CBR mechanism for the 

diagnosis of marine power plants, integrating probabilistic failure 

analysis (BNs), degradation forecasting (MМs), and simulation 

modeling. Experimental validation demonstrated that the proposed 

system achieves a diagnostic accuracy of 91%, compared to 79% for 

classical CBR, while reducing the false alarm rate by 6.7%. The 

improvement in RUL prediction reached 5 - 7%, confirming the high 

effectiveness of the integrated approach. 

Analysis of the results shows that the most significant impact on 

diagnostic accuracy came from incorporating BNs to estimate failure 

probabilities. These networks accounted for cascading dependencies 

between components and reduced diagnostic errors by 6.8%. 

 A similar increase in accuracy (up to 90%) through combined 

training of BNs on heterogeneous data was observed by Ademujimi, 
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T., & Prabhu, V. [98], who employed fusion learning to integrate 

sensor data with maintenance reports from the International Institute 

of Refrigeration (IIF). Furthermore, Tarcsay, B. L., et al. [99] 

demonstrated that integrating FMEA methods with BNs enables 

effective differentiation between critical and non-critical failures, 

reducing false alarms, which fully aligns with our findings. 

Degradation forecasting using an exponential Markov model applied 

to key marine system components improved RUL predictions by 5–

7%. Liao, G., et al. [100] developed an RUL prediction approach 

based on a Wiener process. While their model successfully addresses 

multiphase degradation, it is focused on quantitative RUL forecasting 

rather than diagnostic assessment with adaptive refinement of 

features, which our solution provides. The study by Muhammad 

Sohaib et al. [101] focused on deep learning for predictive 

maintenance. However, typical limitations of neural networks - such 

as the need for large training datasets and poor model interpretability 

- make them less effective for real-time adaptation. These issues are 

addressed in our approach through the combination of case-based 

reasoning and probabilistic correction. Sahoo S. et al. [102] presented 

a fault diagnosis method for gearboxes under uncertainty using AI 

techniques. The authors highlighted trust issues in diagnostics under 

limited data conditions. They reported a drop in accuracy to 82% 

with 30% missing data using probabilistic neural networks, whereas 

the adaptive CBR maintained high accuracy through weight 

recalculation and simulation-based knowledge base augmentation. In 

our approach, uncertainty is addressed by integrating Bayesian 

mechanisms directly into the case reasoning process, enhancing the 

reliability of the conclusions. Xu, J. et al. [103] reported a 15% 

increase in operator trust when using explainable Bayesian models in 

HVAC systems (MDPI). Our approach achieves a similar level of 

explainability, while also allowing users to trace which cases and 

probabilistic dependencies underpinned the conclusions. Qi B. et al. 

[104] applied combined neural network and simplified Bayesian 

network methods for diagnostics in nuclear power. While their 

method showed high accuracy, it required significant computational 
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resources and was not focused on real-time adaptive adjustment, 

unlike our system. Zhou T. et al. [105] proposed a diagnostic 

framework addressing uncertainty for critical applications. Although 

their work extensively covered trust and uncertainty modeling, it 

prioritized robust model construction over adaptive correction based 

on new data an area where our method offers a distinct advantage. 

Future research should focus on automatic BN structure 

generation using deep learning techniques, expanding the cognitive 

module with trainable agents, and developing an ontological 

interpretation of diagnostic outputs to enhance explainability and 

operator trust. Thus, the proposed adaptive CBR mechanism 

demonstrates superiority over existing methods in diagnosing 

complex technical systems by combining high accuracy, adaptability, 

and decision transparency - key features for the operation of marine 

power plants in dynamically changing conditions. 

 

1.3.4.7 Conclusions 

The goal of this study was to develop and experimentally 

validate an adaptive CBR mechanism for diagnosing SРР, integrating 

probabilistic failure analysis and technical condition forecasting. As a 

result of integrating CBR with BNs and Markov processes, fault 

detection accuracy increased from 79% to 91%; BNs reduced error 

rates by 6.8%, while MМs improved RUL prediction by 5–7%. The 

generation of probabilistic scenarios through simulation modeling 

enhanced forecast reliability by 9.4% in the absence of sufficient 

historical data.  

Operational load analysis showed that with a load factor >1.0, 

the failure risk of key components increases by a factor of 3.2, 

requiring mandatory correction of diagnostic decisions. Optimization 

of weighting coefficients (αd, βd, γd) reduced average diagnostic error 

by 6.2%, while dynamic weight adaptation decreased false alarm risk 

by 7.3% and improved forecast accuracy by 8.5%. The inclusion of a 

cognitive simulation module reduced the average forecast error from 

12.5% to 7.8% and increased the accuracy of detecting rare faults by 

5.1%.  
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Practical implementation of the proposed mechanism enables 

timely detection of SРР component degradation, reduces unplanned 

downtime, and optimizes maintenance scheduling by improving RUL 

prediction accuracy. Future work should focus on expanding the case 

base through active learning on new data, automating the BN 

structure using deep learning methods, and developing an ontological 

interpretation of diagnostic outputs to enhance explainability and 

operator trust. 

 

 

1.3.5 Integrated approach to diagnosing complex technical 

systems: experimental validation and multidimensional efficiency 

assessment 

 

1.3.5.1 Introduction 

In modern CTS, such as ship power plants SPP, issues of 

reliability and timely detection of equipment failures are critically 

important for ensuring operational safety and optimizing 

maintenance costs. Existing intelligent approaches to the diagnosis of 

the technical condition  of CTS traditionally rely either on CBR, 

which enables the use of accumulated experience from similar 

incidents, or on probabilistic models (BNs and MМs), which account 

for uncertainty and the dynamics of failure development in 

equipment components, or on simulation modeling, which generates 

degradation scenarios for components. However, the application of 

each of these methods individually is often insufficient for complex 

systems with cascading failure effects [43, 106].  

In response to these limitations, the field of hybrid and 

integrated models for diagnosis and prognosis of the TS of complex 

systems, combining the advantages of different methodological 

blocks, has been actively developing in recent years. A systematic 

review of hybrid methods shows that a properly designed 

combination of CBR, probabilistic models, and simulation modeling 

can yield a synergistic effect, improving the accuracy of diagnostics 

and predictions of equipment TС [107]. Researchers Nikpour & 
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Aamodt [57] introduced the BNCreek system, which combines CBR 

with a Bayesian network for fault diagnosis of CTS equipment under 

uncertainty. However, simulation modeling was not included, nor 

was a multi-scenario experiment conducted, and the system's 

performance evaluation was limited to comparisons with expert 

assessments without formal metrics such as Precision/Recall/F1. 

Chen et al. [28] integrated CBR and BNs for diagnosis and prognosis 

of the TС of complex systems, with validation based on real sensor 

data. However, their integration of CBR and BNs did not involve 

Markov chains, and the simulation did not explore cascading 

equipment failures. A multidimensional evaluation of diagnostic and 

prognostic metrics was also not performed. Soleimani et al. [108] 

developed a combined HMM (Hidden MМ - a statistical model used 

for analyzing sequences where the system is described as having 

hidden states that transition with certain probabilities) for equipment 

failure detection and a BN for root cause identification. This 

approach proved effective for fault diagnostics using an automotive 

system example. However, the authors did not use CBR, and their 

diagnostic system lacked a simulation module. The experiment 

covered only a single application domain. El-Awady, Ahmed & 

Ponnambalam, Kumaraswamy [109] proposed simulation supported 

BNs (SSBN) and Markov chain simulation supported BNs 

(MCSSBN) for analyzing equipment failures in complex networks 

through simulation and probabilistic analysis. SSBN aims to improve 

the accuracy of probabilistic models through more realistic and 

variable scenarios. MCSSBN accounts for the dynamic changes in 

equipment TC over time, which is particularly important for 

diagnosing and predicting equipment degradation. However, the 

authors did not include a CBR component in their development, did 

not conduct experimental validation of SSBN and MCSSBN for 

diagnosing equipment failures in complex technical systems under 

various emergency scenarios, and did not employ diverse diagnostic 

accuracy metrics. In their 2023 review, Zhong et al. [110] examined 

the application of digital twins in predictive maintenance of CTS 

equipment, including systems used in shipbuilding. However, as a 
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review article, it did not present experimental implementations of the 

integration of CBR, probabilistic models, and simulation modeling. 

A comprehensive review of Predictive Maintenance (PdM) methods 

for the maritime industry, including ML algorithms for data 

processing, diagnostics, and failure forecasting, was provided by 

Kalafatelis et al. [111]. A drawback of this theoretical review is the 

absence of a practical implementation of an integrated method. The 

authors also did not consider CBR or Markov simulations. Emre 

Özaydın et al. [112] used a BN approach for analyzing equipment 

failures on ships. The resulting data were compared with historical 

data, with no focus on post-failure analysis. A CBR block was not 

used, and no failure prediction simulation was conducted. Michail 

Cheliotis et al. [113] proposed a framework for diagnosing 

equipment failures in CTS based on operational data and failure 

probabilities, supported by ML algorithms. Their development did 

not include a CBR database or simulation scenarios of CTS 

equipment failures. Diagnostic accuracy was assessed using only a 

single metric, and no multi-scenario validation of failure diagnostic 

accuracy was performed. 

Despite the presence of these studies, there remains a lack of 

experimental verifications of hybrid approaches specifically applied 

to ship-based CTS using multidimensional metrics (Accuracy, 

Precision, Recall, F1 score). Existing reviews either cover the general 

theory of hybridization or focus on individual technological 

components (digital twin, Bayesian networks), but do not provide a 

comprehensive analysis of the synergy of all three components 

within a single experimental case. 

 

1.3.5.2 Purpose and objectives of experimental testing 

The purpose of this article is to organize and conduct multi-

scenario experimental testing of an integrated method for diagnostics 

and prognostics of ТС in complex systems, using the example of an 

SРР. The testing employs multidimensional quality metrics - 

Accuracy, Precision, Recall, and F1 Score - which enable: 

quantitative confirmation of the synergistic effect resulting from the 
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integration of CBR, probabilistic models, and simulation modeling; 

analysis of the method’s robustness under various operational modes 

(normal mode, increased loads, incomplete data); development of 

practical recommendations for implementation in diagnostics and 

prognostics systems of complex technical systems for various 

applications. 

Within the integrated approach to diagnostics and prognostics of 

ТC SРР technical systems, an adaptive mechanism for CBR decision 

correction is implemented. This mechanism combines three 

information sources: probabilistic forecasting (BNs and MМs) - for 

estimating current and future probabilities of component failures; 

RUL prediction - based on statistical models (MAE/RMSE) that 

refine the expected time to failure; simulation modeling - for 

generating degradation and cascading failure scenarios, allowing 

CBR decisions to be adjusted by accounting for potential nonlinear 

interactions between system nodes. At each diagnostic cycle, the 

CBR core receives updated failure probability estimates and 

scenarios from the probabilistic models and the simulator, then 

dynamically recalculates feature weights and refines the selection of 

similar cases. This approach ensures more accurate and robust 

diagnostics, even under changing operational factors and incomplete 

data. 

The main testing objectives include: evaluating the impact of 

integrating the adaptive mechanism into the CBR diagnostic 

structure, which leverages probabilistic forecasting and RUL 

analysis; analyzing the influence of probabilistic methods (BNs, 

MМs) on the accuracy of technical state predictions and failure 

probabilities; determining the contribution of simulation modeling to 

the accuracy of equipment failure forecasting, including assessing 

how cascading effects influence prediction accuracy;  comparing 

various method combinations and evaluating their effectiveness 

based on key failure diagnostics accuracy metrics. 

Real failure data is used for comparison. The testing is 

conducted on a simulation model of the SРР, which includes: 

historical failure data (from the OREDA - Offshore Reliability Data 
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database [114]); simulated degradation scenarios of components, 

mimicking different operational modes; BNs accounting for 

probabilistic interrelations between component failures; MМs applied 

to predict failure probabilities over time; CBR diagnostic results - 

conclusions made by the system based on case analysis and decision 

adaptation; adjustments based on RUL predictions and cascading 

failure effects (e.g., failure of one node increases the probability of 

failure in other equipment nodes); simulation failure data - results 

from the simulation model, where failure of one SРР component can 

lead to failures in connected system nodes (cascading effects 

considered). 

Testing covers various operational scenarios, including: normal 

conditions – standard operating mode; accelerated wear – increased 

loads and harsh operational environments; emergency conditions – 

unexpected failures and stress impacts on the system. 

CBR with adaptation implies not merely using a case base, but 

dynamically adjusting decisions based on predicted RUL and 

cascading failure probabilities obtained from probabilistic models. To 

assess the quality of SРР equipment failure diagnostics, the following 

accuracy metrics are used: Precision - the proportion of correctly 

predicted failures among all predicted failures; Recall - theproportion 

of actual failures that were correctly predicted; F1 Score – the 

harmonic mean of precision and recall; Accuracy - the total number 

of correctly classified cases (both failures and non-failures). 

The average prediction error of RUL is evaluated using: MAE - 

average absolute error in RUL prediction; RMSE - root mean square 

error, which accounts for large deviations. 

Analysis of false positives and false negatives includes: False 

Positive (FP) - incorrect diagnostics where the system wrongly 

identifies a healthy component as faulty; False Negative (FN) - 

missed failures where the system fails to predict a failure that 

actually occurs. A detailed analysis of FP and FN helps improve 

decision-making algorithms and minimize critical errors. True 

Positive (TP) - correct prediction of a failure that actually occurs; 
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True Negative (TN) - correct prediction that no failure occurs and 

indeed none happens. 

Several operational testing scenarios were developed, differing 

in load levels, failure frequency, and operating conditions. This 

allows for an assessment of the integrated method’s robustness and 

its ability to function correctly under various operating modes. 

The diagnostic CBR module is based on a case base of 235 

structured cases, which include descriptions of failures, operating 

conditions, degradation parameters, and the decisions made. The 

cases were developed with input from industry experts with at least 

10 years of experience in EMCS operation and maintenance. Each 

case was assigned a feature vector, including values of temperature, 

pressure, vibration, operating time, and failure characteristics of SРР 

elements, components, and subsystems.  

The structure of the case base enables efficient similarity-based 

search using a feature similarity metric, where feature weights are 

defined by expert methods and calibrated during preliminary testing. 

 

1.3.5.3 Test scenarios for the technical condition of the SРР  

To verify the effectiveness of the proposed integrated method 

for diagnosing and predicting failures of elements, components, and 

subsystems of the SРР, three main operational test scenarios were 

developed to simulate various working conditions of the system. 

These scenarios allow for an assessment of the method’s accuracy, 

robustness, and adaptability under real operating conditions. 

Scenario 1. Nominal Mode, in which the SРР operates under 

normal conditions with typical loads and expected operational 

parameters. The goal of testing the technical condition of the SРР in 

this scenario is to verify the baseline level of diagnostic and failure 

prediction accuracy, as well as to identify possible false positives and 

missed failures. A full set of diagnostic data is used in this scenario 

(temperature, pressure, vibration, power - see Table 1.3.31), and the 

number of unexpected failures is minimal. Temperature is monitored 

in the main engine cylinders, oil, and cooling systems; pressure - in 

hydraulic and fuel lines; vibrations – on bearings and shaft lines; 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

153 

 

power - at the output of generator and power units. These parameters 

serve as input features for both the CBR and probabilistic models. 

Table 1.3.31. Diagnostic features of SРР failures used in the 

integrated model 

Parameter Source / Component Diagnostic significance 

Temperature 
Engine cylinders, heat 

exchangers, oil 

Indicator of overheating, 

early wear 

Pressure 
Oil system, cooling 

system 

Leaks, blockages, valve 

malfunctions 

Vibration 
Shaft lines, bearings, 

turbines 

Mechanical defects, 

misalignment, wear 

Power 
Generator sets, main 

engines 

Indirect indicator of 

failure or efficiency loss 

Scenario 2. The operation of the SРР is carried out under 

increased load conditions, leading to accelerated degradation of key 

system equipment. The purpose of PPS testing is to assess the 

method’s ability to recognize changes in failure dynamics and adapt 

to changing operational conditions. A distinctive feature of this 

scenario is higher temperature, vibration, and load cycles; accelerated 

wear of mechanisms; and increased probability of failures. 

Scenario 3. Fault diagnosis under conditions of limited 

information about past incidents (e.g., incomplete system operation 

data). The purpose of SРР testing is to assess the effectiveness of 

simulation modeling and the adaptability of CBR in the absence of 

sufficient historical information. The distinctive feature of this 

scenario is the artificial exclusion of part of the case base data and 

the need to test the method’s robustness under limited input 

conditions. 

To evaluate the effectiveness of the proposed method, a 

simulation model of the SРР was developed. During testing, various 

failure scenarios were generated (normal conditions, accelerated 

wear, cascading failures); data from OREDA and accumulated CBR 

knowledge bases were used; and fault diagnostics were performed 

both with and without CBR solution adaptation. Each scenario 

includes: a set of input parameters (temperature, pressure, vibration, 
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power, etc.); actual component failures recorded in the database; 

diagnostic methods used in the scenario (CBR, probabilistic models, 

simulation modeling); data sources for testing (OREDA, simulation 

models, limited data sets). BNs were constructed for each key piece 

of SРР equipment, taking into account known causal relationships 

between the equipment’s technical state parameters and failure 

probabilities. The average number of nodes in a network was 7, with 

the number of arcs ranging from 8 to 15 depending on the complexity 

of the SРР equipment.  Prior failure probabilities were determined 

based on OREDA data and adjusted during the training phase based 

on simulation results. To model the temporal evolution of component 

states, discrete-time Markov chains with 4 - 6 degradation states were 

used: "operational", "initial degradation", "moderate degradation", 

"critical condition", and "failure". Transition probabilities were 

calculated based on cumulative operational data and fitted using 

MAE and RMSE metrics on historical time series. Probability 

updates occurred at each diagnostic cycle based on the principle: 

"observation→recalculation→forecast". The fixation of input 

parameters for the tests is presented in Table 1.3.32. 

Table 1.3.32. Input parameters for testing various scenarios 

Testing 

Scenario 

Temperature 

(°C) 

Pressure 

(bar) 

Vibration 

(m/s²) 
Data source 

Scenario 1 

(nominal 

mode) 

80–100 5–8 0.5–1.5 

OREDA 

database + 

operational 

data 

Scenario 2 

(increased 

loads) 

100–120 8–12 1.5–3.0 

Simulated 

high-

degradation 

conditions 

Scenario 3 

(data 

deficiency) 

90–110 6–9 1.0–2.0 

Artificial data 

limitation (only 

partial records) 

The data presented in Table 1.3.32 clearly capture the 

differences between the system's operational scenarios and highlight 

the factors influencing component failure diagnostics in SРР 
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subsystems. Since the scenarios are based on real data from OREDA 

and simulation modeling, the testing methodology becomes more 

substantiated and reproducible. The developed scenarios make it 

possible to verify the robustness of the SРР equipment failure 

diagnostics method under various operational conditions. 

 

1.3.5.4 Evaluation of Accuracy, Precision, Recall, and F1-

Score metrics for various methods of diagnosing the technical 

condition of the SРР 

To quantitatively assess the effectiveness of the developed SРР 

diagnostics approach, mathematical metrics traditionally used in 

technical condition diagnostics tasks were applied - Accuracy, 

Precision, Recall, and F1-Score. These indicators are standard in the 

fields of machine learning and data mining, including for evaluating 

the quality of binary classification, and allow for objective 

comparison of different configurations of diagnostic systems: 
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The evaluation of metrics was carried out to identify the 

difference between standard CBR solutions and adjusted results 

based on probabilistic failure analysis. Dynamic adjustment of 

probabilities based on the obtained data was used during testing. To 

assess the effectiveness of the adaptive mechanism, two types of 
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testing were conducted: CBR without adaptation - failure diagnostics 

was performed solely based on similarity to past cases, without the 

use of probabilistic methods; CBR with adaptation - diagnostics were 

adjusted using BNs and MМs, enabling the consideration of 

cascading failure risks and the remaining useful life of components. 

 

Table 1.3.33. Comparison of diagnostic metrics 

Diagnostic 

method 
Accuracy Precision Recall 

F1-

score 

MAE 

(hours) 

CBR 

without 

adaptation 

78.5% 75.2% 80.1% 77.5% 12.4 

CBR with 

adaptation 
85.3% 83.1% 87.6% 85.3% 7.2 

Traditional 

method 
72.8% 70.3% 75.5% 72.8% 15.6 

The analysis of diagnostic metrics in Table 1.3.33 confirms that 

adapting the CBR method using probabilistic models (BNs and 

Markov chains) significantly improves diagnostic quality. 

Improvements are observed across all metrics: classification accuracy 

increases by more than 6 percentage points compared to the baseline 

CBR, and the prediction error for remaining useful life is reduced by 

almost half. Importantly, a balanced ratio between recall and 

precision is achieved, as reflected in the high F1-score value (85.3%). 

Traditional methods, which do not use case-based or probabilistic 

analysis, show poorer performance both in classification accuracy 

and in predictive capability. This confirms the necessity of 

transitioning to integrated diagnostic solutions under high uncertainty 

and complexity conditions of SРРs. Adapting CBR solutions allows 

for improved diagnostic accuracy and reduced average failure 

prediction error. 

Figure 1.3.32 illustrates how diagnostic metrics improve with 

the addition of probabilistic methods and simulation modeling. 

Figure 1.3.32 shows a comparison of diagnostic accuracy across 

various scenarios for three methods: CBR - approximately 0.76; CBR 
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+ Probabilistic Models - approximately 0.85; Integrated Approach - 

approximately 0.90. Pure CBR demonstrates the lowest accuracy 

(below 0.8), indicating its limited ability to account for probabilistic 

failure dependencies.  

 

 
Figure 1.3.32. Comparison of fault diagnosis accuracy metrics 

across different scenarios 

 

The addition of probabilistic models (BNs, MМs) improves 

diagnostic performance by around 10%, confirming the effectiveness 

of method combination. The Integrated Approach (CBR + 

probabilistic models + simulation methods) achieves the highest 

accuracy (above 0.9), indicating a synergistic effect from the 

comprehensive use of methodologies. The metric diagram (Figure 

1.3.33) further confirms that the proposed integrated approach to 

diagnosing SРР significantly improves accuracy compared to 

standalone methods. 
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Based on Figure 1.3.33, the following observations can be made. 

The CBR method shows the lowest values across all metrics (~0.78), 

indicating insufficient accuracy and completeness of diagnosis when 

using a case-based approach alone. CBR + probabilistic models 

(adding probabilistic models) increases all metric values to 

approximately 0.82 - 0.84. This indicates a more balanced diagnostic 

performance that accounts for probabilistic failure dependencies. 

 
Figure 1.3.33. Diagnostic accuracy metrics chart 

 

The Integrated Approach demonstrates the highest results - all 

metrics exceed 0.88, confirming its effectiveness. It is evident that 

Precision, Recall, and F1-score are nearly at the same level, 

indicating a well-balanced diagnostic system. The integration of 

probabilistic methods with CBR significantly improves fault 

diagnosis accuracy. Using a comprehensive approach mitigates the 

limitations of individual methods, resulting in a more reliable 

diagnosis.The more complex the method (CBR→CBR + probabilistic 

models→integrated approach), the higher the diagnostic quality. The 

diagnostic accuracy metric charts for SРРs (Figures 1.3.32 and 
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1.3.33) illustrate how well the model identifies both faults and 

healthy states. 

Figure 1.3.34 shows how adaptation affects fault diagnosis 

accuracy over time. Different SРР subsystems respond differently to 

adaptation (which is important for analyzing failure probabilities). 

This is due to cascading effects during SРР operation. A decline in 

diagnostic accuracy in one system can influence others. 

 
Figure 1.3.34. Diagnostic accuracy dynamics with CBR 

adaptation 

Figure 1.3.34 illustrates the dynamics of key diagnostic metrics 

(Accuracy, Precision, Recall, F1-score) using two approaches: CBR 

without adaptation; CBR with adaptation (incorporating probabilistic 

failure prediction). The number of diagnostic cycles refers to the 

number of consecutive diagnostic checks of SРР equipment. Each 

fault diagnosis cycle includes the following steps: data collection 

(temperature, pressure, vibration, etc.); analysis for deviations from 

normal operating conditions; identification of potential failures using 

CBR (without and with adaptation); decision adjustment based on 

accumulated experience and probabilistic failure prediction. All 
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metrics are higher with adaptation than without, confirming the 

effectiveness of the adaptive mechanism: Accuracy in the adaptive 

CBR remains consistently about 5% higher compared to the baseline 

version; Precision, Recall, and F1-score also show a positive shift of 

5–6%, indicating improved fault classification and reduced false 

positives; the dynamics of metrics without adaptation are less stable, 

in contrast to the adaptive approach, which demonstrates a smoother 

and more predictable curve. The adaptive CBR based on probabilistic 

forecasting enhances the accuracy of diagnosing SРР; the stability of 

the metrics indicates a better match between diagnostic decisions and 

actual failures; the use of the adaptive mechanism is recommended to 

improve diagnostic reliability and reduce forecasting errors.  

To assess the stability of SРР equipment fault diagnosis methods 

under different data splits, cross-validation is used. To quantitatively 

assess the stability of various components within the diagnostic 

system, a five-fold cross-validation (CV) was conducted, covering 

cases from three operational scenarios: nominal mode, increased 

load, and data deficiency. The table presents the average accuracy 

(Accuracy) and corresponding standard deviation values for each of 

the three approaches — basic CBR, probabilistic models, and the 

integrated solution. 

Table 1.3.34. Five-fold cross-validation results 

Method 
Mean accuracy on 

CV (%) 

Standard 

deviation (%) 

CBR 73.5 3.0 

Probabilistic 

networks 
79.1 2.8 

Integrated method 86.4 2.2 

 

Analysis of Table 1.3.34 shows that the integrated approach 

delivers the highest stability and accuracy among all three 

configurations: the average Accuracy reached 86.4% with a 

minimum standard deviation of 2.2%, indicating strong 

reproducibility of results. Probabilistic models performed slightly 

worse, achieving 79.1% Accuracy with a standard deviation of 2.8%. 
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The basic CBR mechanism was the least robust, showing an average 

accuracy of 73.5% and the highest variability (σ = 3.0%). These 

results confirm that the combined use of CBR, probabilistic 

inference, and simulation provides the best generalization and 

robustness across different operational conditions. The difference in 

accuracy between the integrated method and each of the standalone 

components ranges from 7 to 13 percentage points, quantifying the 

synergy achieved by combining these methods. Moreover, the 

reduction in result dispersion observed in the integrated method 

compared to CBR confirms that incorporating probabilistic 

forecasting and simulation not only improves diagnostic accuracy but 

also enhances the system's resilience to input variability. 

To further analyze how different methods perform under cross-

validation, an accuracy distribution chart was created. Figure 1.3.35 

presents the cross-validation results for various fault diagnosis 

methods. 

 
Figure 1.3.35. Cross-validation results for different diagnostic 

methods 

Comparison of methods based on Figure 1.3.35: CBR shows the 

lowest result (≈74%) and the highest variability; Bayes (Bayesian 

method) yields intermediate performance (confidence interval ≈79%) 

but with greater error margin than the Integrated method; Integrated 
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approach achieves the highest accuracy (≈86%) with the lowest error. 

Thus, the integrated approach outperforms both CBR and Bayes in 

terms of accuracy and stability. The Bayesian method demonstrates 

solid performance, though with a wider error margin. CBR has the 

lowest accuracy and the highest spread of values. Cross-validation 

confirms the reliability of the integrated method. It consistently 

yields stable results with the smallest standard deviation (2.2%). The 

higher variability in CBR without adaptation indicates the method's 

dependence on the structure of the case base. The use of probabilistic 

methods reduces error dispersion and enhances diagnostic reliability. 

An analysis of the Precision, Recall, F1-score, and Accuracy 

metrics shows that adaptive CBR methods incorporating probabilistic 

forecasting reduce diagnostic errors by accounting for the probability 

distribution of potential failures and adapting to new cases. 

Compared to classical CBR and Bayesian approaches, the integrated 

method demonstrates the best balance between precision and recall, 

as also reflected by the high F1-score. This makes it more reliable for 

predicting the technical condition of marine power plants, especially 

under conditions of incomplete information and varying operational 

factors. 

In addition to the standard metrics (Accuracy, Precision, Recall, 

F1-score) used for quantitative evaluation, additional diagnostic 

indicators adapted for the specifics of complex technical systems 

were considered. These indicators provide a more nuanced evaluation 

by accounting for the severity of different types of errors, the 

consequences of failures, and the robustness of the model under 

varying operational modes. While the main part of the study is based 

on classic binary classification metrics (Accuracy, Precision, Recall, 

F1-score), in the context of diagnostics and failure prediction in CTS, 

it is important to consider not only statistical indicators but also the 

operational significance of different error types. To address this, 

modified formulas for evaluating diagnostic and prognostic quality 

were proposed, tailored to the specific needs of CTS and developed 

within the scope of this research. The modified diagnostic metrics 

reflect such aspects as the severity of equipment failures, the risk of 
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false negatives, and the resilience of the diagnostic system under 

varying system operation scenarios. 

1. Weighted Accuracy (WAcc). This metric takes into account 

the varying importance of correctly and incorrectly classified cases: 

                 
,
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where 
FPFPTNTP  ,,,  are weights reflecting the relative 

importance of each classification outcome type. 

For example, 
FPFP   if a missed failure is more critical than a 

false alarm. 

2. Degradation-Weighted F1 Score (Weighted F1). A modified 

F1 score is proposed that accounts for the criticality of the monitored 

component (e.g., a generator or gas turbine engine): 
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where P - Precision: the proportion of true positives among all 

positive predictions; 

  R - Recall: the proportion of detected failures among all actual 

failures; 

 - weight coefficient reflecting the degradation importance of 

the component for which the F1 score is calculated.It is used to 

increase the impact of failures in critical nodes (e.g., generator or 

main engine).  

3. Risk-Weighted Recall (Recall R): 
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where ri   is the risk coefficient of failure for equipment i 

 4. Cost-Sensitive Precision. False positive alarms (Type I 

errors) may lead to equipment shutdowns, financial losses, and 

decreased trust in the diagnostic system: 
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where cFP  is the cost of a single false positive (can be defined by 

expert assessment). 

5.  Diagnostic Stability Index (DSI). A metric that reflects the 

model’s sensitivity to changes in operating conditions: 

 

                                       

,1
1

1

F
DSI

F
−=

                                   (1.3.60) 

where
1F  is the average F1 score across different scenarios (e.g., 

normal mode, overload, data shortage) 

1F  - is the standard deviation of F1 scores between scenarios. 

The closer the DSI is to 1, the more stable the diagnostic model 

is. 

Table 1.3.35. Diagnostic performance evaluation results using 

basic and extended metrics 

Metric 
Without 

adaptation 
With adaptation Comment 

F1 score 

(%) 
77.5 85.3 

Standard measure of 

balance 

F1-W 

(weighted) 
74.2 89.1 

Accounts for the 

importance of failure 

in the SРР 

Precision 75.2 83.1 Basic accuracy metric 

Precision-

C (cost) 
69.5 81.8 

Takes into account 

the penalty for false 

alarms 

Recall (%) 80.1 87.6 
Basic completeness 

metric 

Recall-R 

(risk) 
76.0 91.0 

Focus on preventing 

critical failures 

Accuracy 

(%) 
78.5 85.3 

Overall classification 

accuracy 

WAcc 

(weighted) 
76.4 88.0 

Priority on significant 

errors 

DSI 0.932 0.983 
Diagnostic stability 

across scenarios 
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Table 1.3.35 demonstrates not only the quantitative superiority 

of the integrated diagnostic system (which includes CBR, 

probabilistic models, and simulation modeling) over the simplified 

configuration, but also qualitatively different improvements when 

using modified metrics. In particular, while the standard F1 score 

increases by 7.8 percentage points (from 77.5% to 85.3%), the 

modified F1-W - which accounts for the criticality of diagnosed 

components - shows a 14.9 percentage point increase (from 74.2% to 

89.1%). This indicates that the adapted system is not just more 

effective "on average", but also delivers higher quality performance 

in scenarios where failures have the most severe consequences. A 

similar pattern is observed when comparing Recall and Recall-R. 

While the absolute increase in Recall is 7.5 p.p., the risk-weighted 

Recall-R increases by 15 p.p. This suggests that the adapted model is 

better at predicting those failures that are most dangerous in 

operational terms - i.e., it contributes not just to classification 

completeness, but to reducing the likelihood of critical incidents. The 

metric Precision-C, which accounts for the relative cost of false 

alarms, shows a particularly significant effect: it increases by 12.3 

p.p. (from 69.5% to 81.8%), notably surpassing the growth in 

classical Precision (7.9 p.p.). This means that the adapted system not 

only improves accuracy, but also reduces the number of false 

diagnostic triggers, which could otherwise lead to unjustified 

equipment shutdowns or inefficient technical interventions. Values of 

the Diagnostic Stability Index (DSI) also confirm the advantage of 

the integrated approach. The increase in DSI from 0.932 to 0.983 

indicates that the system maintains stable F1 score performance 

across various operational scenarios (normal conditions, overload, 

and data shortage), without losing reliability under non-standard 

conditions. This is especially important for diagnostic systems (CTS) 

operating under variable loads, unstable information, and limited 

resources. An analysis of Accuracy and WAcc values shows that 

while general accuracy grows by 6.8 p.p., the weighted accuracy - 

which considers the consequences of errors - increases by 11.6 p.p. 

This means that qualitative changes occurred not just in the number 
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of correct predictions, but in their significance: improvements 

occurred where errors would be most costly. Thus, using modified 

metrics makes it possible to identify effects that remain hidden when 

evaluating only with classical indicators. This confirms that the 

proposed diagnostic system not only increases numerical accuracy 

values, but becomes genuinely more reliable — prioritizing the 

identification of the most critical situations and minimizing 

operational risks. 

Figure 1.3.36 presents a chart comparing the modified metrics 

between the configurations without adaptation and with adaptation. It 

demonstrates: a significant improvement in F1-W, Recall-R, and 

WAcc in the adapted system; a particularly noticeable increase in 

DSI, reflecting enhanced diagnostic stability; an overall gain not just 

in accuracy, but in metrics that account for risk, cost, and reliability. 

 
 

Figure 1.3.36. Comparison of modified diagnostic metrics in the 

integrated system with and without adaptation 
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Figure 1.3.36 visualizes the quantitative differences between 

diagnostic system configurations and illustrates the structural 

redistribution of fault diagnosis quality when transitioning from a 

non-adaptive architecture to an integrated adaptive one. Notably, the 

most significant improvements are observed in metrics that account 

for risks, priorities, and the cost of errors. For instance, the modified 

recall (Recall-R) in the adapted system reaches 91.0% compared to 

76.0% in the baseline, while the weighted F1 score (F1-W) improves 

from 74.2% to 89.1%. This highlights that the integration of CBR, 

probabilistic models, and simulation modeling enables the system to 

handle the most critical failures more effectively not merely to detect 

frequent events. The Precision-C metric, which reflects sensitivity to 

the cost of false alarms, increased from 69.5% to 81.8%, i.e., by 

almost 12.3 percentage points, indicating a more “economical” 

system behavior in operational contexts. In other words, it's not just 

fewer errors - it’s fewer costly errors. This is crucial in marine and 

energy systems, where a false alarm can lead to unnecessary 

expenses and disruption of normal operations. Equally telling is the 

behavior of the DSI: while its increase from 0.932 to 0.983 may seem 

modest in absolute terms, it signifies that the standard deviation of 

the F1-score across scenarios has nearly halved. This means the 

system behaves predictably and reliably under various operational 

conditions, including overload scenarios and incomplete data. Thus, 

the figure illustrates a qualitative shift in diagnostics -not just a rise in 

statistical metrics, but an enhancement of the system’s meaningful 

behavior, particularly under risk, limited information, and high cost 

of error. The numerical gains across key modified metrics make this 

effect both compelling and justified. The modified metrics allow the 

system to: account for the danger of missed failures (Recall-R, F1-

W); reflect operational costs of false positives (Precision-C, WAcc); 

track variability in model behavior under real-world operating 

conditions (DSI). This is especially important when deploying 

intelligent diagnostics in critical systems, where the consequences of 

errors may be highly asymmetric. 
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1.3.5.5 Discussion of results 

This study presents extensive experimental testing of an 

integrated approach to diagnosing complex technical systems, 

combining CBR, probabilistic methods (BNs and MМs), and 

simulation modeling. A multidimensional evaluation of effectiveness 

was conducted using both classical metrics and specially introduced 

indicators of risk and robustness. Multi-scenario testing under three 

operating conditions (normal, high load, and data limitation) 

demonstrated that Accuracy increased from 78.5% to 85.3%, 

Precision from 75.2% to 83.1%, Recall from 80.1% to 87.6%, and F1 

score from 77.5% to 85.3%. Moreover, fivefold cross-validation 

(σ F1 = 2.2%) and a decrease in F1 score of no more than 3 

percentage points under artificially limited data confirm the method’s 

high reproducibility and robustness. A comparative analysis with 

contemporary studies underscores the uniqueness of our experiment: 

Soliman [115] is limited to a review of digital twins without CBR or 

classification metrics; Jovanović  [116] combines FTA and BN 

without simulations or case-based mechanisms; Velasco Gallego et 

al. [117] assess only RMSE/MAE without considering recall and 

precision; Schultheis  [91] applies a hybrid CBR without 

probabilistic or simulation components; Daya & Lazakis [118] use 

DFTA, FMECA, and BBN without multi-scenario testing; Neupane 

et al. [119] review ML approaches without a hybrid implementation; 

Lv et al.  [120] study FDD models without comprehensive 

integration or F1 evaluation; and Li et al. [121] are limited to MC 

simulations without CBR or extended metrics. None of these studies 

combine all three components or perform a multidimensional 

effectiveness evaluation, highlighting the completeness and novelty 

of our validation. A key outcome is the implementation and 

validation of modified metrics: weighted Accuracy (WAcc), F1-W 

(accounting for the degradation importance of nodes), Recall-R (risk-

weighted recall), Precision-C (reflecting the cost of false alarms), and 

the DSI. These metrics revealed that Recall-R reaches 91.0% and 

DSI 0.983, demonstrating the model’s capability to accurately 

identify critical failures and maintain diagnostic quality under 
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varying operational conditions. This multi-faceted set of 

complementary indicators enables a comprehensive assessment of 

operational risks, error costs, and system stability something 

unachievable with standard metrics alone. The practical significance 

lies in the method’s readiness for integration into onboard 

SCADA/PMS of marine power plants and terrestrial power stations, 

facilitating a transition to intelligent, predictive maintenance, 

reducing unplanned downtime and costs, and improving operational 

reliability. Future development prospects, beyond the scope of the 

current experimental validation, include implementing online 

monitoring with continuous real-time adaptation of CBR and 

probabilistic models, expanding the case base using data from diverse 

technical assets, and integrating deep neural networks for automatic 

preprocessing of sensor signals and feature extraction. In summary, 

the conducted multi-scenario experimental validation and 

multidimensional performance evaluation confirm the high 

effectiveness and robustness of the integrated diagnostic approach for 

complex technical systems, justifying its practical applicability and 

methodological novelty in the context of intelligent control system 

assessment. 

 

1.3.5.6 Conclusions 

The effectiveness of the experimentally validated integrated 

approach to diagnosing complex technical systems -combining CBR, 

probabilistic methods (BNs and MМs), and simulation modeling - 

has been confirmed across three fundamentally different operational 

modes (nominal, high load, and limited data) and is reproducible 

based on five-fold cross-validation, with the standard deviation of the 

F1 score amounting to 2.2%. Accuracy increased from 78.5% to 

85.3%, Precision from 75.2% to 83.1%, Recall from 80.1% to 87.6%, 

and F1 score from 77.5% to 85.3%. Notably, under artificially 

limited data conditions, the drop in F1 score did not exceed three 

percentage points, indicating high robustness of the method. The key 

scientific novelty lies not only in the experimental validation of the 

synergy between the three methods but also in the development of a 
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system of modified diagnostic metrics tailored to the operational 

conditions of CTS. In addition to the classical indicators (Accuracy, 

Precision, Recall, F1 score), the following modified metrics were 

introduced: weighted Accuracy (WAcc), F1-W (accounting for node 

degradation importance), Recall R (weighted by failure risk), 

Precision-C (considering the cost of false alarms), and the DSI, all 

reflecting operational risks, the economic impact of errors, and 

system stability under varying conditions. These metrics revealed 

system properties not captured by standard indicators: Recall-R 

reached 91.0%, and DSI was 0.983, demonstrating the model's ability 

to accurately detect critical failures and maintain high reliability 

under unstable conditions.  

The practical significance of the approach lies in its potential for 

integration into onboard monitoring systems of ship power plants and 

SCADA/PMS systems of land-based power stations, facilitating the 

shift from scheduled maintenance to intelligent, predictive control of 

complex technical systems, reducing unplanned downtimes, lowering 

costs, and increasing overall operational reliability. The proposed 

metrics can be used to assess equipment failure risks in CTS and 

support real-time decision-making, considering not only the presence 

of faults but also the potential consequences of diagnostic errors in 

the context of operational criticality. Although this study focuses on 

experimental verification, future development prospects include 

implementing continuous real-time adaptation of CBR and 

probabilistic models, expanding the case base with data from various 

types of technical systems, and integrating deep learning methods for 

automatic preprocessing of sensor signals and feature extraction. 

Thus, the comprehensive experimental verification and the 

developed system of modified metrics - which enable a formalized 

assessment of the effectiveness of the integrated diagnostic approach 

with regard to operational context, robustness, and the impact of 

errors—confirm its capability to ensure a comprehensive 

improvement in the quality and reliability of diagnosis and 

forecasting in complex technical systems. All conclusions are based 

on the results of a multi-scenario experiment covering three 
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operational modes and are supported by statistically stable cross-

validation data, ensuring high reproducibility and confidence in the 

findings. The experimental validation of the synergy among CBR, 

probabilistic models, and simulation modeling demonstrates for the 

first time that their combination provides a significant advantage over 

using each component individually representing the key scientific 

contribution of this work. 

 

1.3.6 Three-Scenario analysis of fault diagnosis accuracy in 

complex technical systems 

 

This section is devoted to a comparative analysis of fault 

diagnosis accuracy in SPP equipment using different configurations 

of diagnostic methods. No new metrics are developed here; instead, a 

standard set of indicators (Accuracy, Recall, F1-score) is applied to 

assess the performance of three approaches: CBR only; CBR with 

probabilistic analysis; comprehensive integration of CBR, 

probabilistic models, and simulation modeling. 

The main focus is on comparing the results of fault diagnosis for 

SPP equipment obtained using each approach. Error visualization is 

provided using confusion matrices and graphical charts, and the 

influence of weighting coefficients on the final diagnostic accuracy is 

examined. This analysis serves as a logical continuation of the 

previous section, test scenarios for the technical condition of the SPP, 

which focused on the development and justification of diagnostic 

metrics applicable to marine power plants. That section proposed 

modifications to traditional metrics such as Accuracy, Precision, 

Recall, and F1-score, and introduced new indicators: those weighted 

by failure criticality, by the cost of false alarms, and the Diagnostic 

Stability Index (DSI), reflecting model sensitivity to changing 

operational conditions. Data sources included the OREDA database 

and simulation modeling results under three operational scenarios: 

normal operation, increased load, and data deficiency. The goal of 

the previous section was to establish a comprehensive reliability 

assessment framework for diagnostic models. The current section 
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focuses on the practical task of identifying and calibrating the 

optimal combination of diagnostic methods that provides the highest 

accuracy under various operating conditions of SPPs. 

 

1.3.6.1 Introduction 

Improving the accuracy of TC diagnostics for CTS, particularly 

SPPs, remains one of the key challenges in the operation of such 

systems. Diagnostics of the TC of SPPs is hindered by uncertainties 

in operating conditions, variable operational loads, the impact of an 

aggressive maritime environment, and limited information received 

from sensor systems. Under these conditions, not only the 

development of intelligent models is important, but also the justified 

selection of a configuration that ensures maximum accuracy and 

stability across different operational scenarios. 

This section presents an experimental study aimed at comparing 

the accuracy of three diagnostic method configurations: CBR; CBR 

with probabilistic models (BNs and MМs); and an integrated 

approach combining CBR, probabilistic analysis, and simulation 

modeling of cascading failures. These configurations are tested under 

three typical SPP operational scenarios: nominal mode, high load, 

and data scarcity conditions. The comparison is conducted based on 

Accuracy, Recall, and F1-score metrics, as well as accuracy analysis 

under varying model component weights. 

Over the past five years have accumulated in the field of 

diagnostics for CTSs, each contributing valuable insights but not 

fully covering the issues addressed in this study. For example, the 

review by Youssef et al. [122] systematizes machine learning 

approaches for diagnosing marine diesel engines but lacks 

quantitative comparisons of method accuracy, does not examine their 

behavior under different scenarios, and does not discuss integration 

of various approaches into a unified architecture. The work by Zhao 

[123] proposes a degradation assessment model for CTS using 

multichannel analysis and hidden MМs. However, it focuses on 

equipment wear tracking rather than precise fault classification and 

does not include accuracy metric analysis under multi-scenario CTS 
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operations. The monograph by Lu et al. [124] presents an 

interdisciplinary approach based on cognitive computing and 

geometric transformations. Despite its theoretical value, it lacks 

quantitative model verification and accuracy analysis under specific 

operational conditions. The article by Cui et al. [125] explores digital 

twins for marine diesel engines as a promising predictive 

maintenance tool. However, it does not include diagnostic accuracy 

comparison, model validation is limited, and scenario variability is 

not analyzed. The study by Moon et al. [82] introduces a multi-step 

MМ to separate the effects of maintenance from natural wear of CTS 

equipment. Nonetheless, it does not include quantitative accuracy 

metrics and is not aimed at practical fault diagnostics. The 

methodology of Morato et al. [77], based on dynamic BNs and 

Markov decision processes, addresses inspection optimization tasks 

but does not touch on diagnostic issues and fault identification 

accuracy, especially in the context of SPPs. The work by Zhang et al. 

[126] is devoted to hybrid modeling of SPPs under high-power 

impulse loads. While the model is highly detailed from an 

engineering perspective, it is not intended for evaluating diagnostic 

accuracy and lacks comparative analysis of methods. 

The common limitations of the reviewed approaches - the 

absence of comprehensive adaptation to different operational modes, 

insufficient model validation under load and information scarcity, 

and fragmented or one-sided integration of methods (CBR, 

probabilistic models, simulation) - highlight the relevance and 

necessity of the present section. 

The objective of this section is to conduct a quantitative 

comparison of the diagnostic accuracy of various method 

configurations (CBR, CBR with probabilistic analysis, and CBR with 

both probabilistic and simulation modeling) for fault diagnosis of 

SPP equipment under three typical operational scenarios: nominal 

conditions; high-load conditions; and limited diagnostic data. 

The tasks to achieve this objective are as follows: 
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1. Evaluate diagnostic accuracy (using the metrics Accuracy, 

Recall, and F1-score) for each of the three method configurations in 

each operational scenario; 

2. Conduct a comparative analysis of classification errors using 

confusion matrices and graphical visualization tools, including 3D 

accuracy surfaces; 

3. Determine the contribution of each method (CBR, BNs, 

Simulation) to the overall diagnostic accuracy and identify the 

optimal combination of component weights that minimizes total 

diagnostic error; 

4. Verify the robustness of results under varying conditions 

such as noise levels, data incompleteness, and overloads, simulating 

real operational environments of SPPs; 

5. Formulate practical recommendations for selecting 

diagnostic model configurations tailored to different operational 

conditions, with a focus on diagnostic accuracy and stability. 

 

1.3.6.2 Materials and methods 

This study evaluates the diagnostic accuracy of different 

methodological configurations in the context of fault diagnosis for 

complex technical systems, using SPPs as a representative 

application. The analysis is structured around three diagnostic 

configurations of increasing complexity: a baseline CBR model, a 

hybrid CBR approach enhanced with probabilistic reasoning (BNs 

and MМs), and a fully integrated model combining CBR, 

probabilistic inference, and simulation-based modeling of cascading 

failures. Each configuration is designed to address different levels of 

system uncertainty, data completeness, and fault propagation 

dynamics. 

The CBR-only model relies on retrieving and adapting solutions 

from previously recorded fault cases. It is well-suited for nominal 

conditions with sufficient historical data and provides interpretable 

results with low computational cost. To retrieve relevant cases, the k-

NN algorithm was used, employing the Euclidean distance metric 

between the feature vectors of the current state and known 
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precedents. The value of the parameter k was selected empirically 

within the range of 3 to 5, depending on the scenario.  

Classification was performed using a weighted voting scheme, 

where closer cases were assigned higher weights. Solution adaptation 

was achieved through partial adjustment of the output parameters, 

taking into account the difference between the current input and the 

reference input. The second configuration introduces probabilistic 

models to capture stochastic degradation, causal dependencies, and 

hidden fault states. BNs are employed to model diagnostic 

probabilities given partial evidence, while MМs describe transitions 

between degradation states over time. The third configuration 

integrates discrete-event and continuous simulation to reproduce the 

behavior of interconnected system components under stress, 

capturing cascading effects that are not handled by purely statistical 

or knowledge-based models.  

This triad of configurations enables comparative benchmarking 

of diagnostic robustness and precision under varying operational 

constraints. Three operational scenarios were defined to reflect real-

world variability: (nominal operation, characterized by complete and 

accurate data under stable loading; high-load operation, representing 

elevated mechanical and thermal stress conditions; limited-data 

scenarios, simulating sensor failures or noisy inputs. The simulation 

modeling was carried out in the format of a discrete-event simulation 

(DES), with defined failure scenarios and transitions between system 

component states. This format made it possible to represent typical 

cascading chains under conditions of faults and load. 

Performance evaluation employed standard classification 

metrics: Accuracy (correct predictions over total cases), Recall 

(sensitivity to actual faults), and F1-score (balancing false positives 

and negatives). Confusion matrices were constructed to visualize 

misclassification patterns, and 3D accuracy surfaces were generated 

by varying the weights assigned to each model component -  
d  for 

CBR, 
d  for probabilistic reasoning, and 

d  for simulation. These 

visualizations revealed that the optimal configuration occurred at   
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d  = 0.6,  
d  = 0.2, 

d  = 0.2, yielding a maximum accuracy of 94% 

and a minimum diagnostic error rate of 6%. 

The data used in the experiments include synthetically generated 

fault scenarios derived from typical SPP failure modes, enriched with 

reliability statistics partially based on the OREDA database. To 

reflect realistic uncertainty, the sensor data were augmented with 

noise and information dropout to emulate degraded monitoring. The 

simulation environment was modular and scalable, supporting 

dynamic reconfiguration of system architectures and fault cascades 

under controlled experimental conditions. 

This methodology supports an adaptive, scalable diagnostic 

framework that can maintain high accuracy across a range of 

conditions, including uncertainty, overload, and data limitations. 

While the experiments were conducted on SPPs, the proposed 

approach is generalizable to other cyber-physical and industrial 

systems requiring robust fault detection and reasoning in dynamic 

environments.  

From a practical standpoint, the implementation of the models 

was carried out using the Python programming language. The CBR 

model was implemented using the scikit-learn library (a modified k-

NN), while probabilistic models were developed using pgmpy for 

constructing and training BNs.  

Degradation process modeling based on MМs was performed 

with the markovify library. The simulation of cascading failures was 

conducted in the SimPy and NumPy environments, with visualization 

handled by matplotlib and plotly. Diagnostic accuracy was evaluated 

using standard formulas. 

 

1.3.6.3 Results 

The simulation of diagnostic scenarios was carried out using the 

principles of a discrete-event approach: the moments of failure 

occurrence, their propagation between components, and the system's 

response to state changes were recorded. The scenarios included the 

spread of cascading effects, modeled through logical and temporal 

dependencies between SРР nodes.  
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Although a formal DES framework was not used, the 

implemented model is equivalent to a discrete-event representation 

and reliably reproduces the dynamics of failures, the impact of 

overloads, and data incompleteness. This provided the basis for a 

quantitative assessment of diagnostic accuracy across different 

configurations and operational scenarios. 

 

Table 1.3.36. Structural of the event-based simulation model 

System 

component 
States 

Transition 

conditions 

(triggers) 

Failure 

consequences 

Cooling 

module 

Normal / 

Degraded / Failed 

t > t₀ under 

overload, pump 

failure 

Increased 

engine 

temperature 

Generator Normal / Failed 

Vibration > 

threshold, 

cooling failure 

Load shedding, 

power supply 

disruption 

Diesel unit 

Normal / 

Overheated / 

Failed 

T > Tmax, 

cooling failure, 

overload > x% 

Increased load 

on auxiliary 

units 

Pressure 

sensor 

Operational / 

Malfunctioning 

15% failure 

probability under 

noise 

Data loss → 

reduced 

diagnostic 

accuracy 

Diagnostic 

module 
Active / Limited 

Data gaps, false 

alarms 

Increase in 

False Positives / 

False Negatives 

 

The presented Table 1.3.36 reflects the architecture of the event-

based simulation model that underpins the diagnostic scenarios. 

Special attention is given to the interconnection of components and 

the inclusion of indirect effects, such as cascading escalation of risks 

following an initial failure. The model logic is designed not only to 

record individual malfunctions but also to simulate their systemic 

impact. This provides a realistic load on the diagnostic system: under 

conditions of incomplete or distorted data, the system's behavior goes 

beyond simple single-node disruptions. Additionally, the model 
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incorporates elements of degradation, which do not manifest instantly 

but rather accumulate over time—mimicking the typical dynamics of 

equipment aging in maritime operation. Thus, the table defines not 

only a static structure but also an event-driven temporal sequence that 

forms the input for assessing diagnostic accuracy under conditions of 

operational uncertainty. 

To compare the diagnostic accuracy of SPP equipment faults 

under various operating conditions, three technical condition 

diagnosis scenarios of  CTS were considered: baseline CBR - 

diagnosis is performed based on the search for similar faults without 

accounting for probabilistic dependencies; CBR + Probabilistic 

Analysis - BNs and MМs are additionally applied; integrated method 

(CBR + Probabilistic Analysis + Simulation Modeling) - data from 

simulation models are incorporated into the analysis. BNs are used as 

a component of the integrated diagnostic model at the conceptual 

architecture level. A simplified probabilistic approach is applied: 

failure probabilities are calculated based on a priori expert 

assumptions, statistical relationships, and predefined scenario 

conditions.  

This approach makes it possible to account for uncertainty and 

causal dependencies between components without the need to 

construct a full graphical model for each experiment. It facilitates the 

adaptation of the model to different operating conditions while 

maintaining continuity with previously published research. In the 

basic diagnostic configuration, the CBR method is implemented 

using the nearest neighbor algorithm (k-NN with k = 1). Each 

diagnostic case is represented as a normalized vector of technical 

features formed based on the key subsystems of the main engine. 

This vector includes: average mechanical load (on the engine), 

operating temperature of oil and coolant (from thermal sensors in the 

cooling system), frequency parameters of vibration signals (measured 

on the bearing housing and gearbox casing), as well as the operating 

time of the unit in hours. These features are representative for 

assessing the condition of critical SРР components and are robust to 

noise in cases of partial data loss. 
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The CBR method performs diagnostics based on the retrieval 

and adaptation of previously recorded cases that are most similar to 

the current situation. The core stage involves evaluating the similarity 

(or distance) between the current feature vector and the vectors of 

cases stored in the database. 

Let: 

 nxxxx ..., 21= - the vector of normalized features of the current case; 

 )()(

2

)(

1 ...,
k

n

kk
xxxx =  - the feature vector of the k-th reference 

(previously observed) case; 

wi - the weighting coefficient for the importance of the i-th feature 

 

Then, the similarity (or distance) between the current and 

reference case is calculated as: 

 

                              

=

−=
n

i

k

iii

k xxD
1

2)()( )(
,                          (1.3.61) 

 

where: )(kD - the generalized distance measure (e.g., Euclidean 

distance); 

            1,0i  - weights defined by experts or optimized 

empirically; 

         n - the number of features describing the diagnostic object 

 

During the diagnostic process, all reference cases are ranked in 

ascending order of  
)(kD . The decision is then made based on the 

diagnosis of the closest case (in the basic scheme) or several closest 

cases (e.g., in a k-NN model with weighted averaging). Thus, the 

accuracy of CBR-based diagnostics directly depends on: the selection 

of informative features; proper feature normalization; accurate weight 

tuning; completeness of the case base.  

The absence of a probabilistic component and temporal context 

may reduce the method's robustness in the presence of noise or under 

system degradation. This necessitates its enhancement through 
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integration with Bayesian and simulation-based components in more 

complex diagnostic configurations. To construct the diagnostic 

feature vector in the CBR configuration, features were selected that 

reflect the current state of key SРРs. The table.. below lists the 

parameters used, their technical association, and data types, ensuring 

interpretability of the nearest neighbor algorithm and 

representativeness of the diagnostics. 

One of the features used is the frequency of recorded faults or 

diagnostic alerts over a standard operational interval (e.g., 10,000 or 

20,000 hours).  

This approach is more relevant for high-reliability systems, such 

as SРРs, as it allows for the identification of hidden failure trends 

without relying solely on short-term statistics. Unlike hourly metrics, 

which lose informativeness in the case of rare events, normalized 

frequency indicators maintain diagnostic significance and improve 

the model’s robustness to sparse data.  

The frequency of recorded failures over a long time interval 

(10,000–20,000 hours) is used as a generalized indicator of a 

component’s technical reliability. This feature is applicable to any 

subsystem, from the main engine and fuel system to auxiliary 

equipment.  

It captures accumulated wear and degradation effects that may 

not be reflected in current parameters (such as temperature, 

vibrations, etc.) but are evident in long-term statistics. As such, this 

parameter enhances the model’s accuracy, particularly under nominal 

operating conditions where short-term indicators may lack 

informativeness. 

The presented Table 1.3.37 reflects the selection of diagnostic 

features used in the CBR configuration based on the nearest neighbor 

approach. The features were chosen considering their physical 

sensitivity to deviations in subsystem operation: for example, 

mechanical load and oil temperature directly reflect the operating 

mode of the main engine, while vibration characteristics reveal 

anomalies in bearings and the shaft line. 
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Table 1.3.37.  Diagnostic features in CBR cases and 

corresponding SРРs 

Diagnostic feature 
Subsystem / CMS 

component 
Data type 

Average mechanical 

load 
Main Engine (ME) 

Continuous 

(numeric) 

Oil temperature 
Oil system / Cooling 

system 
Continuous 

Coolant temperature Cooling system Continuous 

Vibration amplitude 
Bearings, gearbox, 

shaft 

Time series / 

aggregated 

Peak signal 

frequency 
Vibration diagnostics 

Frequency 

spectrum 

Fuel pressure Fuel system Continuous 

Equipment runtime 

(hours) 

Universal feature for all 

components 
Integer 

Signal deviation 

from norm 
Combined sensor data Calculated 

Failure frequency 

over the last 10,000–

20,000 hours 

Applicable to all key 

components 

Calculated / 

Integer 

The features vary in nature (continuous, calculated, integer), 

which requires prior normalization to ensure correct calculation of 

Euclidean distances. A particularly important role in ensuring 

diagnostic accuracy is played by runtime and recent failure 

indicators, which not only enhance the model’s sensitivity to chronic 

faults but also account for "hidden fatigue" in the equipment, 

conditions not always captured by current physical parameters.  

This feature selection increases the metric robustness of the 

CBR model under nominal conditions and makes it applicable even 

in cases of incomplete data, which is especially valuable in maritime 

applications where telemetry degradation may occur.The complete 

BN used to assess diagnostic accuracy for equipment failures within 

the SРР under various diagnostic scenarios is presented in the 

corresponding Figure 1.3.37.  
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Figure 1.3.37.  Structure of the BN of the SРР 
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This Bayesian model includes a range of interconnected 

subsystems and components of the CMS, each designated by specific 

abbreviations. The Input Element (IE) initiates the diagnostic chain. 

The Firefighting System (FFS) and the Compressed Air System 

(CAS) represent safety-critical subsystems. Manual control of the 

main engine is marked as MCME, while CS and RACSME denote 

the control system and the remote automated control system for the 

main engine, respectively. An intermediate component labeled P1 

serves as a node linking several major systems. The SPP and the ME 

are central elements of the network, reflecting the core of the CMS 

functionality. Additional components include the Ballast Drainage 

System (BDS), the Emergency Drive of the Propulsion and Steering 

Complex (ED PSC), and the Control System of the Propulsion and 

Steering Complex (CSPSC). The Boiler Room (BR) and the 

Transmission of Power from the Main Engine to the Propulsor 

(TPMEP) illustrate energy flow within the system. Another 

intermediate node, P2, supports the connection to the Propulsion and 

Steering Complex (PSC). The final output state is marked as EXIT, 

representing the end-point or result of the diagnostic inference.  

This structured BN enables a detailed and probabilistically 

grounded analysis of component dependencies and failure 

propagation, forming the basis for evaluating diagnostic performance 

in complex operational scenarios. As part of the third diagnostic 

configuration, which combines CBR, probabilistic, and simulation 

methods, a BN was used to represent the relationships between the 

subsystems of the SРР). For the purpose of accuracy analysis, a 

functional subgraph was selected, including the nodes CS, RACSME, 

P1, and the main engine ME. Based on the observed states of the 

parent components, the probability distribution for the state of ME 

was calculated using the conditional probability table (CPT). The 

predicted class was then compared with the reference value obtained 

from the simulation model, allowing for the calculation of Accuracy, 

Recall, and F1-score. An example CPT for the ME node is shown 

below. 
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Figure 1.3.38. Fragment of the BN for probabilistic inference of 

the (ME state within the integrated diagnostic configuration) 

 

The figure 1.3.38 presents a diagnostically significant subgraph 

of the full BN of the SРР. The node ME serves as the target object of 

diagnostics, and the incoming edges represent the influence of three 

parent subsystems: RACSME (Remote Automated Control of the 

Main Engine), MCME (Manual Control of the Main Engine), and 

CAS (Compressed Air System). All of these are, in turn, indirectly 

influenced by the control input node IE (Input Element). For each 

diagnostic step, the posterior probability distribution of the ME state 

is computed using the Conditional Probability Table (CPT). The 

resulting value is classified into one of three states: normal, pre-

failure, or failure, and then compared to the reference state obtained 

from the simulation model. This enables an assessment of prediction 

accuracy across different diagnostic method configurations. 

The presented subgraph is part of the probabilistic component 

integrated into the second and third diagnostic configurations. The 

Bayesian network refines the predictions obtained through the CBR 

method by incorporating current diagnostic symptoms and causal 

dependencies. The resulting posterior probability is used to classify 
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the technical condition and subsequently calculate accuracy metrics 

such as Accuracy, Recall, and F1-score. Thus, this subgraph does not 

represent a standalone model but rather illustrates a key mechanism 

of one of the components within the integrated architecture of 

intelligent diagnostics. 

In the integrated diagnostic configuration, the BN and the MМ 

are used together but operate at different analytical levels. To 

represent the causal relationships between components of a SPP, a 

BN is used, where each node corresponds to a component and the 

directed edges reflect the dependencies. The diagnostic state of each 

component is determined based on the states of its parent nodes using 

probabilistic inference. 

The operation of the network is based on Bayes’ theorem, which 

allows updating prior probabilities to posterior probabilities as new 

data becomes available: 

 

                               

,
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                      (1.3.62)

 

where: H -  hypothesis regarding the presence or absence of a fault; 

          E - set of diagnostic features; 

         )|( EHP  -  posterior probability of the node’s state; 

        )(HP - prior probability (e.g., failure rate); 

        )|( HEP - likelihood of observed features given the hypothesis; 

         )(EP  - normalizing constant (typically omitted in hypothesis 

comparison) 

 

 The joint probability distribution across the network is 

constructed as the product of local conditional probabilities: 
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where Xᵢ is an arbitrary node in the network, and Parents(Xᵢ) denotes 

its set of parent nodes. In this study, particular interest lies in 

computing the probability of failure of the (ME based on the states of 
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the control subsystem (CS), the remote control subsystem 

(RACSME), and an intermediate node (P1)): 

 
PTvaluefromCPRACSMECSMEP =)1,,|(  

 
Inference is carried out using a predefined Conditional 

Probability Table (CPT), and in the case of incomplete observations, 

marginalization over hidden nodes is applied. This approach enables 

the system to handle uncertainty and missing data, providing a robust 

estimate of fault probability, which is critically important for accurate 

diagnostics under variable operational conditions. 

The conditional probabilities (Table 1.3.38) define the posterior 

distribution of the ME states at the current diagnostic step based on 

causal dependencies from the control subsystems. Subsequently, the 

MМ (Table 1.3.39) is used to predict the probability of the ME 

transitioning to another state at the next step, taking into account the 

degradation dynamics of the equipment. This combination allows for 

consideration of both the system's structure and its behavior over 

time, providing accurate and robust forecasting under various 

operational scenarios. 

 

Table 1.3.38. CPT for the ME node based on the states of parent 

subsystems 

CS RACSME P1 
P(ME: 

normal) 

P(ME:   

pre-failure) 

P(ME: 

failure) 

0 0 0 0.95 0.04 0.01 

1 0 0 0.70 0.25 0.05 

1 1 0 0.40 0.45 0.15 

2 2 1 0.05 0.25 0.70 

The analysis of conditional probabilities presented in Table 

1.3.38 illustrates how the probability of failure of the ME increases 

as the condition of its controlling subsystems deteriorates. 

Specifically, when all parent nodes (CS, RACSME, and P1) are in a 

normal state (i.e., equal to 0), the probability that ME is also 

functioning normally reaches 95%, while the probability of failure is 
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only 1%. This reflects correct model behavior under nominal 

operating conditions. However, when even a single parent node 

degrades (e.g., CS = 1), a noticeable increase in the probability of the 

pre-failure state of ME is observed - up to 25%. In the case of 

multiple degraded components (CS = 2, RACSME = 2, P1 = 1), the 

probability of ME failure rises dramatically to 70%.  

This nonlinear sensitivity of the model demonstrates a cascading 

failure amplification effect, which is critical for the timely prediction 

of critical situations. It is important to note that the structure of the 

CPT effectively reflects diagnostic differentiation: the model not only 

distinguishes between normal and failed states but also identifies 

intermediate pre-failure conditions, enabling early failure prediction. 

 This significantly enhances the informativeness of inference 

and justifies the use of not only Accuracy but also Recall and F1-

score, especially in scenarios involving incomplete or noisy data. 

Thus, the CPT in this configuration defines more than just the 

probabilistic logic of inference - it establishes the specific diagnostic 

sensitivity of the model to different combinations of input states, 

which is a key requirement for accurately assessing performance 

under real-world operating conditions. 

To describe the temporal dynamics of equipment degradation, a 

first-order discrete MМ was used, implemented in the form of a 

transition matrix (Table 1.3.39) between three diagnostic states: 

normal, pre-failure, and failure. To model the probabilistic dynamics 

of state transitions for the ME, a first-order discrete MМ was applied. 

This model accounts for the gradual deterioration of condition and 

serves as a foundation for assessing the temporal stability of 

diagnostic decisions. 

 

Table 1.3.39.  State transition matrix for the ME (MM) 

Current state Next: normal 
Next:        

pre-failure 
Next: failure 

Normal 0.90 0.09 0.01 

Pre-failure 0.05 0.80 0.15 

Failure 0.00 0.00 1.00 
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The system states are denoted as: N - normal; P - pre-failure; O - 

failure (absorbing state). 

Transitions between states are described by the transition 

probability matrix: 
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Each element Pij represents the probability of transition from 

state i to state j in one time step. The absorbing state “Failure” is 

characterized by the fact that once it is reached, no further transitions 

occur (i.e., the probability of remaining in it is 1). The probabilistic 

behavior of the system over time is described by the state probability 

vector: 
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where   )(t is the probability of the system being in state i at time 

step t. The evolution of the system’s probabilistic state is governed 

by the standard Markov equation: 

 

                                   Ptt = ++ )()1(                              (1.3.66) 

 

This formalism enables the assessment of how the failure 

probability evolves over time, integrating the temporal context into 

the diagnostic process. Additionally, based on the elements of matrix 

P, it is possible to compute characteristics such as the expected 

number of steps until transition to the failure state (assuming an 

initial state of pre-failure), which further enhances the predictive 

capacity of the model.  

Thus, the MМ is embedded into the diagnostic configuration not 

as an independent component but as a temporal filter, improving the 

robustness of decisions under unstable or incomplete data conditions, 
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and enhancing overall accuracy during transitional operating modes. 

Its role is particularly significant under multi-scenario operational 

conditions, where the model’s ability to account for inertial and 

cumulative degradation effects becomes critically important. At each 

iteration of the diagnostic cycle, the probability of transition from the 

current state to the next was calculated, taking into account 

previously recorded observations.  

This enabled refinement of the probabilistic inference obtained 

from the CBR and Bayesian components, particularly in cases of 

unstable or incomplete information. The resulting predictions were 

compared with reference labels from the simulation model, allowing 

for the assessment of not only static, but also dynamic diagnostic 

accuracy over time. Subsequently, such transitions were also used to 

evaluate the robustness of the configuration under varying 

operational parameters. 

The presented table 1.3.39 describes the probabilistic dynamics 

of transitions between three diagnostic states of the ME: normal, pre-

failure, and failure. It defines the behavior of a first-order MМ, where 

the next state depends solely on the current one, rather than the full 

historical sequence.  

The model reflects realistic asymmetric degradation: there is a 

high probability of remaining in the normal state (0.90), yet there are 

non-zero probabilities of deterioration. Тo pre-failure (0.09) and even 

directly to failure (0.01). This indicates that even under seemingly 

stable conditions, the system retains an element of risk, 

corresponding to the effect of hidden degradation. Importantly, the 

model allows for a transition from the pre-failure state back to 

normal (0.05), making it not strictly irreversible and enabling the 

representation of recovery processes or temporary disturbances. 

 However, the model retains a high probability of stagnation in 

the pre-failure state (0.80) and a significant risk of failure (0.15), 

making this state diagnostically critical. Not only unstable, but highly 

sensitive to further degradation.  

The "failure" state is absorbing: the probability of remaining in 

this state is 1.0. This accurately reflects the logic of technical 
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diagnostics, where a failure signifies the end of the functional cycle 

of the system and the impossibility of returning to previous states 

without external intervention.  

From a diagnostic accuracy standpoint, such a model enables: 

prediction of transition risks from the current state; consideration of 

the dynamic nature of degradation in operational scenarios; 

refinement of forecasts generated by other methods (e.g., the 

Bayesian component) through time-based probabilistic filtering. 

Thus, the transition table ensures temporal consistency of the 

diagnosis, enables assessment of state stability, and serves as one of 

the key inputs for calculating accuracy metrics under conditions 

approximating real-world equipment operation. 

The use of a first-order discrete MМ makes it possible to 

formalize the probabilistic dynamics of transitions between 

diagnostic states of the ME: normal; pre-failure; failure.  

Based on empirical data and engineering expertise, a state 

transition scheme for the ME MМ was constructed (Fig. 1.3.39), 

reflecting both the stability of the normal state and the predictable 

increase in failure risk as the system transitions through intermediate 

degradation.  

The MМ enables the integration of temporal context into case-

based diagnostics, which is particularly important when analyzing 

ambiguous or borderline cases. Incorporating this model into the 

diagnostic configuration improves metric accuracy, specifically by 

reducing false alarms caused by random parameter fluctuations and 

by enhancing the reliability of predictions under conditions of 

gradual degradation.  

The figure presents the transition diagram, illustrating the 

probabilities of remaining in the current state or transitioning to the 

next, in accordance with the transition probability table. This 

visualization facilitates the interpretation of the system’s temporal 

dynamics and supports the assessment of diagnostic decision 

robustness. 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

191 

 

 
 

Figure 1.3.39. State diagram of the MM for the ME 

 

The presented diagram emphasizes the asymmetric nature of 

technical condition degradation: while the probability of prolonged 

persistence in the current state is high, there remains a non-zero risk 

of deterioration even from the “Normal” state. The Pre-failure mode 

is particularly critical, as it exhibits dual behavior: both a return to 

normal and an accelerated transition to failure are possible. 

Therefore, the Pre-failure state is a key target for early response.  

The Failure state is modeled as an absorbing state, reflecting the 

irreversibility of system breakdown without external intervention. 

Such a model enables not only the temporal characterization of 

system behavior, but also the formalization of diagnostic accuracy 

metrics under conditions of probabilistic instability.  

To evaluate diagnostic accuracy, the following key metrics were 

computed: Accuracy, Recall, and F1-score. For each scenario, the 

effectiveness of CBR alone was assessed, as well as in combination 

with Bayesian networks and Markov processes. Within the third 

diagnostic configuration (CBR + BNs + MМ + simulation modeling), 

a cognitive simulation model is employed to reproduce the behavior 

of the SPP under dynamic fault development.  
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Simulation modeling is implemented as a DES, where system 

components are modeled as events linked by causal and temporal 

dependencies.  

The presented model reflects the structural-functional hierarchy 

of SPP equipment, including mechanisms for transmission, control, 

heat exchange, and power supply. It is used in cognitive simulation 

diagnostics for the generation of fault scenarios, robustness testing of 

the diagnostic logic, and refinement of component weights within the 

integrated model. Each node can be activated within a simulation 

scenario, allowing for the analysis of how individual elements and 

their interactions affect overall diagnostic precision.  

A cognitive simulation model of SPP diagnostics was created in 

the form of a directed graph (orgraph), exemplified by the vector 

control of the rudder transmission with electric drive on a vessel  

(Fig. 1.3.40) Vychuzhanin et al. [127].  

This includes: 1 - rudder machine; 2 - worm gear segment and 

brake; 3 - worm; 4 - tiller; 5 - gearbox; 6 - rudder stock; 7 - rudder 

sector; 8 - axle shaft; 9 - tray bracket; 10 - bolt; 11- bolt with nut; 12 

- washer; 13 - locking plate; 14, 15, 16, 24, 25 - gears; 17 - carrier; 18 

- free epicyclic gear; 19 - gear wheels; 20 - free carrier; 21, 22 - 

shafts; 23 - braking epicyclic gear; 26 - motor; 27 - spring; 28 - 

rudder blade; 29 - profiled rudder; 30 - drive gear; 31 - propeller 

shaft; 32, 33 - low- and high-pressure turbine shafts; 34 - 

turbocharger; 35 - drive gear; 36 - intermediate gears; 37 - crankshaft 

drive gear; 38 - camshaft; 39 - connecting rod; 40 - piston; 41 - 

cylinder liner; 42 - cooling water chamber; 43 - crankshaft; 44 - 

charge air cooler; 45 - exhaust gas pipeline; 46, 47 - charge air and 

cooling water pipelines; 48, 49 - oil and fuel pipelines; 50 - push rod; 

51 - fuel pump; 52 - oil ring; 53 - cylinder cover; 54, 55, 56 - 

exhaust, intake, and fuel valves; 58 - oil sump; 59- cylinder block. 

This configuration supports scenario-based diagnostic 

evaluations and provides a detailed representation of subsystem 

interdependencies, which enhances both interpretability and 

predictive reliability under complex operating conditions. 
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Figure 1.3.40.  Cognitive simulation model components of the SРР 

The main purpose of the model is to simulate rare or cascading 

failure scenarios that are insufficiently represented in historical data, 

as well as to assess the system’s sensitivity to various failure 

configurations under given load conditions.  

The model incorporates fault activation logics, protection 

response timings, interactions between subsystems (e.g., between the 

steering control system, the main engine, and power supply), as well 

as sensor failures and signal delays.  

The diagnostic model uses the results of simulation modeling to: 

generate virtual training cases; refine probabilistic dependencies in 

conditions not covered by real precedents; adapt component weights 
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within the diagnostic system (CBR, BNs, MМs) for specific 

operational scenarios.  

Thus, the simulation module functions as a synthetic expert, 

expanding the system’s knowledge base and improving its resilience 

when input data is missing or distorted. This is especially important 

in scenarios of limited observability, where relying solely on real 

precedents and static dependencies may lead to misclassification. To 

systematize the elements of the cognitive simulation model, the 

components were classified according to their functional roles.  

This classification enabled the structuring of failure scenarios 

and analysis of fault propagation within and between subsystems. 

The table below presents a symbolic typology with examples of 

nodes. 

 

Table 1.3.40.  Legend of the model (typology of SPP components 

by functional role) 

Component type Example nodes from the model 

Mechanical elements 
Power transmission, mechanical drive - 9–

14, 26, 30, 31, 35–39, 43 

Hydraulic / pneumatic Pipelines, cooling, air, oil - 42, 44–49, 46 

Electrical / electronic 
Drives, sensors, actuator blocks - 26, 34 

(turbo unit), ED_PSC (in variants) 

Control components 
Control and regulation units - 1 (steering 

machine), 2, 3 (MCME), 5, 7 

Structural / auxiliary 

elements 

Bearings, fasteners, seals, etc. - 10, 11, 13, 

50, 52 

 

Model strengths: 

1. Detailed representation of component structure. The 

hierarchical levels from steering mechanism to piston group  reflect 

the full physical-functional path of energy transmission and control; 

2. Causal-structural connectivity. Each node (e.g., shafts, 

gearboxes, rods, turbines, pipelines) is connected to its parent, 

allowing the simulation of cascading fault chains; 
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3. Suitable for cognitive simulation analysis. This model can be 

used to simulate failures, identify critical vulnerabilities, and generate 

training datasets when real incidents are unavailable;  

4. Logical compatibility with BNs and CBR. The model can 

generate input for BNs (component influence modeling) and for CBR 

(structured scenarios with known outcomes). 

To simulate complex equipment degradation scenarios within an 

integrated diagnostic approach (CBR, Bayesian analysis, and 

simulation modeling), a fault simulation tree was developed based on 

AND/OR logic. This structure reflects causal relationships between 

key SPP subsystems, including mechanical, electrical, and hydraulic 

components. In this model: the root node corresponds to the 

aggregate state of the entire SPP; child nodes represent functional 

blocks or elements whose failure affects the overall system behavior. 

An AND connection indicates that all child components must fail 

simultaneously for the parent node to transition into a failure state.  

An OR connection, by contrast, means that the failure of even one 

child node can trigger a fault in the parent node. Such a logical 

structure enables the system to account for both individual failures 

and cascading disruptions, revealing typical escalation pathways for 

faults. The diagram of the cognitive simulation-based fault 

diagnostics model with "AND" and "OR" logical links, representing 

the main subsystems of the SPP, is shown in Figure 1.3.41.  

The root node - SPP ( represents the aggregated state of the 

system. The branches mechanics, electrics, and hydraulics 

correspond to three physical-functional domains of degradation. An 

AND connection indicates that the failure of the parent node is 

possible only when all child components fail. For example, electrics 

will fail only if the cooler, sensors, and electric motor all encounter 

problems simultaneously. An OR connection allows for failure if at 

least one of the child nodes is faulty. For instance, for hydraulics, a 

failure in either the cooler or the oil pipeline is sufficient to trigger a 

subsystem fault. The fault simulation tree was used as a scenario 

generator for degradation processes, which formed the basis for 

experimental comparison of diagnostic models. This enabled the 
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evaluation of model robustness against complex failures arising from 

combinations of internal and external factors and clarified the 

contribution of the simulation component to the overall diagnostic 

accuracy. 

 

 
Figure 1.3.41. Cognitive simulation model for SPP equipment 

fault diagnostics with "AND"/"OR" logical links 

 

The tree structure is divided into three functional blocks: 

mechanical, electrical, and hydraulic. The mechanical block, which 

includes the nodes Gearbox and Shaft, is connected using AND logic, 

indicating that simultaneous failure of these components is required 

to escalate a fault to the next level. Such connectivity increases 

resistance to isolated faults but also makes early detection of 
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degradation more difficult. This reduces recall when using CBR 

alone, particularly in the absence of precedent cases that reflect 

complex fault combinations. The electrical block, comprising sensors 

and electric motor, is designed with OR logic, which makes the 

diagnostic system sensitive even to isolated anomalies. This provides 

high sensitivity but can lead to an increased number of false 

positives, especially in the presence of noisy or distorted data. Here, 

precision becomes critical, and probabilistic methods help refine the 

diagnostic decision by reducing the likelihood of Type II errors. The 

hydraulic block, which includes the Oil Pipeline and Cooler, is also 

governed by OR logic. According to simulation results, these nodes 

are involved in over 60% of cascading failure scenarios leading to 

SPP disruptions. In particular, oil pressure loss or cooling instability 

can trigger a chain reaction, causing critical failures  especially under 

overload conditions. 

The presented fault tree serves as a basis for generating training 

and validation scenarios within the simulation environment. It 

supports analysis of: the robustness of diagnostic models to false 

classifications; sensitivity to partial failures; the ability of models to 

respond appropriately to cascading anomalies in system logic. 

Additionally, the simulation tree helps identify critical fault paths that 

most frequently contribute to diagnostic errors. For example, the 

combination of sensor failure and oil pipeline overheating leads to a 

high likelihood of misdiagnosis when using CBR alone. The 

integration of probabilistic inference and the simulation component 

enables filtering of false correlations and improves classification 

accuracy by 7 - 10% in complex scenarios. Thus, the presented fault 

tree not only describes the logical structure of the technical system 

but also serves as a foundation for analyzing diagnostic accuracy 

under conditions of uncertainty, data scarcity, and operational 

overload. Its inclusion in the study provides a link between model 

architecture, diagnostic methods, and their performance metrics. 

The presented fault simulation tree with AND/OR logic (Figure 

1.3.41) illustrates the causal structure of relationships between 

components of the SPP and is used for generating realistic equipment 
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degradation scenarios. However, to perform quantitative assessment 

of system- and component-level failure probabilities, a formalized 

representation of branching logic is required. To simulate 

degradation scenarios within the SPP, a DES model was applied, 

describing the state transitions of components under the influence of 

internal and external events. The system’s behavior was modeled as a 

finite-state machine: 

 

                                   
)),(()( ieTSfttS =+ ,                          (1.3.67) 

 

where: S(t) - system state at time t; 

        еi - an internal or external event (e.g., local failure, overload); 

         f - a transition function defining how the state changes in 

response to the event 

AND/OR logic. Boolean logic was used within the fault tree to 

combine elementary events (Quality-One International. (n.d.). Fault 

Tree Analysis (FTA)) [128] for an OR connection, the parent node 

fails if at least one of the child nodes fails: 
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for an AND connection, the parent node fails only if all child 

nodes fail: 
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where pi is the failure probability of the i - th component 

Cascading scenarios/ to model chain-reaction failures, a scheme 

of sequential event dependencies was used. The probability of a 

cascading failure, in which the failure of one node triggers a failure 

in a dependent component, is calculated as: 

 

                         
)|()|()( BCPABPAPPcascade = ,                     (1.3.70) 
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where )|( ABP  is the conditional probability of node B failing given 

the failure of node A 

 

Collectively, these formulas allow for transitioning from the 

logical structure of the tree to the generation of statistically valid 

fault scenarios, which is especially important for constructing 

degradation trajectories used in the simulation environment to assess 

the accuracy of diagnostic configurations. 

The simulation model generated a variety of scenarios with 

different depths and structures of failures, which were used for: 

validating the robustness of diagnostic models; assessing accuracy in 

the presence of hidden cascading effects; analyzing sensitivity of 

models to variations in tree structure and node probabilities. 

Scenarios with high probabilities of cascading disruptions were 

particularly effective in revealing vulnerable configurations of 

diagnostic methods, especially when relying solely on CBR without 

probabilistic compensation. 

To quantitatively assess diagnostic accuracy within the 

integrated architecture, a system of interconnected equations was 

employed, reflecting the cooperation among the model’s 

components: CBR; BN; MM; SIM. Unlike simple weighted 

summation, this structure accounts for functional dependencies 

between the stages of inference. 

In this case, the final evaluation is not merely a sum, but 

essentially a functional composition and it can be expressed as a 

sequence: 

 

                  )|()|()( BNxSIMCBRxBNxCBR →→ ,            (1.3.71) 

)()()( 1cov +− →= ttMarstaticBNBN xxPxPxP  

 

or even as a composite function: 

 

                    ))((()( xCBRBNSIMxFinalScore =                      (1.3.72) 
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This reflects a hierarchical dependency, rather than a parallel 

structure. 

The PBN component aggregates not only the static probabilistic 

dependencies defined by the BN, but also the dynamic characteristics 

derived from a first-order MМ. The Markov process describes the 

probabilities of transitions between states (e.g., "normal"→"pre-

failure"→"failure") over a time horizon, allowing the system to 

account for not only current observable features but also the 

degradation dynamics of equipment over time. 

The system is formalized as follows: 

 

,

)()()()(

)()(

)()(

)|()(

)),,((

,cov















++=

=

=

=

=


→+



xPxPxPxFINALScore

xPxP

TxPxP

ExPxP

CxxdfP

SIMdBNdCBRd

paths cascadeSIM

xxtttMar

CBRBN

simCBR



(1.3.73) 

where ),( xxd  - the Euclidean distance between the current case and 

the most similar precedent; 

          C - contextual parameters (e.g., load, temperature, operating 

time, etc.); 

          ЕCBR  diagnostic hypotheses generated by the CBR component 

and passed to the BN; 

         
,xx

T
→

- the transition probability between states in the Markov 

chain; 

         
cascadeP - the probability of failure along cascading paths in the 

simulation-based fault tree; 

          )(1,0,, xPSIMddd  , with 1=++ ddd   - weighting 

coefficients, empirically determined (in this study: 0.6, 0.2, 0.2). 

 

This system reflects the heuristic nature of diagnosis (via CBR), 

probabilistic refinement (via BN and MМ), and robustness 
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verification under degradation conditions (via SIM). The diagnostic 

decision is made based on the coordinated contribution of all 

components, ensuring adaptive accuracy across varying operational 

scenarios. 

To formalize the diagnostic accuracy evaluation process across 

different model configurations, an integrated framework was 

developed, representing the architecture for processing diagnostic 

data. This framework combines three diagnostic approaches: CBR; 

probabilistic analysis (including BNs and MМs); simulation 

modeling. Each approach performs a specific function within the 

overall system: CBR initiates the diagnostic hypothesis; the 

probabilistic model refines and adjusts it by incorporating causal and 

temporal dependencies; the simulation model verifies the robustness 

and reliability of this hypothesis under dynamically changing 

conditions. The modeling scenarios encompass three typical 

operating modes of the SPP, enabling the assessment of the methods' 

adaptability and accuracy under conditions of uncertainty. Figure 

1.3.42 presents the structural diagram for evaluating the accuracy of 

SPP equipment fault diagnostics. It reflects the data flow logic across 

the three configurations of diagnostic models within the simulation 

experiment. 

The diagram highlights the asymmetric nature of technical 

condition degradation: there is a high probability of remaining in the 

current state for an extended period, yet even in the "normal" state, 

there remains a non-negligible risk of transitioning to deteriorated 

conditions. The pre-failure state is particularly critical, exhibiting 

dual behavior it allows for both a return to normal and an accelerated 

transition to failure.  

This makes the pre-failure condition essential for early 

intervention. The failure state is modeled as absorbing, reflecting the 

irreversibility of breakdowns without external repair. This model not 

only captures the system’s behavior over time but also provides a 

formal basis for calculating diagnostic accuracy metrics while 

accounting for probabilistic instability. 

 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

202 

 

 
 

Figure 1.3.42. Structure of the diagnostic accuracy assessment 

process in three model configurations (CBR, CBR+BN, 

CBR+BN+Simulation) based on simulation experiment scenarios 

 

To assess diagnostic accuracy, key metrics were calculated: 

Accuracy, Recall, and F1-score. For each scenario, the effectiveness 

of using CBR alone, as well as in combination with BNs and MМs 

processes, was evaluated. The block diagram illustrates the key 

stages of the experimental workflow: generation of failure events and 

operating conditions in the simulation module, processing of input 

data by three diagnostic model configurations, generation of 
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diagnostic predictions, and comparison with ground truth labels. For 

each configuration, accuracy metrics (Accuracy, Recall, F1-score) 

are calculated to evaluate the correspondence between predicted and 

actual states.  

The simulation scenarios include normal operation, overload 

conditions, and cases with incomplete or noisy data. The resulting 

metrics are aggregated by scenario to enable an objective comparison 

of diagnostic performance in terms of precision, robustness, and 

adaptability. The following tables and graphs present aggregated 

results, along with an example of metric calculation based on 

synthetic data where true labels and diagnostic predictions are 

available. 

To demonstrate the mechanism of diagnostic accuracy 

evaluation, a Python code example using the scikit-learn library is 

provided. The script calculates the Accuracy, Recall, and F1-score 

metrics for three different diagnostic model configurations. The 

inputs include two arrays: true_labels representing the ground truth 

(generated from simulation); prediction arrays from each diagnostic 

setup (pred_cbr, pred_bayes, pred_full). The evaluate_model 

function performs metric computation and outputs the results in a 

structured format. This evaluation procedure was applied iteratively 

to each operational scenario. The resulting metrics were then 

aggregated and visualized in the final summary tables and diagnostic 

accuracy charts presented in the results section. 

 

from sklearn.metrics import accuracy_score, recall_score, f1_score 

import numpy as np 

 

# True states (e.g., after failure simulation) 

true_labels = np.array([1, 0, 1, 1, 0, 0, 1, 0, 1, 0]) 

 

# Predictions for three configurations: 

# 1. CBR 

pred_cbr = np.array([1, 0, 1, 0, 0, 0, 1, 1, 1, 0]) 
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# 2. CBR + Bayesian 

pred_bayes = np.array([1, 0, 1, 1, 0, 0, 1, 0, 1, 0]) 

 

# 3. CBR + Bayesian + Simulation 

pred_full = np.array([1, 0, 1, 1, 0, 0, 1, 0, 1, 0]) 

 

def evaluate_model(name, true, pred): 

    acc = accuracy_score(true, pred) 

    rec = recall_score(true, pred) 

    f1 = f1_score(true, pred) 

    print(f"{name} — Accuracy: {acc:.2f}, Recall: {rec:.2f}, F1-score: 

{f1:.2f}") 

 

# Metric evaluation 

evaluate_model("CBR only", true_labels, pred_cbr) 

evaluate_model("CBR + Bayesian", true_labels, pred_bayes) 

evaluate_model("CBR + Bayesian + Simulation", true_labels, 

pred_full) 

 

This type of calculation was applied to each configuration in 

every scenario, generating Accuracy, Recall, and F1-score values, 

which were subsequently aggregated and visualized in the final 

accuracy charts. 

 

Table 1.3.41. Input parameters and diagnostic results 

Scenario 
Temperature 

(°C) 

Pressure 

(bar) 

Vibration 

(mm/s) 

Actual 

faults 

System 

diagnosis 
Correctness 

Normal 85 10 2.5 None None ✅ 

Accelerated 
wear 

110 12 5.1 Pump wear Pump wear ✅ 

Cascading 

failures 
130 14 7.3 

Generator 

failure 

Generator 

failure 
✅ 

 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

205 

 

Table 1.3.41 presents the test scenarios with input parameters, 

compares actual and predicted faults, and evaluates diagnostic 

accuracy (a match is marked with ✔). 

 

Table 1.3.42. Shows the interrelation of SPP component failures 

and their impact on the system 

SPP 

component 

Main failure 

causes 

Impact on 

other systems 

Cascading 

failure 

probability 

(%) 

Main engine 
Overheating, 

wear 

Cooling 

system, 

gearbox 

35% 

Generator 
Overload, 

vibration 

Power supply, 

automation 
28% 

Cooling 

system pump 

Contamination, 

cavitation 

Cooling 

system, oil 

circulation 

40% 

Power supply 

Short circuit, 

network 

instability 

Automation, 

SPP control 
50% 

Control 

system 

Software error, 

sensor failure 
All subsystems 60% 

 

Table 1.3.42 demonstrates the impact of individual component 

failures on the entire system, which is critically important when 

developing an integrated diagnostic model. The high likelihood of 

cascading failures confirms the need to use BNs to assess 

interdependencies of malfunctions. The failure probability heatmap 

shown in Figure 1.3.43 illustrates which components are most prone 

to failures in each scenario - indicating where failure probabilities are 

highest, and which components are most vulnerable under specific 

conditions. 
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Figure 1.3.43.  Heatmap of component failure risks in the control 

and monitoring system (demonstrates cascading effects and 

failure saturation) 

 

The failure risk heatmap clearly illustrates the intensity of failure 

risks for various components of the SРР, allowing for the 

identification of critical zones where failure probability is highest. 

This is crucial for strategic maintenance planning and improving 

failure diagnostics in SРР. Each modeling step corresponds to 1,667 

hours, covering a total operational span of 25,000 hours. The vertical 

axis displays key SРР components such as the fuel system, cooling 

system, electrical equipment, etc.  

Cascading failure effects: in the early stages (0 - 5,000 hours), 

individual failures with low probabilities predominate; in the mid-
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interval (10,000 - 20,000 hours), clustered failure spikes are observed 

(e.g., electrical equipment and the cooling system), indicating 

cumulative degradation effects; in the later stages (>20,000 hours), 

failure probabilities rise and spread to adjacent systems, confirming 

the presence of cascading effects. Most vulnerable components the 

power supply and cooling systems show the highest failure risks (up 

to 0.06–0.07 in certain intervals), reflecting high loads and potential 

secondary failures.  

The ME and automation system are also at risk, particularly in 

the later stages of operation. From step 13 - 14 (21,600 - 25,000 

hours), failure intensity increases, indicating the final stage of 

component wear, possibly signaling the need for major overhaul or 

equipment replacement.  

The chart now realistically reflects failure risk trends. An 

increasing failure probability over time and the presence of cascading 

effects are confirmed. To improve system reliability, enhanced 

monitoring of electrical and cooling systems is recommended, 

especially beyond 15,000 operating hours. 

 

Table 1.3.43. Diagnostic accuracy in different scenarios 

Method 
Average diagnostic accuracy 

(%) 

Baseline CBR 78.4 

CBR + probabilistic analysis 85.6 

Integrated method 91.2 

 

Table 1.3.43 provides: an assessment of failure prediction 

accuracy - how well the model’s predictions align with actual data; 

identification of discrepancies between forecasts and observed events 

- to determine where the model underestimates or overestimates 

failure likelihood; analysis of potential errors - such as false alarms 

or undetected failures. 

Figure 1.3.44 presents a chart of failure probabilities for 

dynamic analysis and trend identification. 
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Figure 1.3.44. Failure probability chart 

 

The failure probability chart (Figure 1.3.44) is useful for 

dynamic analysis and identifying trends over time. The heatmap 

(Figure 1.3.43) enables the localization of critical risks and their 

temporal distribution. Together, both visualizations confirm the need 

for adaptive mechanisms in CBR-based diagnostics of the SРР. 

 

Table 1.3.44. Comparison with actual failure cases 

Diagnostic method 

Number of 

detected 

failures 

Number of 

actual failures 

Accuracy 

(%) 

CBR  85 100 85% 

Probabilistic analysis 78 100 78% 

Integrated approach 

(CBR + probabilistic) 
92 100 92% 

 

Table 1.3.44 presents a comparison of the effectiveness of three 

diagnostic methods: CBR achieved an accuracy of 85%; probabilistic 

analysis was less accurate at 78%; the integrated approach (CBR + 
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probabilistic methods) provided the highest accuracy of 92%. This 

demonstrates that combining methods leads to more reliable 

diagnostic outcomes. 

 

 
Figure 1.3.45. Comparison of diagnostic methods by accuracy 

   

The bar chart illustrates the comparative diagnostic accuracy of 

three configurations applied in the fault detection of SPP: CBR; 

probabilistic analysis (BNs and MМs); Integrated Approach (CBR + 

probabilistic + simulation). The results clearly demonstrate that the 

integrated approach provides the highest accuracy, approaching 94%, 

outperforming both the standalone CBR and probabilistic models.  

While the CBR method shows solid performance (~85%) due to 

its reliance on precedent-based retrieval, it lacks adaptability in 

uncertain or degraded data conditions. Conversely, probabilistic 

analysis alone slightly underperforms (~78%) in dynamic scenarios 

but adds value in uncertainty modeling. The integrated configuration 

combines the strengths of case retrieval, probabilistic inference, and 

dynamic system modeling.  

This synergy results in improved robustness and sensitivity 

across operational conditions (normal, overload, and incomplete 
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data). Thus, the integrated model is not only more precise but also 

more stable and generalizable for practical diagnostic deployments in 

complex technical systems. 

 The classification error diagram (confusion matrix) in Figure 

1.3.46 provides a visual assessment of the types of errors made by the 

model: true positives (TP) - correctly predicted failures; false 

positives (FP) - false alarms (the model predicted a failure that did 

not occur); false negatives (FN) - missed failures (a failure occurred 

but was not predicted); true negatives (TN) - correct predictions of no 

failure. 

 
Figure 1.3.46. Classification error diagram for the technical 

condition of the SРР 
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The confusion matrix (Figure 1.3.47) visualizes how many 

predictions were correct and where the model made mistakes.  

 
Figure 1.3.47. Confusion matrix for classification of SРР technical 

condition 

By analyzing the matrix, one can adjust the parameters of SРР 

fault diagnostics. If Recall is too low, the system is missing failures 

→fault detection needs to be improved. If Precision is low, the 

system frequently signals failures incorrectly→precision should be 

increased. If FP or FN are too high, the model requires additional 

calibration or weight adjustment. This classification confusion matrix 

shows the number of cases where the model correctly or incorrectly 

classified objects into three categories: "Normal," "Pre-failure," 

"Failure." Each number in a cell indicates how many times the model 

predicted a certain class compared to the actual class. 

Interpretation of the confusion matrix based on Table 1.3.45 

 

Table 1.3.45.  Classification errors of SPP technical condition 
Actual class → / predicted class ↓ Normal Pre-failure Failure 

Normal (actually normal) 3 1 0 

Pre-failure (actually pre-failure) 0 3 1 

Failure (actually failure) 0 1 3 
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Interpretation of Matrix Cells: (3, 3, 3) on the diagonal - cases 

where the model correctly predicted each class (correctly identified 

“Normal” 3 times, correctly identified “Pre-failure” 3 times, 

Correctly identified “Failure” 3 times); (1, 1) off the diagonal - model 

errors. Once, the model misclassified “Normal” as “Pre-failure”. 

Once, it misclassified “Pre-failure” as “Failure”. Once, it 

misclassified “Failure” as “Pre-failure”). Color scale from 0.0 to 3.0. 

Visualization of error frequency: the darker  the cell color; the more 

errors it contains; the lighter the color, the rarer that type of error; 

maximum value on the scale is 3, indicating the most frequent case. 

The model generally performs well, since the diagonal cells 

(correct predictions) have higher values. 

Errors between “Pre-failure” and “Failure” are a potential issue, 

as the model confuses these classes. This can be addressed by: 

additional training; weight tuning; adjustment of decision thresholds. 

False Negatives (FN) - missed failures - are few but present→ 

model sensitivity to failures should be increased.  

The changes in weight coefficients ),,( ddd  affect the 

accuracy of diagnosing SРР equipment failures. 

Figure 1.3.48 presents a graph illustrating the impact of the CBR 

weight (
d ) on diagnostic accuracy.  

The graph illustrates how changes in the CBR weight ( d ) 

affect diagnostic accuracy. At low values of d , the accuracy is 

relatively low, since probabilistic methods and simulation modeling 

contribute more significantly. As d increases, accuracy improves up 

to a certain point, after which stagnation or decline is possible due to 

the excessive influence of the CBR component. 

Figure 1.3.48 shows the relationship between diagnostic 

accuracy and changes in the CBR weight )( d , with 
d  and 

d  

fixed such that the condition 1=++ ddd    is satisfied. The optimal 

balance is achieved through coordinated adjustment of the weights: 

as 
d  increases, 

d  (probabilistic models); 
d  (simulation 

modeling) must be adjusted accordingly. 
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Figure 1.3.48. Impact of CBR weight on the accuracy of SРР 

equipment fault diagnosis 

Figure 1.3.49 shows a 3D graph of the dependence of SРР fault 

diagnosis accuracy on the weight coefficients   
ddd  ,, . 

 

Figure 1.3.49. 3D graph of the dependence of SPP fault diagnosis 

accuracy on weight coefficients ddd  ,,  
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The graph presents the dependence of diagnostic accuracy on all 

three weights. Maximum accuracy is achieved with balanced values 

of 
ddd  ,, , when all diagnostic methods are considered. If one of 

the coefficients dominates (e.g., 
d ≈ 0.8, while 

d  and 
d  are 

small), the accuracy decreases, as valuable information from 

probabilistic methods and simulation modeling is lost. The gamma 

coefficient (
d ) is calculated automatically using the relation:   

ddd  −−=1 . The color scale reflects the variation in diagnostic 

accuracy: lighter areas on the graph correspond to higher accuracy; 

darker areas indicate lower accuracy. An increase in 
d  leads to 

improved SРР fault diagnosis accuracy. An increase in 
d  tends to 

reduce accuracy. The influence of 
d  is also present, though it is 

considered indirectly. The graph can be used to analyze the optimal 

ratio of weights that ensures maximum diagnostic accuracy. 

The graphs in Figures 1.3.49 and 1.3.50 illustrate the influence 

of changing the weight coefficients (
ddd  ,, ) on the accuracy of 

diagnosis.  

 

 
Figure 1.3.50. 3D graph of the dependence of SРР fault diagnosis 

error on weight coefficients  
ddd  ,,  
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They demonstrate how adjusting the contribution of CBR, 

probabilistic models, and simulation modeling affects the final result. 

Figure 1.3.50 3D graph of the dependence of SРР fault diagnosis 

error on weight coefficients 
ddd  ,, . The 3D graph of the 

dependence of SРР fault diagnosis error on the weight coefficients 

ddd  ,,   visualizes the influence of  
d  and 

d  on the diagnostic 

error. The error decreases as  
d  increases, but increases with a rise 

in 
d . CBR plays a key role, but it requires an optimal balance with 

probabilistic methods. 

Table 1.3.46 presents the optimal weight values (
ddd  ,, ) 

found through minimization of SРР fault diagnosis error. 

 

Table 1.3.46. Optimal weight values with SРР fault diagnosis 

error minimization 

d  
d  

d  Diagnosis 

error (%) 

0.1 0.7 0.2 15 

0.2 0.5 0.3 12 

0.3 0.4 0.3 10 

0.4 0.3 0.3 8 

0.5 0.2 0.3 7 

0.6 0.2 0.2 
6 (minimum 

error) 

0.7 0.1 0.2 7 

0.8 0.1 0.1 9 

 

In Table 1.3.35, the optimal combination is: (
d  = 0.6, 

d  = 

0.2, 
d  = 0.2) - where the error is minimal (6%). This indicates that 

the balance between CBR and probabilistic methods is critical. The 

optimal weight combination was obtained by minimizing the 

diagnostic error using a numerical optimization method. This result is 

based on the following principles. Analysis of the dependence of 

diagnosis error on weights 
ddd  ,, : simulation of diagnostic error 
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was performed based on weight coefficients; the error function was 

calculated as the difference between predicted and actual failures, 

using historical data. Error minimization method: a gradient descent 

method (or an alternative numerical method, such as grid search) was 

used to find the minimum error; optimization was carried out within 

the valid range of weights: 0.1 ≤
ddd  ,, ≤ 0.8, under the condition   

1=++ ddd  . Experimental validation:  validation was performed 

on a test dataset not used during training; the forecasting error at the 

selected weight combination was minimal (6%), confirming the 

efficiency of the combination (
d = 0.6, 

d = 0.2, 
d  = 0.2). 

Thus, the optimal combination of weights was obtained through 

numerical modeling and optimization search, which allowed the error 

to be minimized. 

Diagnostic accuracy analysis of SРР Failures across different 

scenarios. The analysis revealed that the data processing 

methodology significantly affects the final results. The main 

conclusions are. The CBR method without adaptation showed stable 

but less accurate results. In scenarios with high parameter variability, 

diagnostic accuracy decreased due to the lack of a mechanism for 

considering individual case features. The CBR method with 

adaptation provided higher failure prediction accuracy, especially in 

complex scenarios where marine power plant operating parameters 

differed from standard conditions. The inclusion of adaptation 

mechanisms enabled more accurate diagnostic decisions, aligning 

them with real data. A combined approach (integration of CBR with 

additional analysis methods, including statistical modeling and 

machine learning) showed the highest reliability of diagnosis. 

Varying the weight coefficients 
ddd  ,, : allowed optimization of 

each parameter’s influence on the final failure risk assessment. The 

diagnostic error in various scenarios strongly depended on the correct 

selection of weights in the CBR system. The highest accuracy was 

achieved when the model dynamically adjusted parameters based on 

failure characteristics identified in previous operational data. The 

variation in accuracy values indicates the need for further model 
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optimization. In scenarios with rare failures (low statistical support), 

the error increased, which requires developing methods to 

compensate for data scarcity. 

In general, the comparison across different scenarios showed 

that the integrated diagnostic approach for marine power plants has 

the greatest potential. Optimizing the adaptation parameters will 

further increase the accuracy and reliability of failure predictions. 

 

1.3.6.4 Discussion of results 

The results of this study demonstrate that the integration of CBR 

methods, probabilistic modeling, and simulation modeling ensures 

high diagnostic accuracy of failures in SРР, especially under high 

load and data scarcity conditions. The best performance was achieved 

with a weight distribution of 
d = 0.6, 

d = 0.2, 
d  = 0.2, 

corresponding to 94% diagnostic accuracy and 6% error rate. 

A comparison with recent studies confirms the effectiveness of 

the proposed approach. For example, Aburakhia et al. [129] proposed 

a hybrid method combining wavelet transformation and Bayesian 

optimization of a random forest for bearing fault diagnosis, with a 

focus on reducing system latency. Their method demonstrates high 

accuracy and low latency, but does not provide adaptability to 

various operating conditions. In contrast, the developed configuration 

ensures comparable efficiency under variable load, information 

deficit, and unstable fault profiles. The review presented by Orhan & 

Celik [130] of current diagnostic methods for СTS, including SVM, 

neural networks, and BNs, does not consider method combinations 

and lacks quantitative accuracy analysis under changing scenarios. 

The opposite approach, focusing on empirical comparison of 

configurations, allowed the identification of the most resilient 

solutions. Ngo et al. [131] developed a recurrent graph transformer 

network for localizing multiple equipment failures in shipboard СTS, 

demonstrating a 1 - 4% accuracy gain compared to other ML 

methods. However, the model architecture requires significant 

computational resources and specialized data. In this study, high 

accuracy was achieved with lower architectural complexity and a 
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more flexible configuration structure. The digital twin system 

presented by Fera and Spandonidis [132] for SРР failure diagnosis 

based on autoencoders and Mahalanobis distance, despite its 

technological novelty, is limited to analysis within a single 

configuration and lacks parameter tuning. The conducted scenario 

analysis and weight calibration of components fill this gap. Hasan et 

al. [133] described the use of an adaptive extended Kalman filter  on 

the autonomous vessel Otter. Their method illustrates the 

effectiveness of numerical simulation but does not include 

classification accuracy metrics. In the present study, the diagnostic 

effectiveness is quantitatively evaluated using Accuracy, Recall, and 

F1-score metrics. The criticality analysis of ship power supply 

components conducted by Daya & Lazakis [134] using DFTA and 

neural networks focused on identifying vulnerable nodes but did not 

address the robustness of diagnostics under changing operating 

conditions. The multi-scenario analysis carried out in this work 

addresses precisely these aspects, complementing existing 

approaches. Brito et al. [135] proposed an interpretable fault 

diagnosis model using explainable AI. However, it does not consider 

multi-component or cascading processes. The current approach 

covers СTS with coordinated diagnostic weight tuning, which is 

critical for reliable classification of multiple events. The hybrid 

prognostic framework proposed by Arias et al. [136] for estimating 

the remaining useful life of turbofan engines has a strong point in 

integrating physics-based features and neural networks. However, it 

does not solve the problem of real-time accurate fault identification. 

The diagnostic strategy applied here minimizes classification errors 

under unstable and incomplete input data. Tang et al. [137] 

developed a PHM approach for marine hybrid energy systems 

focused on battery lifetime prediction and optimization of diesel-

electric components. The lack of diagnostic error analysis and 

quantitative validation limits the applicability of the method for 

evaluating classification accuracy. In contrast, the present work 

implements a formalized approach to configuration selection based 

on metric comparison under various operating scenarios. 
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Thus, the presented results confirm the effectiveness of the 

developed configuration for diagnosing SРР failures under 

uncertainty, data limitations, and variable loads. The comparison 

with current research emphasizes the competitiveness of the approach 

not only in terms of accuracy but also in its versatility for engineering 

diagnostics of complex technical systems. 

 

1.3.6.5 Conclusions 

This section is dedicated to a comparative analysis of the 

accuracy of SРР fault diagnosis using three different method 

configurations: the basic CBR scheme, CBR combined with 

probabilistic models (BNs and MМs); the integration of CBR, 

probabilistic analysis; simulation modeling of cascading failures. The 

comparison is based on standard accuracy metrics - Accuracy, 

Recall, and F1-score - under three representative operational 

scenarios: nominal mode; high-load mode; diagnostic data scarcity. 

The goal of the study was to quantitatively assess which 

configuration of diagnostic methods provides the best performance 

under different operating conditions. All the set objectives were 

achieved. For each method configuration and operational scenario, 

the accuracy metrics were calculated, which allowed identifying the 

advantages and limitations of each approach. Analysis of confusion 

matrices and graphical visualization of results revealed characteristic 

types of diagnostic failures and the strengths of integrated 

approaches. 

Particular attention was given to studying the influence of the 

method weight coefficients on the final diagnostic accuracy. 3D 

graphs and surface cross-sections of accuracy were constructed, 

based on which the optimal combination of parameters was 

determined: 
d  = 0.6 (CBR weight); 

d  = 0.2 (probabilistic models 

weight);  
d  = 0.2 (simulation modeling weight), which provides the 

minimum diagnostic error - 6%. Moreover, this configuration was 

experimentally confirmed to be resistant to data incompleteness, 

noise, and load fluctuations. 
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Based on the obtained data, practical recommendations were 

formulated for selecting configurations depending on operational 

conditions. For stable nominal mode, simplified models are 

acceptable, while under overload conditions and information 

shortage, the best results are achieved through full integration of all 

components. 

Thus, this section implements the applied part of the previously 

developed theoretical and methodological approach (Section 1.3.5), 

shifting the focus from model development to their quantitative 

validation and practical calibration. The results contribute to the 

formation of a comprehensive, adaptive, and robust intelligent 

diagnostic system for assessing the technical condition of SРР, aimed 

at achieving high accuracy under real-world marine operating 

conditions. 

 

1.3.7 A hybrid model for evaluating the accuracy of failure 

forecasts in SPPs 

 

1.3.7.1 Introduction 

Modern CTS are characterized by a high degree of integration 

and interdependence among components, which makes their failures 

particularly critical. In the current operational context of maritime 

transport, the reliability of the SPP has become of paramount 

importance. A failure of the main engine or its components can lead 

to serious consequences, including loss of vessel control, threats to 

crew safety and the environment, as well as significant economic 

losses. In this regard, the task of accurately forecasting the TC of the 

SPP and the timely identification of potential failures is especially 

relevant. 

The development of intelligent diagnostic systems capable not 

only of identifying the current condition of equipment but also of 

reliably predicting possible failures requires the verification of their 

predictive validity. One of the critical components in such 

verification is the comparison between predicted and actual failures. 

This comparison helps assess the effectiveness of the applied models 
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and algorithms, refine diagnostic decisions, and reduce the likelihood 

of false alarms or missed failures. Existing diagnostic methods for 

SPP s include both traditional approaches based on physical and 

mathematical modeling, and modern techniques using artificial 

intelligence and big data processing (Vychuzhanin & Rudnichenko 

[138]). However, despite progress in predictive modeling, the issue 

of aligning predicted failures with actual ones remains open, directly 

impacting the effectiveness of maintenance and repair strategies. 

Recent years have seen significant development in machine learning, 

graph-based models, and neural networks for ship equipment 

diagnostics. Pajak et al. [139] proposed a diagnostic method for 

marine diesel engines using vibroacoustic data and machine learning 

algorithms. While this approach enables accurate classification with 

limited training data, it lacks validation of predictions against real 

failures, limiting its utility for long-term reliability forecasting. In the 

work by Rigas et al. [140], a graph neural network-based end-to-end 

monitoring architecture was applied to ship machinery. Although 

effective in streaming environments, it does not perform explicit 

comparison of predicted results with real-world failure events, 

leaving diagnostic accuracy unverified. Tveten & Stakkeland [141] 

studied concept drift in the diagnostics of traction motors. Adaptive 

methods were introduced, but the impact of this adaptation on 

prediction accuracy compared to actual failure data was not assessed, 

and deviation metrics were not provided. Vizentin et al. [142] 

conducted an extensive review of the causes and types of SPP 

failures. While the study emphasizes the relevance of the problem, it 

is primarily descriptive and does not offer quantitative forecasting 

models, highlighting the need for model development and validation. 

Zhao et al. [143] applied LSTM networks for thermodiagnostics of 

diesel engines. Although the model demonstrated high sensitivity to 

thermal anomalies, it focused on a single parameter (thermal 

condition) and did not validate prediction accuracy against actual 

failures. Zhu et al. [144] addressed multi-fault detection using 

various neural network architectures. Despite strong classification 

results, the study did not compare predictions with real failure 
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statistics, limiting evaluation to training and testing datasets. Karatuğ 

& Arslanoğlu [145] proposed a condition-based maintenance strategy 

using neural networks, supported by a practical case study. However, 

the study did not assess deviations between predicted and actual 

outcomes in long-term operational contexts. In a comprehensive 

review of marine maintenance strategies, Arslanoğlu et al. [146] 

emphasized the shift from corrective to predictive maintenance. 

However, they note that most studies focus on model development 

rather than on verifying the alignment between forecasts and real-

world failures  a gap this study aims to address. For engine 

diagnostics, Wang et al. [147] employed enhanced convolutional 

neural networks, which proved effective for fault classification. 

Nevertheless, the approach lacked temporal modeling and did not 

assess prediction accuracy through historical failure data. Maione et 

al. [148] proposed a machine learning–based framework for 

condition-based maintenance. Although the structure covers the full 

workflow from data acquisition to decision-making, it does not 

include a module for analyzing discrepancies between predicted and 

actual failures. A review of recent studies in SPP diagnostics and 

prognostics shows active progress in data-driven approaches and the 

integration of various methods to improve forecasting accuracy. 

However, the systematic comparison of predicted and actual failures 

remains underdeveloped. Such comparison is essential for evaluating 

the real-world effectiveness of applied models and maintenance 

strategies. 

The objective of this study is to analyze the correspondence 

between predicted and actual failures in SPP diagnostics using an 

integrated approach that combines knowledge-based methods, 

probabilistic models, and simulation modeling. 

To achieve this objective, the following research tasks are 

defined: 

1. To develop a methodology for assessing the accuracy of 

technical condition forecasting in marine power plants; 

2. To perform a comparative analysis between forecast results 

and actual failure data; 
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3. To evaluate the effectiveness of the integrated approach 

compared to traditional diagnostic methods; 

4. To formulate recommendations for applying the integrated 

approach to improve reliability and efficiency in SPP maintenance. 

Addressing these tasks will contribute to increasing diagnostic 

accuracy, optimizing maintenance planning, and ultimately 

improving the reliability and safety of maritime operations. 

 
1.3.7.2 Materials and methods 

This study presents a comprehensive evaluation of the accuracy 

of forecasting the technical condition of a SPP using various 

diagnostic approaches. The object of analysis was a typical SPP 

comprising both primary and auxiliary components, including the 

main engine, generator, pump system, cooling system, and electrical 

power supply. The research focused on components subject to high 

operational loads and exhibiting the greatest variability in failure 

patterns. The task addressed in this work is the assessment of forecast 

accuracy for SPP component failures using three different 

approaches: the classical CBR method, its adapted version, and an 

integrated hybrid approach. The initial data included both real 

operational observations and simulated scenarios reflecting 

equipment behavior under varying conditions. A total of 150 

diagnostic cases were analyzed, covering more than 30 technical 

elements. The information base consisted of degradation parameter 

time series, diagnostic indicators, confirmed failures, and expert 

evaluations. All failed components were classified according to their 

criticality and functional significance. The non-adapted CBR method 

was used to retrieve historical cases most similar to the current 

condition. In the adapted version, causal relationships between 

degradation parameters and operating conditions were incorporated, 

improving the relevance of forecasts. The hybrid approach combined 

CBR with probabilistic modeling and simulation of degradation 

scenarios, enabling more precise evaluation that accounts for 

cascading effects, degradation dynamics, and diverse failure modes. 

The integrated scheme also applied iterative refinement of forecasts 
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at each stage of data processing. Forecast accuracy was assessed 

using a range of metrics, including MAE, RMSE, MAPE,  R², and 

the F1-score for evaluating classification quality of technical states. 

Accuracy analysis was performed both at the level of individual 

components and across different operational scenarios, including 

nominal load, high-load conditions, and incomplete observability. To 

better understand the structure of forecast errors, several visualization 

tools were used: heatmaps highlighting zones of maximum deviation 

between predicted and actual values, scatter plots, and summary 

tables comparing the performance of different methods. In addition, a 

correlation analysis was conducted to assess the robustness and 

sensitivity of the models to changes in operating conditions. All 

computations and modeling were carried out using Python (NumPy, 

pandas, scikit-learn, seaborn), Excel, and a proprietary expert system 

implementing the CBR method. Simulation scenarios were developed 

in AnyLogic, which enabled the reproduction of complex operational 

modes with uncertainty and component interactions. The proposed 

methodology allowed for an objective comparison of forecasting 

approaches, identification of their strengths and weaknesses, and the 

selection of the most effective strategy under conditions of technical 

and informational uncertainty inherent in the operation of marine 

power plants. 

 

1.3.7.3 Methodology for evaluating the accuracy of failure 

forecasts in SPP equipment 

To assess the effectiveness of failure forecasting for components 

of SPP, a methodology has been developed that compares predicted 

results with actual data recorded during operation. This methodology 

is based on the combined use of quantitative metrics, structural error 

analysis, and their visual representation. 

The following statistical indicators are applied to quantitatively 

evaluate forecasting accuracy: MAE the average absolute difference 

between predicted and actual values; RMSE a measure sensitive to 

large deviations and outliers; MAPE enables assessment of relative 

deviations; R² indicates the degree of agreement between predicted 
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and actual data; F1-score  a balanced metric combining precision and 

recall for classifying states (normal, pre-failure, failure). 

The use of multiple metrics allows for evaluation of both 

absolute and percentage deviations, as well as the reliability of 

technical condition classification. 

The application algorithm of the methodology (Fig. 1.3.51) 

includes the following stages.  

 
Figure 1.3.51. Forecast accuracy assessment algorithm 
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Data selection: a dataset is formed from available diagnostic 

records, including predicted values generated by three methods 

(CBR, adapted CBR, and integrated approach) and actual failure data 

recorded during real operation. Metric calculation: for each 

forecasting method, and for each SPP component and operational 

scenario, values of MAE, RMSE, MAPE, R², and F1-score are 

calculated. Result aggregation: the calculated metrics are averaged 

and structured across different levels of analysis - overall system 

level, by component, and by operational scenario. Forecast stability 

assessment: zones with the highest and lowest deviations are 

analyzed to identify systematic prediction errors, such as 

overestimation of risk for the main engine or underestimation for the 

generator.This block diagram illustrates the step-by-step process used 

to assess the accuracy of failure forecasts in marine power systems. 

The method includes collecting and aligning predicted and actual 

failure data, computing core evaluation metrics (MAE, RMSE, 

MAPE, R², F1-score), aggregating results at multiple levels (by 

component, scenario, and system-wide), analyzing deviation patterns, 

visualizing discrepancies, and generating feedback for improving 

hybrid forecast models. 

In accordance with the methodology for evaluating the accuracy 

of failure forecasts in SPP equipment, the comparison of results is 

carried out across three dimensions: by component (main engine, 

generator, pump system, cooling system, power supply); by 

operational scenario (standard load, elevated temperature conditions, 

variable operating cycles, etc.); by the aggregated dataset, allowing 

for a comprehensive comparison of methods at the system-wide 

level. This multi-level comparison enables identification of local 

zones where forecast accuracy deteriorates, as well as an overall 

evaluation of methodological effectiveness under varying operating 

conditions. 

 

1.3.7.4 Results 

Figure 1.3.52 shows the graphs illustrating the impact of CBR 

adaptation on the probability of failure for SPP components over a 
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25,000-hour operational period. These results were obtained through 

simulation of the technical condition SPP. Figure 1.3.52 illustrates 

that the adaptation of the CBR method leads to a reduction in the 

probability of failure in SPP components over time. However, the 

key aspect is not only the reduction in failure probability itself, but 

also the improvement in forecasting accuracy provided by the 

adaptive approach. 

 
 

Figure 1.3.52. Impact of CBR adaptation on the failure 

probability of SPP components 

On average, the use of the adaptive method reduces failure risk 

by approximately 15%. The main mechanisms contributing to 

reduced failure rates with CBR adaptation include: analysis of 

probabilistic dependencies: the system adjusts diagnostic decisions 

upon detecting cascading failure effects; tracking dynamic state 

transitions: using Markov processes, the adaptive CBR approach 

anticipates equipment degradation in advance; simulation-based 

modeling: the incorporation of synthetic data enables consideration 

of rare but critically important failures. The plotted results confirm 

that the integration of CBR with probabilistic techniques and 

simulation modeling improves diagnostic accuracy and reduces 
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failure probability. This effect becomes especially prominent in the 

later stages of operation (beyond 15,000 hours), where the 

performance gap between traditional and adaptive CBR methods 

becomes more significant. To quantitatively assess the effectiveness 

of CBR adaptation, a comparison of forecast errors for failure 

probabilities was performed across different diagnostic approaches. 

Key accuracy metrics include MAE, RMSE, Frequency of significant 

errors (σ-deviations from actual data). 

 

Table 1.3.47. Impact of CBR adaptation on failure forecast 

accuracy 

Diagnostic 

method 
MAE RMSE 

Share of forecasts 

outside acceptable σ(%) 

CBR without 

adaptation 
0.65% 0.87% 14.2% 

CBR with 

adaptation 
0.44% 0.65% 6.5% 

 

Analysis of the data in Table 1.3.47 shows that adaptive CBR 

reduces the average failure forecast error by 32%, and also decreases 

the frequency of significant forecast errors by more than a factor of 

two. This improvement can be attributed to several key factors: 

consideration of probabilistic dependencies - CBR adaptation enables 

the model to account for cascading failure effects; component 

degradation forecasting - dynamic analysis of subsystem conditions 

reduces uncertainty in predictions; simulation-based failure modeling 

– the inclusion of synthetic data helps mitigate errors associated with 

rare but critical failure events.  

Thus, CBR adaptation not only reduces the probability of 

failures (as illustrated in Figure 1.3.52) but also enhances forecast 

accuracy, making it a more reliable diagnostic method compared to 

traditional, non-adaptive CBR. 
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Figure 1.3.53 presents the graphs of failure probability dynamics 

for SPP components over 25,000 hours of operation, obtained 

through simulation of the technical condition diagnostic system.  

 

 
 

Figure 1.3.53. Time-Dependent failure probability of components 

(Markov method) 

 

The time-dependent failure probability curves (based on a 

Markovian approach) for each component illustrate the dynamic 

behavior of key SPP subsystems in the context of failure evolution. 

The graph in Figure 1.3.53 shows that the failure probability of all 

components increases over time. The curves exhibit a nonlinear 

character, indicating cumulative wear and a rising risk of failure as 

operational time progresses.The main engine consistently shows the 

highest failure probability throughout the time interval, which is 

expected due to its high operational load and critical role within the 

SPP. The generator and cooling system also exhibit elevated failure 

probabilities, though lower than those of the main engine. The power 

supply and pump system demonstrate the lowest failure probabilities 
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among all components analyzed. Long-term risk patterns can be 

summarized as follows. By approximately 25,000 hours of operation, 

the failure probability of key systems exceeds 80%, indicating the 

need for major overhaul or replacement.  

During the initial period, failure probability remains near zero, 

corresponding to a phase of normal operation without significant 

degradation. Therefore, the main engine and generator require 

increased monitoring due to their higher failure risks. The cooling 

and power systems also carry notable risks, albeit to a lesser extent. 

The predictable increase in failure probability suggests the necessity 

of regular maintenance, especially after 10,000 - 15,000 hours of 

operation. These data can inform preventive maintenance strategies, 

taking into account critical operational time thresholds. 

Variation in failure dynamics among components: the ME 

shows the highest failure probability over 25,000 hours of use, due to 

the intense mechanical loads it experiences and its central role in the 

SPP; the generator exhibits a more gradual increase in failure 

probability compared to the ME, as it is subject to less mechanical 

wear; the cooling system reaches a high failure probability earlier 

than other components, which may be attributed to exposure to harsh 

environments and risks such as clogging or pipe wear; the power 

supply and control systems exhibit lower probabilities of failure, 

largely due to the reliability and protection of their electronic and 

structural elements. 

Time-dependence of failure probability the failure probability 

increases in a nonlinear fashion, reflecting real-world operating 

conditions. In the early stage, growth is slow, but after a certain 

threshold (approximately 15,000 - 18,000 hours), the failure 

probability increases significantly especially for the ME and cooling 

system. This underscores the importance of scheduled maintenance 

and timely diagnostics. 

The use of a MМ to forecast component states enables accurate 

modeling of equipment degradation in complex technical systems, 

allowing for effective prediction of failure evolution. This approach 
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is particularly useful for estimating remaining useful life and 

supporting maintenance decision-making. 

Table 1.3.48 presents the results of comparing predicted failures 

with actual operational failure data for SPP equipment. 

 

Table 1.3.48. Comparison of predicted and actual failures in SPP 

equipment 

 

Component 

CBR 

forecast (no 

adaptation), 

% 

CBR 

forecast 

(with 

adaptation), 

% 

Integrated 

forecast, 

% 

Actual 

failure 

rate, 

% 

Forecast 

error 

(MAPE), 

% 

Main 

engine 
2.1 1.8 1.6 1.5 6.7 

Generator 3.0 2.5 2.3 2.2 4.5 

Pump 

system 
4.2 3.8 3.5 3.4 3.1 

Cooling 

system 
5.5 4.9 4.7 4.6 2.2 

 

As shown in Table 1.3.48, the largest discrepancies are observed 

for the МЕ and pump system, which may be attributed to the high 

variability of their failure modes and the influence of external 

operational factors. The most accurate forecasts are observed for the 

cooling system, confirming the effectiveness of the predictive models 

under conditions of regular monitoring of operational parameters. 

Table 1.3.49 compares predicted failures generated by the CBR 

method with actual recorded failures and shows the extent to which 

the predictions align with real-world events. In Table 1.3.49, the 

absolute error is 1 failure in all cases, but the percentage deviations 

range from -33% to +25%. Fuel system, compressed air system, and 
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automation system show overestimated failure forecasts (+20% to 

+25%), which may result in excessive preventive maintenance. On 

the other hand, the cooling system and auxiliary systems show 

underestimated predictions (-33% and -25%), which increases the 

risk of unexpected failures. The main engine and power supply 

exhibit minimal deviation (+14% to +16%), indicating high forecast 

accuracy for these components. 

Table 1.3.49. Comparison of predicted and actual failures in SPP 

equipment 

System 

component 

Actual 

failures 

Predicted 

failures 

Absolute 

error 

Deviation 

(%) 

Fuel system 5 6 1 +20% 

Cooling 

system 
3 2 1 −33% 

Compressed 

air system 
4 5 1 +25% 

Main engine  7 8 1 +14% 

Power supply 6 7 1 +16% 

Auxiliary 

systems 
4 3 1 −25% 

Automation 

system 
5 6 1 +20% 

 

The results from Table 1.3.49 suggest the following: 

overestimated predictions require model adjustment to reduce false 

positives and unnecessary maintenance costs; underestimated 

forecasts (cooling, auxiliary systems) could lead to unforeseen 

breakdowns, indicating a need for model parameter revision; overall, 

the forecast accuracy is acceptable (within 1 failure), but further 
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improvements are achievable through adaptive algorithms and 

retraining the model on updated data. 

Table 1.3.50 presents the results of comparing predicted and 

actual failures under various operational scenarios of SPP equipment. 

Table 1.3.50. Forecast accuracy assessment under different 

operating scenarios for SPP equipment 

Operating 

scenario 

Predicted 

failure risk, 

% 

Actual 

failure risk, 

% 

Deviation, 

% 

Forecast 

accuracy

, % 

Nominal load 1.8 1.6 ±0.2 88.9 

Variable load 3.2 2.9 ±0.3 90.6 

High load 4.5 4.1 ±0.4 91.1 

Aggressive 

environment 
6.3 5.8 ±0.5 92.1 

Hybrid prognostic model for SPP failure forecasting 

The proposed failure forecasting approach for SPP equipment is 

implemented in the form of a hybrid prognostic model, which 

comprises three interrelated layers of information processing. This 

structure integrates historical data, expert knowledge, and the 

stochastic behavior of the technical system within a unified analytical 

framework. 

Level 1. Forecast based on the CBR method. 

Using input diagnostic indicators (e.g., vibration, temperature, 

wear), the model identifies historical cases most similar in feature 

space from the case base. A preliminary failure probability estimate 

(P₀) is generated based on analogy with these retrieved precedents. 

Level 2. Probabilistic forecast correction. 

The initial forecast is refined using prior and conditional 

probabilities of failure, which represent causal dependencies between 

technical condition parameters and operational conditions. The final 

failure probability for a given component is calculated as a weighted 
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combination of the CBR-based forecast and the probabilistic 

estimate: 

                                       ,VO PPP +=                              (1.3.74) 

where 
VP  is the failure probability calculated using the probabilistic 

model, and   and   are empirically derived weighting coefficients. 

Level 3. Simulation-Based modeling of failure scenarios. 

Failure estimation is further enhanced through simulation of 

operational scenarios, incorporating cascading effects. Multiple 

simulation runs are conducted to account for the stochastic nature of 

degradation and to determine an interval-based risk estimate. The 

results are used to refine forecasts and classify the equipment's 

condition.  

Model outputs include: final failure probability estimate; 

diagnostic conclusion on technical state (normal, elevated risk, 

critical failure); deviations between predicted and actual failures 

based on MAE, RMSE, and MAPE; visualization of deviations 

(heatmaps, scatter plots); forecast verification using historical data. 

The application of this hybrid model not only improves the 

accuracy of SPP equipment failure forecasts but also ensures 

verifiability of results through direct comparison with actual failure 

cases. This is crucial for increasing the reliability of diagnostic 

decisions under real-world operating conditions. 

Table 1.3.51. RMSE of failure forecasts based on method used 

Forecasting 

method 

RMSE 

(overall) 

RMSE (by 

components) 

RMSE (by 

scenarios) 

CBR without 

adaptation 
0.65 0.72 0.68 

CBR with 

adaptation 
0.45 0.51 0.49 

Integrated 

approach 
0.32 0.37 0.35 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

235 

 

The variation in RMSE values across the different approaches 

reflects not only forecasting accuracy, but also the robustness of the 

methods under variable operating conditions. The highest RMSE 

values observed with the non-adaptive CBR method indicate high 

sensitivity to input variability, especially in non-standard scenarios. 

This suggests that the method poorly handles degradation dynamics 

and fails to account for interdependencies between components. 

The notable reduction in forecast error with the adapted CBR 

method confirms the positive impact of incorporating probabilistic 

models. However, since the gap between "by components" and "by 

scenarios" remains significant, it can be concluded that even the 

adapted method struggles to fully accommodate the variability of 

operational regimes. The most important observation is that the 

integrated approach not only delivers the lowest overall RMSE, but 

also demonstrates a balanced performance across both component-

level and scenario-level forecasting. This indicates strong resilience 

to both internal system complexity and external environmental 

variability, which is critical for marine SPP applications. The results 

in Table 1.3.51 thus confirm not only the superior accuracy of the 

integrated method, but also its ability to scale and adapt to complex 

diagnostic tasks and diverse operating environments—an essential 

criterion for practical implementation in real-world conditions. 

Table 1.3.52. Comparison of diagnostic accuracy CBR without 

adaptation vs. CBR with failure forecasting for SPP equipment 

Table 1.3.52. Comparison of diagnostic accuracy CBR 
Diagnostic method Precision Recall F1-score Accuracy 

CBR without 

adaptation 
0.82 0.75 0.78 0.85 

CBR with 

adaptation 
0.91 0.88 0.89 0.92 

The use of probabilistic adaptation has improved diagnostic 

performance: precision increased by 7%, recall by 13%, and the 

overall F1-score rose by 11% (Table 1.3.52). To evaluate the 
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effectiveness of different approaches to SPP technical condition 

diagnostics, a comparison of failure probability forecast errors was 

conducted. The key accuracy metrics include: MAE - reflecting the 

average deviation between predicted and actual failure probabilities; 

RMSE - capturing both the magnitude and spread of forecasting 

errors; share of forecasts beyond acceptable limits (σ-deviation) - 

indicating how often the method produces critical prediction errors. 

Table 1.3.53. Comparison of failure probability forecasting 

accuracy using different diagnostic methods 

Diagnostic method MAE(%) 
(RMSE 

(%) 

Share of 

forecasts beyond 

σ limits (%) 

CBR without adaptation 0.65 0.87 14.2 

Markov method 0.52 0.73 9.8 

Adaptive CBR 0.44 0.65 6.5 

Integrated approach 0.32 0.48 3.1 

The data in Table 1.3.53 indicate that the integrated approach 

provides the lowest forecast errors. Specifically: MAE is reduced by 

a factor of two compared to classical CBR; The share of forecasts 

exceeding acceptable σ-deviation thresholds is reduced more than 

fourfold in comparison with traditional diagnostic methods; the 

integrated approach most accurately accounts for the temporal 

dynamics of failures, reducing the influence of uncertainty. Thus, the 

combination of adaptive CBR, Markov models, and Bayesian 

networks significantly improves failure prediction accuracy and 

enhances the reliability of SPP equipment diagnostics. 

Figure 1.3.54 presents a heatmap of discrepancies between 

predicted and actual failures for SPP equipment, highlighting zones 

with the highest forecasting errors for specific components. 

The heatmap illustrates the degree of discrepancy between 

predicted and actual failures of SPP components. It enables 

identification of the most problematic areas within the forecasting 
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model, highlights components with lower prediction accuracy, and 

helps assess the impact of the forecasting method on overall 

diagnostic precision. Key areas of significant discrepancy include.  

The ME and pump system show the greatest deviations between 

predicted and actual failures. 

 
Figure 1.3.54. Heatmap of discrepancies between predicted and 

actual failures in SPP equipment 

In the case of CBR without adaptation, the difference between 

forecasts and real data reaches 0.3 - 0.4%, which may result from the 

method’s inability to account for cascading effects and failure 

dynamics. Propulsion and steering control subsystems also show 

substantial deviations, likely due to the high complexity of their 

diagnostics. The row corresponding to standard CBR in the heatmap 

reveals the most pronounced errors, highlighted by the most intense 

color zones, indicating high RMSE. This is explained by the fact that 

conventional CBR does not incorporate probabilistic dependencies or 

temporal dynamics of failures. A notable reduction in error is 
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observed with the integrated approach. In this case, discrepancies are 

significantly lower compared to the other two methods, and do not 

exceed 0.2%, confirming the higher diagnostic accuracy of the 

integrated method. The SPP and cooling system demonstrate the 

lowest deviation between predictions and actual data. This can be 

attributed to their relatively stable operation and well-calibrated 

diagnostic models. The main engine and pump system are the least 

predictable components and may require additional model 

adjustments. The heatmap confirms that the integrated approach 

yields the highest forecast accuracy, owing to its ability to account 

for failure dynamics and intersystem dependencies. The largest 

prediction errors are found in the main engine and pump system, 

indicating a need for further analysis, potentially involving more 

complex probabilistic dependencies. To reduce discrepancies in non-

adaptive CBR, it is recommended to implement probabilistic 

modeling and simulation techniques. This would help minimize 

deviations, especially under complex operational scenarios. The SPP 

and cooling system show stable and predictable failure behavior, 

validating the reliability of forecasts for these components. The 

heatmap provides a clear visual representation of model uncertainty 

zones and serves as a valuable tool for optimizing diagnostic 

algorithms and improving failure forecast accuracy in SPP systems. 

Figure 1.3.55 presents a graph of forecast deviations compared 

to actual failure data for SPP equipment. 

Table 1.3.54. Source data 

SPP component 
Actual 

data (%) 

CBR without 

adaptation 

(%) 

Integrated 

approach (%) 

Main engine 1.5 2.2 1.8 

Ship power station 2.0 3.1 2.5 

Remote control 

subsystem 
3.0 4.1 3.5 

Subsystems  for 

controlling the 

propulsion and steering 

system 

4.5 5.0 4.7 
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Table 1.3.54 shows the identified deviations (the difference 

between forecasts and actual data) in accordance with Fig. 1.3.55. 

 
Figure 1.3.55. Deviations between predicted and actual failures of 

SPP equipment 

Identified patterns based on Figure 1.3.55. Approximate values 

from the chart. 

Table 1.3.55. Forecast deviation from actual failure data 

SPP component 
CBR deviation without 

adaptation (Δ, %) 

Integrated 

approach deviation 

(Δ, %) 

Main engine +0.7 +0.3 

Ship power station +1.1 +0.5 

Remote control 

subsystem 
+1.1 +0.5 

Subsystems  for 

controlling the 

propulsion and 

steering system 

+0.5 +0.2 
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Deviation Analysis (Table 1.3.55): the CBR method without 

adaptation consistently overestimates failure probabilities for all 

components (from +0.5% to +1.1%), indicating a tendency to 

overpredict failures; the integrated approach significantly reduces 

prediction error, with maximum deviation of 0.5% (compared to 

1.1% in basic CBR), and minimum of 0.2%; the highest deviations in 

the CBR without adaptation are observed for the ship power station 

and remote control subsystem (+1.1%); the most accurate forecast 

using the integrated approach is for subsystems  for controlling the 

propulsion and steering system, with a difference of only 0.2% from 

actual values. 

Comparison with Harrington’s desirability function based on 

failure risk classification: main engine and ship power station (1.5% - 

2.0%) fall into the minimum risk category (0 - 0.2); remote control 

subsystem (3.0%) is on the borderline between acceptable and 

maximum risk (0.37); subsystems  for controlling the propulsion and 

steering system (4.5%) falls within the maximum risk category 

(0.37–0.63). The CBR method without adaptation systematically 

overpredicts failure levels by 0.5% to 1.1%. The integrated approach 

demonstrates significantly lower errors (up to 0.5%, and in one case 

only 0.2%).  

The forecasts align with Harrington's risk classification, but 

more accurate handling of borderline conditions (e.g., for the remote 

control subsystem) is necessary. To further improve forecast 

precision, it is recommended to introduce dynamic weight adjustment 

for different SPP components, particularly the ship power station. 

Overall, the integrated approach demonstrates superior performance 

but requires further calibration for certain subsystems. 

Figure 1.3.56 shows a scatter plot of predicted vs. actual failures 

for complex technical systems, enabling assessment of the correlation 

between forecasted and real failure values. Figure 1.3.56 illustrates 

the following key patterns: the integrated approach closely aligns 

with the ideal correlation line, indicating high forecasting accuracy; 

the CBR method without adaptation deviates significantly from the 

ideal line, reflecting larger prediction errors; the integrated model's 
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data points are tightly clustered around the ideal correlation, 

confirming its high reliability. 

 
Figure 1.3.56. Scatter plot of predicted vs. actual failures for SPP 

equipment 

Correlation analysis between predictions and actual failure data: 

CBR without adaptation shows the lowest correlation with actual 

failures (R² ≈ 0.78), indicating instability and variability in 

predictions; the integrated approach demonstrates the highest 

correlation (R² ≈ 0.93), confirming its strong predictive capability. 

The largest prediction errors are observed in the high failure range 

(>4%), particularly for the non-adaptive CBR method.  

The integrated approach shows no major outliers, and its 

forecasts remain consistently close to the actual failure rates. RMSE 

analysis shows that the integrated method reduces error by 

approximately 50% compared to non-adaptive CBR. Observed 

patterns: the CBR method without adaptation tends to systematically 
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overestimate failure probabilities, especially for the main engine and 

pump system; the integrated approach produces balanced forecasts 

without systematic errors.  

Thus, the integrated method provides the best agreement with 

actual failure data (R² ≈ 0.93). Non-adaptive CBR demonstrates the 

greatest forecasting errors, particularly in scenarios involving high 

operational loads and cascading effects. Incorporating probabilistic 

models (e.g., Bayesian networks, Markov processes) improves 

forecast accuracy but does not fully resolve challenges related to 

dynamic changes in system conditions. To further enhance prediction 

accuracy, it is recommended to apply dynamic parameter adjustment 

based on real-time operating conditions. The scatter plot confirms the 

effectiveness of the integrated approach, demonstrating minimal 

forecast deviations and maximum correlation with real failure data. 

Figure 1.3.57 presents a graph illustrating the results of a 

comparative analysis of RMSE values for various SPP equipment 

failure prediction methods. 

 
Figure 1.3.57. Graph illustrating RMSE comparison across 

failure forecasting methods for SPP equipment 
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The RMSE graph provides insight into how closely each 

forecasting method aligns with actual failure data. The lower the 

RMSE value, the smaller the average deviation between predictions 

and actual failures, indicating higher diagnostic accuracy. Key 

findings from Figure 1.3.57. The integrated approach demonstrates 

the lowest RMSE, suggesting the best predictive performance. CBR 

without adaptation yields the highest RMSE (≈0.65), indicating 

significant deviations between predicted and actual failures. CBR 

with adaptation reduces RMSE to ≈0.45, showing improved 

diagnostic accuracy through consideration of probabilistic 

dependencies. The integrated method achieves the lowest RMSE 

(≈0.32), indicating superior forecasting accuracy. Forecasting 

accuracy differences across methods: CBR without adaptation 

produces large errors due to its lack of sensitivity to system dynamics 

and failure interdependencies; CBR with adaptation reduces error by 

~30% by incorporating BNs and MМs, which capture probabilistic 

relationships between failures; The integrated approach further 

reduces RMSE by ~50% compared to basic CBR by integrating 

simulation modeling, which adjusts forecasts based on cascading 

failure effects. Causes of high error in non-adaptive CBR: heavy 

reliance on past failure similarity ignores shifting operational 

conditions; under sparse data conditions (e.g., few failure records), 

non-adaptive CBR tends to overestimate failure risks; a high RMSE 

(0.65) indicates systematic overprediction of failures. The integrated 

method works.  

MМs adjust failure forecasts over time, reducing error in 

dynamic scenarios. Bayesian networks model interdependencies 

between failures, improving forecast precision. Simulation modeling 

fills data gaps, reducing forecast uncertainty. Thus, the integrated 

method provides the highest diagnostic accuracy, cutting RMSE by 

50% compared to non-adaptive CBR. CBR without adaptation 

demonstrates the greatest error (RMSE = 0.65), making it 

insufficiently reliable for complex failure diagnostics. Adding 

probabilistic models improves accuracy, but full alignment with real-

world data is achieved only through simulation modeling. The RMSE 
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graph confirms that the integrated approach (CBR + probabilistic 

models + simulation modeling) is the most accurate failure 

forecasting method for SPP systems, ensuring minimal deviations 

from actual data. In the integrated diagnostic method, the diagnostic 

decision is dynamically refined based on predicted failures and 

probabilistic dependencies. Initial diagnosis using CBR: similar cases 

are retrieved from the CBR knowledge base; a preliminary diagnosis 

is made based on failure similarity; the diagnosis may be refined if 

forecasts indicate elevated risk.  

Refinement using probabilistic failure models (BNs): component 

failure probabilities are updated considering cascading effects; an 

increase in one component’s failure probability automatically affects 

dependent components; if a new failure occurs, the diagnosis is 

updated in real time. Correction based on failure forecasts (MМs): 

failure development is modeled over time; if rapid component 

degradation is forecasted, the diagnosis becomes stricter (e.g., earlier 

maintenance is recommended); if failure probability increases slowly, 

maintenance can be postponed.  

Correction via simulation modeling: simulation covers complex 

operational scenarios beyond the reach of CBR and probabilistic 

models; various failure scenarios are generated based on operational 

data, such as normal conditions, accelerated wear (high load, extreme 

temperatures), emergency cases (e.g., sudden cooling system failure); 

if the simulation shows that failure may occur sooner, the diagnosis is 

tightened (e.g., reduced remaining life); if the risk is low, the 

diagnosis may be adjusted toward a less aggressive maintenance 

strategy.  

Final diagnostic decision formation - the initial CBR diagnosis 

is adjusted based on: failure probabilities from BNs; time dynamics 

from the MМ; results from simulation modeling. Final adjustment 

scenarios: diagnosis confirmation if all methods agree; alarm 

escalation if failure probabilities rise sharply; diagnosis downgrade if 

the simulation indicates low risk. An example of diagnostic 

adjustment based on changes in failure probabilities is shown in 

Table 1.3.56. 
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Table 1.3.56. Diagnostic adjustment based on changes in failure 

probabilities 

SPP 

equipment 

Initial 

diagnosis 

Diagnosis after 

probabilistic 

analysis, % 

Final 

diagnosis 

Main engine 
Pre-failure 

state 

Failure probability 

reduced to 18 
Operational 

Generator Operational 
Failure probability 

increased to 25 
Pre-failure 

Cooling 

system 

Pre-failure 

state 

Cascading effects 

increased risk to 40 
Faulty 

Power 

supply 
Operational 

Failure probability 

stable at 5 
Operational 

The data in Table 1.3.56 show how the diagnostic decision is 

adjusted in response to changes in failure probabilities. The generator 

and cooling system require immediate attention due to increased 

failure risks. The pump system also needs inspection, as its risk has 

risen. The fuel system remains in a normal operational state. The 

remaining useful life forecasts for components were generated using 

MМs. Forecasting errors were evaluated under different input 

conditions, including full data, truncated time series, and adapted 

model predictions. Key Findings from the Failure Prediction 

Analysis: diagnostic accuracy depends significantly on the method 

used; CBR without adaptation showed the largest discrepancies 

between predicted and actual failures. This is confirmed by high 

RMSE (≈0.65) and MAE (≈0.52); CBR with adaptation reduced 

forecast errors by 30% due to the use of probabilistic dependencies, 

but deviations remain in complex operational scenarios; the 

integrated approach (CBR + probabilistic models + simulation) 

showed the highest accuracy (RMSE ≈ 0.32, MAE ≈ 0.21), indicating 

strong predictive capability. The failure risk heatmap revealed that 

cascading effects and interdependencies among SPP components 
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significantly influence failure prediction. Accounting for these 

improves diagnostic reliability. Impact of the selected approach on 

prediction accuracy. CBR without adaptation: high forecast error; 

does not account for probabilistic failure dependencies; overestimates 

failure probability. CBR with adaptation: considers probabilistic 

dependencies between components; reduces false alarms; still has 

inaccuracies in high-uncertainty scenarios. Integrated approach: 

reduces forecast error by over 50%; considers cascading failures and 

dynamic state changes; provides the most stable and verified 

forecasts, supported by accuracy metrics (Precision, Recall, F1-

score). Opportunities for Improving failure prediction accuracy in 

SPP systems: further development of simulation models to cover 

complex and emergency failure scenarios; enhancement of adaptive 

CBR algorithms using machine learning for better analysis of 

accumulated failure history; dynamic real-time model correction 

using up-to-date operational data to continuously update probabilistic 

failure dependencies. The analysis demonstrates that integrating CBR 

with probabilistic models and simulation substantially improves the 

accuracy of failure diagnostics in SPP systems. The proposed 

approach accounts for dynamic state changes, reduces prediction 

errors, and minimizes the likelihood of false positives. Optimizing 

model parameters and further adapting diagnostic algorithms will 

enhance failure prediction and improve the reliability of marine 

power plant operations. The integrated method achieved the best 

forecast accuracy, reducing errors by 15–20% compared to the 

baseline CBR. The largest deviations were observed in components 

with high variability in operating conditions, such as pump systems 

and the main engine. The failure risk heatmap confirms the need to 

adapt diagnostic models for accurate predictions under complex 

operational conditions. Thus, the analysis of predicted vs. actual 

failures confirms that combining CBR with probabilistic and 

simulation-based methods yields the most reliable failure forecasts 

for marine power plants. 
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1.3.7.5 Discussion of results 

The results of the present study demonstrate that integrating the 

CBR method with probabilistic and simulation-based modeling 

enables high-accuracy forecasting of the technical condition of SPPs. 

Achieving a RMSE of 0.32 and a coefficient of determination R² = 

0.93 indicates the high effectiveness of the proposed approach. These 

values exceed the accuracy levels characteristic of many existing 

models, including purely data-driven algorithms, and approach the 

confidence threshold necessary for engineering decision-making 

under uncertainty. 

A comparison with recent studies in the field of diagnostics and 

failure prediction further confirms the relevance and competitiveness 

of the implemented method. For example, Moon & Choi [149] 

proposed a hierarchical model based on Bayesian B-splines for 

predicting failures in naval engines. Their approach reflects the 

system's hierarchical structure at the levels of engine, engine type, 

and archetype, increasing flexibility in modeling multilayered 

technical systems. However, their model does not incorporate a 

comparison of predictions with actual failure events nor does it offer 

quantitative verification, limiting its applicability where prediction 

reliability must be evaluated. In the study by Karatuğ & Arslanoğlu 

[145], a condition-based maintenance strategy was implemented 

using machine learning techniques. While the model architecture 

enables classification of equipment conditions, it is restricted to 

binary outputs (“functional”/“non-functional”) and does not allow for 

quantitative prediction accuracy assessment or component-level 

resolution. In contrast, the approach presented in this study supports 

interval-based evaluations, scenario-specific conditions, and 

component-oriented comparison. Farid [150] employed a hybrid 

architecture combining artificial neural networks and Gaussian 

process regression for real-time fatigue failure prediction. While an 

RMSE of approximately 0.36 was achieved, the method does not 

include visual diagnostics of prediction deviations or robustness 

testing across varying operational modes capabilities that are 

implemented in this study. The study by Neykov & Stefanova [151] 
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examined the application of CBR under data-limited conditions, 

which is particularly relevant for ship systems where event recording 

is infrequent. Although the study confirms the adaptability of CBR, it 

does not extend to more complex simulation scenarios, which is 

addressed in the current hybrid approach through the integration of 

probabilistic and simulation-based techniques. The analysis by Orhan 

& Celik [130] notes the growing prevalence of hybrid methods, 

including SVMs, KNN, decision trees, and Bayesian networks, in 

recent diagnostics research. However, their review remains general 

and lacks empirical validation against real failure data or justification 

for the maritime domain. In contrast, the approach in this study 

includes the full cycle from prediction to comparison with observed 

outcomes—enabling assessment of engineering applicability. 

Marandi et al. [152] explored a promising approach utilizing 

knowledge graphs and language models applicable to high-reliability 

systems. Despite technological novelty, their method lacks formal 

accuracy assessment and does not test the models in operational 

scenarios. This differentiates their method from the current study, 

where both quantitative validation (RMSE, MAE, MAPE) and visual 

discrepancy analysis are conducted. Arias Chao et al. [153] proposed 

a hybrid framework combining physical modeling and deep learning, 

achieving a 127% increase in forecast horizon compared to purely 

data-driven models. This result supports the importance of 

integrating physical principles into predictive algorithmsconceptually 

aligned with our hybrid methodology, which fuses heuristic 

experience (CBR), probabilistic processing, and failure scenario 

simulation. In Liu et al. [154], an LSTM model is used to predict the 

RUL while accounting for noise and nonlinear dependencies. 

Although the model effectively handles time series data, it lacks 

simulation analysis tools that could capture rare or cascading failures. 

In contrast, our approach reproduces complex scenarios with 

uncertainties, expanding diagnostic capabilities under limited 

observability. Shi & Chehade [155] introduced a dual LSTM 

architecture designed to capture transitional states and predict 

component RUL. The model achieves forecast accuracy in the range 
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of RMSE ≈ 0.3–0.4, but, like many others, it does not include a step 

for comparing predictions with actual failures at the component or 

scenario level. This limits its reliability and adaptability for 

engineering practice. The method presented in this study addresses 

this gap by incorporating full-scale verification and visual deviation 

analysis. 

Thus, the integrated methodology combining CBR, probabilistic 

modeling, and simulation aligns with current requirements for 

accuracy, adaptability, and justification in forecasting the technical 

condition of marine power systems. The proposed approach 

demonstrates resilience to uncertainty, reproducibility across various 

operational scenarios, and the ability to substantiate conclusions 

quantitatively—making it a strong candidate for implementation in 

monitoring and maintenance systems for maritime engineering 

infrastructures. 

 

1.3.7.6 Conclusions 

The conducted study confirmed the relevance and practical 

significance of comparing predicted and actual failures in the 

diagnosis of the technical condition of SPPs. The main objective of 

the work to assess the accuracy of failure prediction using various 

diagnostic approaches - was successfully achieved through the 

completion of all assigned tasks. The developed methodology 

enabled an objective evaluation of failure prediction accuracy using 

metrics such as MAE, RMSE, MAPE, and R². The comprehensive 

use of quantitative indicators, visualization of deviations (including 

heatmaps and scatter plots), and correlation analysis between 

predicted and actual failures provided an in-depth assessment of the 

effectiveness of diagnostic models. The comparison results showed 

that the classical CBR method without adaptation demonstrated the 

lowest accuracy: the forecasts were systematically overestimated, 

with an RMSE of 0.65 and an F1-score of 0.78. The use of adapted 

CBR incorporating probabilistic dependencies (e.g., BNs) reduced 

the average prediction error by approximately 30%, improved 

forecast accuracy, and lowered the number of false alarms. However, 
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the best results were achieved through the integrated approach 

combining CBR, probabilistic models, and simulation modeling. In 

this case, RMSE dropped to 0.32, MAE to 0.21, and R² reached 0.93, 

indicating high predictive capability. A heatmap of deviations 

between forecasts and actual failures helped identify areas of greatest 

uncertainty, especially in components with high operational load - the 

main engine and pumping system. This highlights the importance of 

accounting for cascading failure effects and the need for detailed 

calibration of models for such units. At the same time, power supply 

and cooling systems demonstrated stable predictions and high 

diagnostic accuracy. Simulation modeling supplemented with 

probabilistic analysis proved effective in accounting for complex 

operational scenarios, including high loads and aggressive 

environments. It allowed for refining predictions under conditions of 

incomplete or distorted data and contributed to more well-grounded 

diagnostic decisions.  

Thus, the study demonstrated that the integration of adaptive 

CBR, probabilistic models, and simulation modeling significantly 

improves failure prediction accuracy and the reliability of technical 

condition diagnostics for SPPs. The obtained results can be used to 

enhance intelligent maintenance systems, optimize operational 

processes, and increase the overall reliability of maritime transport. 

Future work should focus on developing dynamic model adaptation 

based on real-time operational data and conducting extended testing 

of the integrated approach across various types of SPPs. 

 

 

1.3.8. Dynamics of failure probabilities in SPP equipment 

considering cascade effects 

 

1.3.8.1 Introduction 

Ship power plants  are critically important elements of maritime 

infrastructure, with their reliability directly determining the 

uninterrupted operation of a vessel under conditions of prolonged 

loads and variable external factors. Their design represents a complex 
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combination of interconnected components functioning as a unified 

whole. In such conditions, failures of individual units may lead to 

cascade processes that can significantly accelerate the degradation of 

the system as a whole. Considering these cascade effects in 

diagnostic and prognostic models remains one of the least developed 

but potentially critical tasks in technical diagnostics. Modern 

research demonstrates progress in the field of reliability assessment 

for CTS, yet most studies are either limited to individual equipment 

or do not consider their systemic interdependencies. Moon et al. [82] 

applied a multistage MМ to analyze the degradation of marine 

components. While the model successfully reflects the reliability 

dynamics of individual CTS elements, it does not account for 

probabilistic dependencies between components, which significantly 

limits its applicability in the case of cascading equipment failures. 

The Markov maintenance model developed by Garbatov and 

Georgiev [86] takes into account degradation and carbon efficiency 

indicators. The work is relevant in the context of maintenance 

planning, but the authors focus on individual degradation trajectories 

without analyzing interactions between units, reducing the 

applicability of the approach for integrated risk assessments. The 

probabilistic methodology by Morato et al. [156] for analyzing 

equipment failures in CTS considers mutual dependencies between 

components. Bayesian networks combined with reinforcement 

learning were used for dynamic decision-making. Cascade effects in 

this work are considered through structural probabilistic links: if one 

component fails, the probability of another failing increases. This 

brings the model closer to the reality of complex systems. However, 

Morato et al.’s model [156] focuses on a general reliability 

management framework and does not include temporal failure 

dynamics, i.e., it does not describe how quickly the cascade spreads 

after initiation. Moreover, there is no formalized quantitative 

relationship between components (e.g., influence coefficients of 

failures), which limits its application in tasks where the degradation 

sequence detail is critical. The problem of decision-making under 

uncertainty based on partially observable Markov processes was 
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studied by Andriotis et al. [157]. The model allows for the possibility 

that system components are interconnected, and information on their 

condition has different values. Thus, interdependencies between 

components are possible and partially considered, including in 

monitoring strategy selection. However, the work lacks an explicit 

formalization of cascade effects: it does not show how one 

component's failure affects the failure probability of others, nor are 

structural or quantitative parameters of such links introduced. 

Furthermore, the study focuses on abstract engineering systems and 

is not adapted to the specifics of marine SPPs, which hinders 

practical application in marine diagnostics. Kamariotis et al. [158] 

proposed a framework for assessing the value of vibration-based 

monitoring, which can be used for early degradation detection. 

Despite its importance, this work does not consider interactions 

between components and is limited to evaluating a single data type 

(vibrations) without using comprehensive probabilistic models. The 

most relevant studies for diagnostics are those based on machine 

learning. Raptodimos and Lazakis [159] applied NARX neural 

networks to predict marine engine parameters, and Cheliotis et al. 

[160] implemented a failure detection system based on neural 

models. Both studies confirm the high sensitivity of models to 

operational parameters; however, they do not address cause-and-

effect relationships between component failures and do not formalize 

state transitions. Zhu et al. [161] studied multiple failures of marine 

diesel engines using various neural network architectures, including 

CNN and RNN. Their model demonstrates high diagnostic accuracy, 

but the focus is on state classification rather than modeling the 

probabilistic failure dynamics within a system structure. Of particular 

interest is the study by Wang et al. [162], which proposed an 

intelligent diagnostic scheme based on principal component analysis 

and backpropagation in a neural network. The approach effectively 

detects anomalies but does not account for temporal dynamics or 

mutual influences among components.  

Thus, despite significant advances in technical condition 

forecasting, key methodological problems remain unresolved: lack of 
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formalized consideration of cascade interactions between SPP 

components; insufficient integration of temporal degradation models 

(e.g., MМs) with cause-and-effect relationships (BNs); limited use of 

machine learning as a tool for probabilistic inference support; weak 

linkage between diagnostic results and preventive maintenance 

strategies; absence of models for rare multiple failures during 

prolonged operation. The purpose of this study is to investigate the 

dynamics of component failure probabilities in SPPs considering 

cascade effects and to develop an integrated prognostic methodology 

combining probabilistic modeling, machine learning, and simulation. 

To achieve this goal, the following tasks are addressed: 

1. Construct a mathematical model of cascade effects between 

MPP components using an influence matrix αᵢⱼ; 

2. Simulate the temporal degradation of components using 

continuous MМs; 

3. Apply BNs to refine failures based on cause-and-effect 

relationships; 

4. Use machine learning algorithms (XGBoost) to analyze 

operational data and assess risk factors; 

5. Perform correlation analysis of failure data (OREDA, 25,000 

hours) to identify interdependencies; 

6. Visualize the propagation of cascade effects using heat maps 

and network graphs; 

7. Conduct simulation modeling of rare multiple failure 

scenarios; 

8. Formulate recommendations for optimizing maintenance 

based on time-based risk thresholds (10,000 and 20,000 hours). 

 

1.3.8.2 Materials and methods 

The analysis of failure dynamics in SPPs, taking into account 

cascading effects, requires an interdisciplinary approach capable of 

considering both the temporal evolution of component conditions and 

the probabilistic interdependencies between them. This study 

implements an integrated methodology based on the synthesis of 

formal probabilistic modeling, data mining methods, and simulation 
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of rare events. This methodological foundation allows not only for 

representing the real structure of degradation processes but also for 

quantitatively assessing the risks of multiple failures under long-term 

operation. The temporal behavior of the technical condition of SPP 

components is modeled using continuous-time Markov processes, 

reflecting transitions between four key states: fully functional, 

degrading, pre-failure, and failed. The transition probabilities 

between states are calibrated based on long-term operational data 

(25,000 hours), allowing for an adequate description of wear 

accumulation patterns and the assessment of risk time thresholds for 

different groups of equipment. These models provide a dynamic 

description of component reliability, allowing for the consideration 

of gradual degradation and prediction of the probability of 

transitioning into critical states. To formalize cause-effect 

relationships between failures of various components, BNs are used. 

This approach enables the construction of directed graphs of 

probabilistic dependence, where the failure of one node changes the 

prior estimates of the failure probabilities of elements connected to it. 

The Bayesian structure provides adaptability to the model: as new 

data on node conditions become available, probabilistic inference is 

refined in real time. This flexibility is especially important in 

partially observed technical systems where complete information on 

the internal state of the plant may be unavailable. The BN in this 

study is built considering the influence coefficients between 

components obtained from correlation analysis and expert 

assessment, as well as using significant factors identified through 

machine learning methods. To identify key risk features and 

quantitatively assess them, the gradient boosting algorithm XGBoost 

is applied. It is trained on operational data containing the failure 

history of equipment over 25,000 hours, using the OREDA database. 

During training, 5-fold cross-validation (k-fold CV) was used, with 

logloss as the metric. The main hyperparameters included: maximum 

tree depth - 5, number of trees (iterations) – 100, learning rate - 0.1. 

The XGBoost model made it possible to determine the most 

important parameters affecting the probability of failure, among 
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which were identified: oil temperature, vibration level, and cooling 

system pressure. These features are integrated into the structure of 

the BN as additional conditions that refine failure probabilities 

depending on the current system state. Thus, the XGBoost algorithm 

in this methodology serves as a tool for preliminary analytics and 

decision support when constructing a failure prediction model. An 

additional element of the methodology is correlation analysis aimed 

at identifying statistically significant relationships between failures of 

different components. It is based on the processing of historical data 

on SPP component failures and allows empirical estimation of the 

presence of cascading relationships.  

The resulting correlation coefficients complement the hierarchy 

of probabilistic dependencies in the BN and also serve as the basis 

for constructing the matrix of cascading influence coefficients αᵢⱼ, 

which reflects how the failure of one element increases the 

probability of another's failure. To analyze the behavior of SPPs 

under conditions of multiple failures, including rare scenarios, 

simulation modeling based on cognitive models is implemented. 

Simulation experiments allow the reproduction of chain reactions in 

the technical system under various failure combinations, including 

external impacts and overloads. This is especially important when 

studying the system's resilience to unforeseen events and when 

developing preventive maintenance strategies. The simulation model 

integrates the results of probabilistic (Markov and Bayesian) 

subsystems, supplementing them with a scenario generation 

mechanism followed by impact assessment. 

The comprehensive implementation of the proposed 

methodology not only formalizes the dynamics of failures and 

cascading effects but also provides a basis for constructing digital 

twins and predictive diagnostics systems for SPPs. The combination 

of empirical data, theoretical models, and intelligent information 

analysis ensures the completeness of problem coverage and the 

adaptability of the developed framework to various configurations of 

power plants. 
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1.3.8.3 Results 

Formalization of cascading effects. 

To describe the cascading propagation of failures among 

interconnected SPP equipment, an approximate model is introduced 

for the change in failure probability Pi(t), analogous to a difference 

equation accounting for the influence of other system components: 

 

                         ,)()()( ttPatPttP j

ij

ijii +=+ 


                   (1.3.75) 

where  )(tPi
 is the probability of failure of component i at time t; 

          )(tPj
 is the probability of failure of component j at time t; 

          
ija is the influence coefficient of component j on the failure 

probability of component i; 

          t  is the time step 

This model reflects the impact of simultaneous wear and 

degradation of interconnected components and makes it possible to 

account for cascading failure propagation within the system. The 

values of the coefficients aij  are determined based on correlation 

analysis and simulation modeling and represent empirically derived 

dependencies. 

Based on the data on mutual influence of failures among key 

SPP components, a matrix of influence coefficients A=[aij] was 

constructed. The rows of the matrix correspond to the influenced 

component i, and the columns to the influencing component j. The 

coefficients aij , representing the impact of the failure of component j 

on the failure probability of component i, were obtained from: 

correlation analysis of historical failure data for SPP s over 25,000 

hours of operation; expert evaluation, harmonized with simulation 

modeling results (including those based on the OREDA database); 

analysis of rare failure scenarios using cognitive models and 

Bayesian networks, which define conditional probabilities. These 

values are not universal but adequately reflect the behavior of typical 

SPP s during long-term operation and can be adapted to a specific 

facility if failure statistics are available. The proposed formalization 
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of cascading effects has several methodological limitations. The 

model is described by an approximate difference equation reflecting 

a linear dependency between components. This structure ensures 

implementation simplicity, calculation transparency, and adaptability, 

but it does not take into account, for example: time delays in the 

propagation of failures; nonlinear amplifications under multiple 

influences; potential synergistic effects. Furthermore, the current 

version does not utilize structural characteristics of the cascading 

dependency graph, such as depth, density, cycles, or the presence of 

redundant propagation paths. These aspects may be critical when 

analyzing complex technical systems. Future development directions 

for the model include: incorporating temporal influence weights; 

transitioning to continuous representations; integration with dynamic 

logic-probabilistic models. Such extensions would improve the 

description of cascading processes and enhance the accuracy of 

predictions in systems with high component interdependence. 

The cascading dependency graph, constructed based on the 

matrix αij, represents a directed weighted network, in which nodes 

correspond to SPP components, and arcs reflect the directed 

influence of failures. The weight of an arc determines the strength of 

the effect one component has on another. This type of graph allows 

for visualization of failure propagation routes and identification of 

the most vulnerable or critical nodes. An example of such a structure 

is shown in Figure 1.3.58. 

 

 
 

Figure 1.3.58. Network graph of cascade effects 

 

Despite the apparent simplicity of the basic difference equation, 

the structure of the proposed model allows for further theoretical 

expansion. Below is a possible formalism that describes cascade 

dynamics in a more comprehensive form. It can be implemented as 

part of an advanced prognostic platform, given the availability of 
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detailed data and computational resources. Taking into account the 

outlined limitations, a generalized mathematical framework is 

proposed for describing cascading failures in complex technical 

systems. It integrates probabilistic dynamics, structural dependencies, 

and adaptive forecast correction. The formalization includes the 

following components: 

Temporal dynamics of component degradation. Each system 

element i is associated with a Markov process (Chonlagarn et al., 

[163]) with a set of technical states of the SPP equipment {0, 1, 2, 3}, 

representing stages of technical life (operational, degraded, pre-

failure, failure). Transitions between states are defined by the matrix 

Q(i, and the evolution of the probability vector is given by the 

equation: 

 

                                        ,)(
)( )(i

i
i QtP
dt

tdP
=                          (1.3.76) 

 

where:   )](),(),(),([)( )3()2()1()0( tPtPtPtPtP iiiii =    - the probability vector 

of component i being in one of four states at time t; 

             44)( Xi RQ =   - the transition rate matrix (infinitesimal 

generator) of the MМs for component i; 

             )()( tP k

i
 - в the probability that component i is in state k 

∈{0,1,2,3} at time t 

Graph of cascade interdependencies. The structure of cascading 

influences is represented by a directed weighted fault graph: 

 

                                              G=(V,E),                                  (1.3.77) 

 

where:   nvvvV ,...,, 21=    - the set of vertices, each corresponding to 

a component of the SPP; 

            VxVE = - the set of directed edges, each edge (j → i) 

reflects the potential influence of the failure of component j on 

component i,    VvVvvvVxV jiji = ,|),( ; 
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            αij∈[0,1] - the weight of the edge, reflecting the strength of 

such influence (empirically determined). 

The weight αij reflects the strength of the influence  [164]. The 

cascading contribution of component j to the failure probability of 

component i is defined by the expression: 

 

          


+++=+
)(

)3()2( ))()(()()(
~

iNj

jjijit ttPtPattPttP ,       (1.3.78) 

 

where:  )(
~

ttPt +  - the adjusted failure probability of component i, 

taking into account the cascading influence of neighboring 

components; 

            )( ttPi + - the baseline failure probability of component i, 

calculated without considering cascade influence (e.g.,from the MМ); 

          ViN )( - the set of components that exert influence on 

component i, i.e., its cascade predecessors; 

         )()2( tPj
- the probability that component j is in a pre-failure state 

(state 2) at time t; 

    
   )()3( tPj

- the probability that component j is in a failed state (state 

3) at time t 

Causal dependencies. The use of BNs allows for accounting of 

conditional dependencies between failures and updating probability 

estimates during operation [165]. To describe causal relationships 

between component failures, the basic Bayes’ formula is used: 

 

                        ,
)(

)()|(
)|(

BP

APABP
BAP


=                       (1.3.79) 

 . 

where:  A and B are failure events of components; 

           )|( BAP  - the probability of failure of component A given 

failure of component B; 

          )|( ABP - the probability of the reverse dependency 
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Continuous Approach. In the continuous formulation, the failure 

probability of component i is described by the integral equation of 

accumulated SPP equipment failure risk (Zhang & Yagan [166]): 

 

                   ,])))([)0()(
0

)3()3()3( dttPatPtP
t

ij

jijiii  


++=              (1.3.80) 

 

where:  )(ti - the intensity of intrinsic degradation processes in the 

SPP 

Integrated model structure. The developed architecture 

integrates temporal, topological, and causal-probabilistic dynamics. It 

adapts to operational data using machine learning methods such as 

gradient boosting, which refine the importance of features (vibration, 

temperature, pressure) and the structure of the Bayesian network. 

Thus, the formalization of cascade effects in the proposed model 

relies on both analytical expressions and a graph-based representation 

of inter-component connections, allowing for quantitative prediction 

of failure propagation and identification of components that initiate 

cascade processes. 

Integrated methodology for cascade failure analysis of SPP 

equipment. The proposed methodology implements a hybrid 

architecture for prognostic analysis, combining three levels: temporal 

(MМs), structural (BNs), and empirical (XGBoost). This architecture 

reflects both the physical degradation of components over time and 

probabilistic inter-component dependencies supported by operational 

data. It includes the following key stages: 

1. Formalization of the SPP structure. The hierarchy and 

composition of functional units are defined, including the main 

engine, ship power plant, cooling system, control subsystem, and 

other equipment. The structure is represented as a directed graph 

where nodes correspond to components, and edges indicate possible 

paths for failure propagation; 

2. Modeling of temporal degradation. For each component, a 

degradation model based on continuous-time MМs is introduced, 

with transitions between the following states: operational, degraded, 
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pre-failure, and failure. Transition probabilities are calibrated using 

long-term operational data (25,000 hours). Each component is 

modeled with four technical states: 0 - operational condition (no 

signs of failure); 1 - degradation (minor parameter deviations, still 

functional); 2 - pre-failure state (critical decline in functionality); 3 - 

total failure (component is non-functional). 

Transitions between these states are described using a transition 

probability matrix Q, derived from statistical data over 25,000 hours 

of operation. Transition probabilities are updated according to the 

equation: 

                                       ,)()( QtPttP =+                            (1.3.81) 

 

where: P(t) – the state probability vector at time t 

3. Determination of cascade influence coefficients. To account 

for inter-component effects, an influence coefficient matrix αij is 

constructed. It reflects the probability that the failure of component j 

will increase the risk of failure of component i. These coefficients are 

obtained through correlation analysis, simulation modeling, and 

expert calibration (including the use of the OREDA database). For 

example, the failure of the cooling system may increase the 

probability of main engine failure by 25%. The matrix αij is also used 

in constructing the directed graph (Fig. 1.3.59), where arrows 

represent directed cascade dependencies. Figure 1.3.59 presents a 

network graph that illustrates the sequence of cascading failures in 

the SPP, the interconnections between key components, and the 

probability of their failure under the influence of preceding events. 

The structure of inter-component influences is represented as a 

directed graph, where the arc weights correspond to the coefficients 

αᵢⱼ.  

 
 

Figure 1.3.59. Network graph of cascading effects 

 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

262 

 

The network graph illustrates the propagation of failures within 

SPP. The initial point of failure is the cooling system, with a failure 

propagation probability of 0.30 to the ship’s power station. This 

highlights the high criticality of the cooling system its malfunction 

significantly impacts the performance of the power station. The ship 

power station is susceptible to cascading failure originating from the 

cooling system. In turn, its failure leads to malfunctions in the main 

engine with a probability of 0.20. This reflects the strong dependence 

of the main engine’s operation on a stable power supply. The 

sequence of failures in the network graph aligns with the influence 

distribution shown in the cascade dependency matrix: components 

previously identified as initiators and propagators of malfunctions 

form consistent chains of cascading failures. The role of the cooling 

system as a primary failure trigger is especially prominent.  

In summary, the key vulnerable component is the cooling 

system. Its failure initiates a cascade affecting the entire system. This 

confirms the importance of continuous monitoring of temperature 

levels and the technical condition of cooling circuits. The ship power 

station serves as a critical intermediary node its failure substantially 

increases the risk of main engine malfunction. This emphasizes the 

need for predictive diagnostics of generators and power supply 

systems. The control subsystem shows relative resilience; while 

failures are possible, they are more likely consequences of 

mechanical system malfunctions than primary causes. 

Recommended actions include: prioritized maintenance of the 

cooling system to prevent cascading effects; predictive monitoring of 

the ship’s power station using advanced diagnostic methods; 

development of fault-tolerant control algorithms to ensure safe 

operation during mechanical failures; additional backup power 

capacity to reduce the likelihood of cascading failures. The network 

graph confirms the importance of an integrated approach to failure 

diagnostics, taking into account their cascading nature. 

4. Bayesian correction. To refine failure probabilities in real 

time, a BN model is used. The network formalizes conditional 

dependencies between components using the expression (1.3.79), 
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where A and B are specific technical components (e.g., main engine 

and power subsystem), and the corresponding probabilities are 

updated based on monitoring data. This enables dynamic adaptation 

of the model to current operational conditions. When new data 

becomes available (e.g., increasing vibration or temperature), 

probabilities are recalculated using Bayes' rule, adapting the forecast 

to current conditions. The BN accounts for reverse dependencies and 

helps identify initiating and relaying components in the failure 

cascade. A visualization of the probabilistic dependency structure is 

shown in Fig. 1.3.60. 

5. Feature importance evaluation. To assess the impact of 

parameters on fault tolerance, the XGBoost gradient boosting 

algorithm was applied. The model was trained on operational data 

spanning 25,000 hours (OREDA), and identified key risk indicators: 

oil temperature, vibration, and cooling system pressure. For example, 

the probability of generator failure increases by 15% when vibration 

exceeds the normal level by 20%; the impact of cooling system wear 

on main engine failure reaches 22%. The analysis results are used 

both to define the structure of the BN and to pre-filter scenarios in 

the simulation model. 

6. Simulation modeling. The developed model is integrated into 

a simulation framework, where rare but potentially critical multi-

failure scenarios are simulated using random event generation. This 

enables evaluation of the SPP configuration's resilience to cascading 

failures. 

7. Temporal threshold analysis. Based on the simulations, 

characteristic operational intervals were identified during which the 

probability of cascading failure increases exponentially (e.g., at 

10,000 and 20,000 hours). This allows for establishing benchmarks 

for preventive maintenance scheduling. 

The proposed methodology provides a comprehensive 

assessment of SPP reliability, allowing consideration of both 

individual degradation processes and their mutual amplification 

through cascades. Its advantage lies in the ability to adapt to a 

specific asset based on actual failure statistics. 
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To demonstrate the functioning of the proposed approach, a 

scenario is provided in which the integration of methods enables 

tracking and forecasting of cascading failure development, starting 

with the deviation of a single parameter. Each step of the algorithm is 

aimed at timely detection and containment of the degradation chain: 

the system detects an increase in vibration above the allowable 

threshold (by 20%); the BN updates the posterior failure probabilities 

of related components (e.g., generator and main engine);  the MM 

predicts the generator’s transition into a pre-failure state within 5,000 

hours; the simulation model initiates a cascading failure scenario, 

showing the probability of critical node involvement; the system 

generates a decision to enhance monitoring, adjust maintenance 

schedules, and implement preventive actions to break the cascade 

chain. 

Analysis of failure dynamics of SPP equipment. Based on the 

performed calculations, graphs showing the time-dependent 

probability of equipment failures in the SPP were constructed (Fig. 

1.3.60). 

 
Figure 1.3.60. Charts of failure probability variation of SPP 

equipment over time 
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The charts Figure 1.3.60 and Table 1.3.57 show the dynamics of 

failure probabilities for various SPP equipment depending on 

operating time (up to 25,000 hours). The main engine has the highest 

failure probability among all components. By 25,000 hours of 

operation, the failure probability reaches approximately 20%. The 

main risk factor is the high load and wear of the engine's main 

components. The marine power plant has a slightly lower failure 

probability than the main engine but follows a similar trend. By 

25,000 hours of operation, the failure probability is approximately 

19%.  

Key risks are associated with overloads and equipment aging: 

the cooling system has a lower failure probability than the main 

engine and the power plant but increases significantly toward the end 

of the studied operating period.  

By 25,000 hours, the failure probability is approximately 18%. 

Possible causes: fouling of heat exchangers, leaks, and corrosion; the 

control subsystem is the least prone to failure compared to other 

components. By 25,000 hours, the failure probability is 

approximately 16%.  

Main threats: software failures, sensor degradation. Thus, the 

main engine is the most vulnerable component requiring enhanced 

monitoring and predictive maintenance; the marine power plant and 

cooling system are also subject to significant failure risks, especially 

with extended service life; the control subsystem has the lowest 

failure probability but plays a critical role in the reliability of the 

entire system, so its failures may lead to cascading effects.  

The general trend is an exponential increase in failure 

probability after 15,000–20,000 hours of operation, which confirms 

the need for predictive maintenance. Recommendations: 

implementation of monitoring and diagnostic systems for the main 

engine and power plant; use of predictive maintenance using machine 

learning methods; enhanced control over the cooling system to 

prevent overheating and leaks; continuous updating of the control 

subsystem software to minimize failures due to algorithm errors. 
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Table 1.3.57. Dynamics of failure probabilities of key SPP 

equipment over time 

Time 

(hours) 

Main 

engine 
SPP 

Cooling 

system 

Control 

subsystem 

0.005 0.004 0.003 0.002 0.005 

5000 0.015 0.012 0.010 0.008 

10000 0.035 0.030 0.025 0.020 

15000 0.070 0.065 0.060 0.050 

20000 0.120 0.110 0.100 0.085 

25000 0.200 0.190 0.170 0.150 

 

Analysis of Table 1.3.57 data reveals three key time intervals 

based on the rate of failure growth. During the first 5,000 hours of 

operation, there is a relatively slow increase in failure probabilities, 

reflecting the normal functioning mode of the equipment. Between 

10,000 and 15,000 hours, an accelerated growth in risk begins, 

indicating the manifestation of accumulated wear and strengthening 

of inter-component interactions. After 20,000 hours, failure resilience 

decreases significantly, especially for mechanically loaded units, 

which necessitates a transition to active maintenance measures. The 

overall trend highlights the need to implement predictive approaches 

to prevent a sharp increase in failure rates. 

Analysis of influence coefficients in matrix A = [aᵢⱼ] (Table 

1.3.58) shows the following strong interdependencies: cooling 

system and marine power plant: failure of one component increases 

the failure probability of the other by 30%;  main engine and control 

subsystem: malfunction in the control system increases the engine’s 

failure probability by 25%. 

Table 1.3.58. Cross-influence coefficients of SPP equipment 

failures 

Component i Component j αᵢⱼ 

Main engine SPP 0.20 

Main engine Control subsystem 0.25 

SPP Cooling system 0.30 

Control subsystem Main engine 0.20 
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According to Table 1.3.58, cascade effects significantly 

accelerate the failure process after 10,000 hours of operation, the 

probability of failures increases non-linearly. The most vulnerable to 

cascading failures are the cooling and control systems, as their 

malfunctions substantially increase the likelihood of failures in other 

components.  

The results of this analysis can be used to develop preventive 

maintenance strategies aimed at reducing the probability of critical 

failures through proactive measures at key operational nodes. This 

analysis confirms the importance of an integrated approach to SPP 

failure diagnostics, taking into account the interdependent failure 

probabilities of various components. 

The impact of a single component’s failure on the failure 

probabilities of other components, as well as on the risk of total loss 

of operability (TLO), is presented in Table 1.3.59. 

 

Table 1.3.59. Cascade dependency matrix between SPP 

components 
Failed 

component 
ME SPP CS CSUB FS GEN TLO 

ME 1.00 0.25 0.30 0.20 0.15 0.10 0.85 

SPP 0.20 1.00 0.25 0.15 0.10 0.30 0.80 

Cooling 

system (CS) 
0.30 0.20 1.00 0.25 0.15 0.10 0.78 

Control 

subsystem 

(CSUB) 

0.25 0.20 0.30 1.00 0.10 0.15 0.75 

Fuel system 

(FS) 
0.15 0.10 0.10 0.05 1.00 0.20 0.60 

Generator 

(GEN) 
0.10 0.30 0.10 0.15 0.20 1.00 0.70 

The analysis of the cascade dependency matrix between 

components of the marine power plant (Table 1.3.59) reveals 

structural features of cascade effect propagation within the system. 

The influence of one component on another is expressed not only 

through local coefficients but also via the cumulative metric of TLO, 
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which reflects each element’s integral contribution to the overall 

resilience of the system. The highest TLO value (0.85) is recorded 

for the failure of the main engine, indicating its central role in 

initiating and amplifying cascading processes. A main engine failure 

significantly increases the likelihood of failure in several critical 

components: the cooling system (+30%), the power plant (+25%), 

and the control subsystem (+20%). This confirms its status as the 

primary risk generator in the system. A high TLO is also observed 

for the marine power plant (0.80), which acts as a retransmitter of 

failures, especially influencing the generator (+30%) and the cooling 

system (+25%). The cooling system demonstrates a similar pattern of 

impact, causing increased failure probabilities in the control 

subsystem (+25%) and the main engine (+30%), which is due to its 

functional connection with thermal and hydraulic circuits. The 

control subsystem, despite a lower TLO (0.75), exerts critical 

influence on the mechanical part of the plant: its failure raises the 

likelihood of engine failure by 25% and that of the cooling system by 

30%. This reflects the logical dependency of system control on 

physical processes, as well as the inverse vulnerability of control 

systems to mechanical faults. Components with the lowest TLO fuel 

system (0.60) and generator (0.70) exhibit relatively weak influence 

on other elements. However, even in these cases, dependencies are 

identified that suggest the possibility of secondary cascade effects. 

For example, generator failure increases the risk of power plant 

failure by 30% and of the fuel system by 20%. The overall structure 

of mutual influences in Table 1.3.59 is not symmetrical, highlighting 

the directionality of cascade effects. The impact of components 

varies in both magnitude and direction: the same element may act as 

a serious failure initiator while being only marginally affected by the 

failure of others. This is characteristic, for example, of the main 

engine, which has a strong influence on the system but experiences 

moderate reciprocal impact from most units. Thus, the table of 

influence coefficients not only formalizes local risks but also 

provides insight into the system’s global resilience. Components that 

act as both triggers and retransmitters of failures have been 
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identified. These data serve as a foundation for prioritizing 

components for monitoring and preventive maintenance. In 

particular, the main engine, power plant, and cooling system require 

special attention, as their failure significantly increases the overall 

risk of cascading failures throughout the plant. 

Based on the data presented in Table 1.3.59, it is necessary to 

adjust the maintenance strategy for the SPP. The main engine and the 

power plant should be serviced most frequently, as their failures lead 

to the most severe consequences.  

Development of backup systems. The generator must be 

equipped with emergency backup circuits to prevent cascading 

failures in the electrical system.  

Failure prediction. The data from the table can be integrated into 

a CBR + Bayesian analysis algorithm, where the impact level of a 

component's failure is used to recalculate probabilities during the 

diagnostic process. To identify interdependencies between failures of 

various SPP components, a failure risk heat map has been 

constructed (Figure 1.3.61). This map visualizes the probabilities of 

failure propagation from one component to another. 

The heatmap shown in Figure 1.3.61 provides a visual 

assessment of the intensity of cascading interactions between 

components of the SPP. The dependencies displayed are a graphical 

interpretation of the numerical values from the cascade influence 

matrix (Table 1.3.59), where each pair of components reflects the 

degree to which the failure probability increases when a related node 

fails. The most saturated zones of the diagram correspond to system 

elements that either exert the strongest cascading impact on other 

nodes or are most affected by others. This structure confirms the 

results obtained from the quantitative analysis and emphasizes the 

importance of prioritizing monitoring and maintenance efforts for 

nodes with the highest cascading potential. The visualized data can 

be integrated into the implementation of the hybrid prognostic 

analysis architecture presented at the beginning of the section. This 

architecture includes: a temporal level (based on MМs) reflecting the 

degradation dynamics of components; a structural level (BNs) 
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formalizing the cause-and-effect relationships between failures; an 

empirical level, using machine learning algorithms (e.g., XGBoost) 

to identify risk factors based on operational data. The combined use 

of these levels enables more accurate estimation of failure 

probabilities, accounts for inter-component dependencies, and 

supports adaptive maintenance strategies. 

 
Figure 1.3.61.  Heatmap based on interdependencies of  SPP 

component failure risks 

Correlation analysis: identifying hidden dependencies. 

A correlation analysis was conducted based on component 

failure data. To clarify the interdependencies between SPP 

components and validate the structure of cascading links, a 

correlation analysis of failure frequency was performed using 

historical data. The results are presented in the form of a correlation 
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matrix, which reveals statistically significant relationships between 

failures of key units. The strongest positive correlations are observed 

between the main engine and the cooling system, as well as between 

the power station and the control subsystem, confirming the presence 

of cascading effects. The resulting correlation coefficients were used 

as an additional basis for constructing the BN structure and 

calibrating the influence coefficients αᵢⱼ. A visual representation of 

these dependencies is shown in Figure 1.3.62. 

 
Figure 1.3.62. Correlation matrix of SPP equipment failures 

Interpretation of the correlation matrix: high correlation (0.75 -1.00): 

main engine is strongly correlated with the ship’s power station 

(0.75)→this is logical, as failures in one component often trigger 

issues in the other; cooling system and control subsystem (0.70)→ 

control systems frequently respond to overheating events. Moderate 

correlation (0.50 - 0.70): the cooling system affects the fuel system 
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(0.50)→engine overheating may impact fuel supply; the control 

subsystem depends on the generator (0.50). Low correlation (0.35 -

0.45). Generator has a weak correlation with the fuel system (0.35) 

→ Generator failures rarely have a direct impact on fuel supply. 

Table 1.3.60. Results of correlation analysis 

Failure parameters 
Correlation 

coefficient (r) 

Generator failure → cooling system failure 0.76 

Main engine failure ↔ control system failure 0.81 

Pump failure ↔ power supply failure 0.64 

Table 1.3.60 shows a strong correlation (r > 0.7) between 

generator failures and cooling system failures, confirming the 

presence of cascade effects. Figure 1.3.63 illustrates how failure 

probabilities are adjusted depending on operating conditions. 

 
Figure 1.3.63. Failure probability trends under different 

operating scenarios 

The graph illustrates the dynamics of SPP failure probabilities 

over operating time under various usage scenarios. Key trends. 

Nominal mode (blue line): linear increase in failure probability, 
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reaching approximately 20% by 25,000 hours;  represents expected 

behavior under standard operating conditions. Increased load (red 

dashed line): accelerated growth of failure probability compared to 

nominal mode; failure probability reaches approximately 25% by 

25,000 hours; associated with added stress and increased wear on 

equipment. Emergency impacts (green dash-dot line): highest failure 

probability among all scenarios; by 25,000 hours, probability exceeds 

35%, over 1.5 times higher than the nominal scenario; reflects 

conditions with critical incidents (e.g., accidents, extreme 

environments). cbr + adaptation (purple dotted line): slowest increase 

in failure probability across scenarios; stays below 15% by 25,000 

hours; confirms the effectiveness of adaptive diagnostic methods 

(CBR with adaptation) in reducing failure risk. 

Increased loads and emergency events significantly raise the risk 

of failures. Simulation modeling shows that using adaptive methods 

(CBR with adaptation) reduces failure probability by 25–30% 

compared to other scenarios. Integration of intelligent failure 

prediction methods is recommended to enhance the reliability of SPP 

operation. This analysis reinforces the importance of predictive 

maintenance and adaptive diagnostic models in minimizing failure 

risks of  SPP.  

Simulation modeling based on cognitive models. 

To assess rare failure scenarios, simulation modeling based on 

cognitive architectures is used, taking into account: load impacts on 

failure probabilities; failure combinations that may lead to critical 

incidents; recovery mechanisms during operational cycles. 

Modeling approach: 

1. Baseline model estimates failure probability without external 

interventions, simulating equipment behavior under standard aging; 

2. Adaptation-based model incorporates diagnostic feedback, 

where failure probabilities decrease due to preventive maintenance 

actions initiated during operation. 

The evolution of failure risks is analyzed using probabilistic 

models (Markov chains), simulation modeling, and empirical 

operational data. 
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Failure probability dynamics over time. Based on the calculated 

time-dependent failure probabilities, the following trends are 

identified: 0–5000 hours (minimal failure probability (less than 2%) 

due to stable operation during early lifecycle); after 10,000 hours 

(noticeable increase in failure probability, especially in mechanically 

stressed components like the main engine and pumping systems); 

after 20,000 hours (sharp increase in failures due to accumulated 

wear and emergence of cascading effects). 10,000 - 15,000 hours is a 

threshold interval requiring active maintenance to prevent 

degradation. After 20,000 hours, proactive strategies such as life 

extension programs or component replacement are crucial. 

 

Table 1.3.61. Time-based failure risk levels 

Time (hours) Risk level 
High-Risk 

components 

0–5000 Minimal All systems stable 

10,000 Acceptable 
Pumping system, 

cooling system 

15,000 High 
Main engine, power 

supply system 

20,000 Critical 

All systems, 

especially ME and 

cooling 

 

Analysis of failure trends (Table 1.3.61) reveals key decision 

points where maintenance interventions are essential to avoid 

cascading breakdowns. Thresholds at 10,000 and 20,000 hours 

should anchor preventive maintenance strategy planning. 

Identification of critical components. Some SPP subsystems are 

significantly more sensitive to cascading effects. Their vulnerability 

is identified through: analysis of influence coefficients αᵢⱼ (Table 

1.3.58), which quantify how failure in one unit increases the risk in 

others; correlation analysis of failure co-occurrence; structural 

analysis of SPP architecture to identify single points of failure. 

Most vulnerable components (based on simulation results): 
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- main engine (ME): failure probability reaches 20% by 25,000 

hours; its failure significantly increases the likelihood of secondary 

system failures; 

- cooling system: a failure here raises ME failure probability by 

25%; acts as a primary trigger in cascading chains; 

- shipboard power plant - its failure increases the likelihood of 

control system failure by 30%; 

- control system - loss of control function heightens risk of 

emergency ME shutdown. 

Thus, the main engine and the cooling system are key risk points 

requiring regular diagnostics. The control system and the power plant 

are critical units that determine the overall stability of the power 

system. 

Failure dynamics analysis has revealed: key time points (10,000 

and 20,000 hours) for scheduled maintenance; critically vulnerable 

components requiring priority monitoring; and cascading effects that 

increase the risk of failures in certain combinations. This enables the 

development of preventive strategies that reduce the likelihood of 

critical failures by 30 - 40%. 

Based on the conducted studies on failure probability dynamics 

considering cascading effects, the following conclusions can be 

drawn: 

- failure probability increases non-linearly: during the first 5,000 

hours of operation, the probability of failures remains low (<2%) as 

components function within normal parameters; after 10,000–15,000 

hours, an accelerated increase in failures is observed, particularly in 

mechanically loaded units (main engine, pumping system, cooling 

system); by 25,000 hours, the failure probability of major 

components reaches 20% or higher, necessitating major repairs 

or component replacement; 
- cascading effects accelerate failure growth: cooling system 

failure increases the risk of main engine failure by 25%; power plant 

malfunction raises the probability of control system failure by 30%; 
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interdependencies between failures are illustrated in Figure 3.37 

(Network diagram of cascading effects); 

- critically vulnerable components identified: main engine - 

highest failure risk due to cascading effects; cooling system - its 

malfunction triggers failures in other systems; ship power plant - one 

of the key nodes influencing total system failure; control system - a 

critical component determining overall system stability; 

- practical application of results: optimization of maintenance – 

key components (main engine, cooling system) require preventive 

servicing every 10,000 hours; monitoring cascading failures - 

integration of predictive models (ММs, BNs) can reduce the 

likelihood of unexpected failures by 30 -40%; use of simulation 

modeling - enables prediction of rare scenarios and adaptation of 

diagnostic strategies. 

Considering cascading effects significantly improves the 

accuracy of diagnostics and failure prediction in SРРs. The identified 

dependencies support the development of predictive maintenance 

strategies, potentially reducing unplanned downtimes by 25 - 35% 

and increasing the reliability of SРРs. 

Model validation 

To assess the reliability of the predictive capabilities of the 

developed model, validation was conducted using real operational 

data, including information on the technical condition of ship power 

plant equipment over a 25,000-hour period (OREDA database). The 

validation covered both component-level reliability (accuracy of 

failure prediction for individual units) and the model’s ability to 

forecast cascade failure chains. 

Comparison with empirical data. For each ship power plant 

component, the model-based estimated failure probability was 

compared with the actual recorded failure frequency under similar 

conditions. Discrepancies were evaluated using standard metrics: 

- MAE (mean absolute error)  to assess the average absolute 

deviation between predicted and actual failure probabilities; 

- accuracy (share of correct predictions)  used for binary 

classification (“fail / not fail”); 
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- precision and recall  evaluated for detecting key components 

that initiate cascade failures; 

- k-fold cross-validation (k = 5)  applied during training and 

testing of the XGBoost module on subsamples. 

Validation results. 

The MAE across component groups did not exceed 4.7%, 

confirming high consistency of the model with empirical data. The 

binary failure prediction accuracy exceeded 87% at the risk 

thresholds defined by the model. When modeling cascade scenarios, 

the correspondence between modeled and actual failure chains 

reached 82 - 88%, compared to incidents registered in OREDA and 

simulated using αᵢⱼ coefficients. These results confirm a high degree 

of confidence in the developed model for engineering applications, 

particularly in forecasting technical resource and planning preventive 

maintenance activities. 

Practical Significance and Economic Impact. 

The proposed integrated model for analyzing cascade failures in 

ship power plants not only improves prediction accuracy but also 

creates real opportunities for reducing operational costs. Reduction in 

emergency repair probability. Simulation scenarios replicating 

multiple failures in the ship power system showed that the proposed 

model can identify initiating components of the cascade in 87% of 

critical cases, enabling intervention before chain degradation occurs. 

This reduces the need for unplanned repairs and eases the burden on 

emergency response teams. Reduction of downtime. Lifecycle 

modeling that accounts for 10,000- and 20,000-hour thresholds 

demonstrated that the use of dynamic forecasting reduces the average 

duration of unplanned downtimes by 18 - 22% compared to 

scheduled maintenance. This is achieved through more accurate 

service timing. Improved maintenance accuracy. The model 

identifies intervals of rapid risk growth (based on αᵢⱼ coefficients and 

Markov processes), enabling maintenance scheduling not based on 

formal regulations, but on the actual condition of equipment. 

According to calculations, this could reduce premature maintenance 

volume by up to 25%. 
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The proposed model shows strong potential for integration into 

digital maintenance platforms, especially within CMMS systems and 

digital twins used in modern maritime operations. 

 

1.4.8.4 Discussion of results  

The obtained results reflect the cascading nature of failures in SРРs, 

taking into account temporal evolution, mutual component influence, 

and multiple failure scenarios. The combination of Markov 

processes, BNs, machine learning techniques (XGBoost), and 

simulation modeling enabled a quantitative assessment of failure 

dynamics, node criticality, and temporal risk thresholds. 

To verify the scientific and practical significance of the results, a 

comparative analysis was carried out with previous research. These 

studies address issues related to cascading effects, probabilistic 

modeling, reliability assessment, and resilience of complex technical 

systems, including marine, energy, and transportation domains. Zhao 

et al. [167] developed a probabilistic model for analyzing cascading 

failures in load-dependent systems. Unlike their work, which focuses 

on multi-state behavior under overload conditions, the approach 

presented in this article additionally incorporates temporal dynamics 

and network dependencies among SРР components. El-Awady & 

Ponnambalam [168] proposed the integration of Markov chains and 

Bayesian networks for failure analysis in complex systems. While 

methodologically similar to the current work, their model does not 

include machine learning or rely on long-term empirical operational 

data (25,000 hours). Valdez et al. [169] conducted a theoretical 

investigation of cascading failures in networks. Although abstract in 

nature, their concepts of node robustness and progressive degradation 

align with our formalization of influence coefficients. The key 

difference is the lack of application to real-world engineering 

systems and operational data. Morato et al. [156] developed a 

Bayesian reinforcement learning model for degradation assessment 

with dependencies. Their approach is geared toward strategic 

decision-making but lacks the Markovian dynamics and temporal 

threshold analysis implemented in this article. Hu et al. [170] 
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examined the dynamic resilience of a complex maritime system using 

Bayesian networks. While their model accounts for logical 

component dependencies, it does not formalize the temporal 

progression of cascading failures as done in the proposed 

methodology. Liu et al. [171] studied failure propagation in 

shipboard systems and proposed a resilience assessment method. 

However, their analysis is conducted at a macro level without 

detailed modeling of component interactions and degradation over 

time. Sun et al. [172] applied simulation modeling to complex 

technical systems. Their work demonstrates the utility of scenario 

analysis but does not integrate probabilistic dependencies or machine 

learning, limiting its applicability to predictive diagnostics. Zeng et 

al.) [173] introduced a "domino effect" model considering synergistic 

interactions. Although logically close to cascading effects, their 

model is tailored to chemical systems and does not employ Markov 

transitions or Bayesian corrections. Wang et al. [174] used temporal 

association rules to analyze cascading maritime incidents. Their 

method effectively reveals event sequences but does not construct 

formal probabilistic dependencies between technical system 

components as in the present work. 

Collectively, these studies underscore the relevance of 

researching cascading processes and the diversity of methodological 

approaches. However, none of them simultaneously combine: 

formalized temporal failure dynamics;  Bayesian dependencies 

among components;  empirical calibration based on long-term 

operation; integration of machine learning (XGBoost); simulation of 

rare failure scenarios. Thus, the proposed methodology addresses 

methodological gaps in the current literature and represents an 

original approach to forecasting and analyzing failures in SРРs with 

cascading effects. The results obtained can serve as a foundation for 

digital diagnostic platforms and preventive maintenance optimization 

for SРРs. 

Deployment requirements and integration potential. For the 

successful implementation of the developed predictive model in the 

maintenance systems of complex shipboard technical systems, both 
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architectural and measurement readiness of ship infrastructure are 

required. In software terms, the model consists of three key 

components: a data collection and processing module; a predictive 

engine, and a visualization interface. The first module ensures 

continuous data aggregation from sensors and preliminary filtering; 

the second implements the model’s algorithms, including failure 

probability recalculation considering cascading effects (i.e., how the 

failure of one element significantly increases the risk of others), 

Markov transitions, and Bayesian refinement; the third provides 

operator visualization, using heatmaps, influence graphs, or risk 

rankings of components. The data update frequency can be adaptive. 

The base level involves periodic updates at least once per day. In 

case of anomalies or threshold exceedance in key parameters (e.g., 

oil temperature or vibration level), immediate recalculation of the 

system’s condition can be triggered. This approach balances 

computational efficiency with timely response to early warning signs, 

particularly when cascading degradation is possible and early 

identification of the initiating component is critical. From a hardware 

standpoint, implementation requires installation and calibration of a 

basic sensor suite, including accelerometers, thermometers, and 

pressure sensors for cooling and lubrication systems. An event 

logging and operating hour tracking unit is also needed for all 

monitored components  this can be done using existing automation 

systems or external controllers.To accurately account for cascading 

effects, synchronized data collection from different components is 

essential, capturing the temporal logic of interdependencies. The 

model is compatible with existing IT solutions used in maritime 

operations. It can be integrated with CMMS platforms (for 

maintenance management), generating preventive intervention tasks, 

and with IoT systems that transmit data to shore-based analytics 

centers. Additionally, the model can be embedded into digital twins 

of SРРs, enabling real-time forecasting of technical resource. Thus, 

implementing the proposed model does not require fundamental 

changes in ship infrastructure but does demand a sensor network, 
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reliable data transmission channels, and computational capacity for 

onboard or cloud-based predictive analysis. 

 

1.3.8.5 Conclusions 

As a result of the conducted research, an integrated methodology 

for analyzing cascading failures in SPPs was developed. The 

methodology is based on the integration of Markov processes, 

Bayesian networks, gradient boosting algorithms, and simulation 

modeling. This approach enabled a quantitative description of 

component degradation processes and accounted for probabilistic 

interdependencies between failures, forming a reproducible and 

adaptive model for equipment reliability assessment. The 

probabilistic model based on Markov processes describes transitions 

between four technical states: operational, degradation, pre-failure, 

and failure. Considering runtime and operating hours allowed the 

identification of critical operating intervals (10,000 and 20,000 

hours), during which the probability of cascading events increases 

sharply. A key element of the model is the influence coefficient 

matrix αᵢⱼ, which formalizes intercomponent interactions. It was 

calibrated using 25,000 hours of operational data, including rare and 

critical failures. This made it possible to quantitatively determine 

which components act as initiators and propagators of cascading 

processes. The use of BNs enabled real-time adaptation of 

probabilistic estimates, significantly enhancing the model’s 

predictive capabilities and making it suitable for integration into 

online technical condition monitoring systems. Gradient boosting 

was employed to identify the most significant risk parameters: 

vibration, oil temperature, and cooling system pressure. These 

features refined the structure of the BN and improved its diagnostic 

informativeness. Simulation modeling reproduced rare but critical 

multiple-failure scenarios, demonstrating the mechanisms of cascade 

propagation. This allowed for thorough model verification, 

confirming its sensitivity and resilience to complex failure impacts. 

Model validation showed a mean absolute error of less than 4.7% and 

a correct prediction rate exceeding 87%, confirming its practical 
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applicability. A comparative analysis with current international 

studies demonstrated the uniqueness of the developed methodology 

in terms of integration depth, empirical grounding, and adaptability 

to maritime operating conditions. Unlike existing approaches, the 

proposed method simultaneously considers cascading, temporal, and 

causal dependencies. The developed model can serve as a foundation 

for digital twins, predictive maintenance systems, and intelligent 

technical diagnostics platforms. It is scalable and can be adapted to 

other sectors, such as energy, transportation, and industrial 

automation,  where equipment reliability and cascading effects are 

critically important for safety and economic efficiency. 

 

1.3.9 Integrated modeling of reliability and maintenance of 

SPP equipment considering degradation and operational 

conditions 

1.3.9.1 Introduction 

Modern SPP s operate under elevated operational loads, thermal 

and vibrational stresses, which necessitate reliable prediction of their 

technical condition and maintenance requirements. As the duration of 

autonomous voyages increases and onboard power systems become 

more complex, the demands for fault tolerance and cost-effective 

maintenance continue to grow. Under these conditions, an integrated 

approach to long-term reliability assessment of SPP components 

accounting for degradation, probabilistic failure characteristics, and 

operational influences  becomes especially relevant. 

In recent years, there has been a growing interest in the 

digitalization of technical diagnostics in the maritime industry [2]. 

One of the key directions in modern monitoring is the use of digital 

twins, which enable near-real-time modeling of marine systems and 

prediction of potential failures. While this study does not focus on the 

development of a digital twin as a software platform, it does establish 

a mathematical foundation for its prognostic module. The developed 

models incorporate physically interpretable dependencies of failure 

intensity on operational factors. In particular, the model integrates 
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temperature effects (e.g., via the Arrhenius exponential function for 

generators), load-related parameters (coefficients reflecting nominal 

value exceedance), and environmental conditions (e.g., salinity and 

coolant temperature for the cooling system). These dependencies are 

implemented as parameterized functions calibrated against field data 

and reflect key degradation mechanisms such as thermal aging, 

fatigue damage accumulation, and aggressive environmental 

exposure. Zocco et al. [172] emphasize that digital twins allow 

integration of monitoring data with predictive algorithms; however, 

the practical implementation of such solutions remains limited, in 

part due to the absence of a unified methodology. Stadtmann et al. 

[173] demonstrate the application of digital twins for offshore wind 

turbines, highlighting the potential of the technology, though the 

focus is primarily on renewable energy rather than marine systems. 

Special attention in the literature is given to the use of machine 

learning in diagnostics and prediction of equipment condition. 

Polverino et al. [174], in a systematic review, show that machine 

learning methods are successfully applied for estimating RUL and 

anomaly detection. However, these approaches are often detached 

from real risk evaluation and cost considerations. Studies focusing on 

the integration of digital solutions in the maritime sector, such as 

Kaklis et al. [175]  underscore the need for comprehensive analysis 

encompassing not only failure modeling but also lifecycle 

management. Some research highlights the resilience of ship systems 

under intensive operation. Nezhad et al. [176] stress the importance 

of predictive maintenance based on big data analysis, while also 

noting the lack of quantitative models that consider both degradation 

dynamics and the economic consequences of technical decisions. 

Similarly, Mavrakos et al. [177] propose digital tools to support 

energy-saving strategies, pointing to the need for adaptive models 

capable of considering operational constraints. Additional recent 

studies support the relevance of a systemic approach to the prediction 

of technical condition in marine components. Liang et al. [178], in a 

review from a classification society perspective, emphasize that 

implementing PHM methods requires integration of degradation 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

284 

 

models with regulatory frameworks. Han et al. [179]  demonstrate 

how a variational autoencoder based on LSTM can detect marine 

component failures; however, their model is mostly oriented toward 

anomaly detection rather than quantitative reliability prediction. Xiao 

et al. [180], in their PHM research for industrial assets, propose a 

digital twin architecture that combines remaining life prediction with 

risk-based maintenance planning a concept applicable to marine 

systems as well. Finally, Cui et al. [181]  develop a digital twin for a 

marine diesel engine and demonstrate its capability to enhance 

maintenance efficiency and reduce downtime, though their focus lies 

in platform-level integration rather than formal reliability modeling. 

A review of current publications shows that despite the active 

development of digital diagnostics technologies, the issue of long-

term reliability of SPP components under real-world wear and 

overload conditions remains insufficiently addressed. Moreover, 

there is a noticeable lack of studies that integrate failure prediction 

with economic evaluation of maintenance strategies. Unlike most 

existing research focusing on localized degradation scenarios or 

isolated diagnostic aspects, this article centers on the holistic 

integration of reliability and economic analysis, providing a 

foundation for informed decision-making under real marine operating 

conditions. 

This study aims to fill this gap by offering a comprehensive 

analysis of the reliability of core SPP components over a 25,000-hour 

operating horizon. The approach is based on simulation modeling, 

Markov processes, and degradation models that account for wear 

dynamics. Special attention is given to the influence of operational 

factors (load, temperature, maintenance intervals) on failure 

probability, as well as the comparative economic efficiency of 

various maintenance strategies. The results obtained can be used in 

the development of predictive maintenance programs, resource 

planning, and life cycle optimization of equipment in marine 

engineering. 

The objective of this study is to develop and justify an integrated 

approach to the long-term reliability analysis of SMPP components, 
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taking into account degradation dynamics, the influence of 

operational factors, and the economic efficiency of maintenance 

strategies. 

To achieve this objective, the following tasks are addressed: 

1. Develop mathematical models for reliability prediction of 

SPP components, including exponential, degradation-based, Markov, 

and simulation-based approaches applicable to extended operational 

intervals; 

2. Describe and implement component-specific failure rate 

dependencies on operational factors such as mechanical load, 

temperature, and maintenance parameters; 

3. Construct a hybrid Markov-degradation model accounting 

for transitions between technical states (operational, degrading, pre-

failure, and failed), with parameters that depend on accumulated 

wear; 

4. Implement simulation modeling of operational scenarios 

using the Monte Carlo method to estimate the distribution of failure 

times and the variability of technical life; 

5. Formulate a model selection criterion that combines 

prediction accuracy (RMSE), information-theoretic metrics (AIC, 

BIC), and agreement with empirical data (χ²); 

6. Evaluate the economic efficiency of different maintenance 

strategies by comparing total costs under regular and reactive 

servicing regimes for key components; 

7. Develop recommendations for model application based on 

operating conditions and data availability, and assess their 

applicability as part of prognostic modules in digital decision support 

systems. 

 

1.3.9.2 Materials and methods 

The objects of this study are the key components of the SPP, 

including the main engine, generator, cooling system, and shipboard 

power station. These elements are subject to long-term wear, 

vibrational, and thermal loads, which makes the analysis of their 

reliability over an operational interval of up to 25,000 hours 
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particularly relevant. This duration is typical for resource planning 

and scheduled maintenance. 

The initial data for the analysis are generalized statistical records 

of failure frequencies documented in maritime practice and technical 

literature, including the OREDA failure databases. Additionally, 

typical operational modes, maintenance intervals, and expert 

assessments reflecting the influence of load and temperature 

conditions on equipment degradation were taken into account. 

Four different approaches were used to model reliability. The 

exponential model served as a baseline and assumed a constant 

failure rate, without accounting for wear accumulation. More realistic 

scenarios were described using analytical degradation models, in 

which the failure intensity increases over time following a power-law 

relationship. The third method involved a MМ that represents 

probabilistic transitions between technical states from operational to 

degrading, then to pre-failure and failure states. Finally, simulation 

modeling was applied to reproduce complex operational conditions 

and to construct failure scenarios under the stochastic nature of 

external influences. Within this approach, modeling was 

implemented using the Monte Carlo method with variation of 

operational parameters. 

The comparative accuracy of the listed models was assessed 

using the RMSE, which allows for a quantitative comparison of 

forecasts against reference scenarios. The analysis results showed 

that simulation modeling demonstrated the lowest error, whereas the 

exponential model exhibited the greatest deviations over extended 

operational periods. 

Special attention in the study was given to analyzing the 

influence of operational factors on the reliability of SPP components. 

Three key factors were considered: load regimes (nominal, elevated, 

emergency), thermal impacts (coolant temperature, oil temperature, 

cylinder gas temperature), and maintenance frequency. Graphs were 

constructed showing the dependence of reliability on each of these 

factors, and components were ranked according to their sensitivity to 

various operational conditions. 
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Finally, an evaluation of the economic efficiency of different 

maintenance strategies was conducted. Two scenarios were 

compared: absence of preventive measures and regular maintenance 

at 5,000-hour intervals. The calculation included both direct costs of 

failure remediation and indirect losses associated with forced 

downtime. The results showed that a systematic maintenance 

approach reduces total costs by a factor of 4 to 5 compared to a 

reactive maintenance model. 

The proposed methodological approach enables not only the 

assessment of MPP component reliability over a long time horizon, 

but also the justification of economically efficient maintenance 

decisions based on modeling, statistical data, and simulation 

scenarios. 

 

1.3.9.3 Results 

In the previous sections of the monograph, the CBR approach, 

BN, and Markov chains for SPP diagnostics were described in detail. 

In the present chapter, we focus on simulation-based degradation 

analysis, as it provides the highest predictive accuracy, achieving an 

RMSE of 0.05 over the extended time horizon of 25,000 hours. 

To assess the long-term reliability of SPP components, the 

following reliability prediction models are used: exponential 

reliability model, applied to components with a constant failure rate, 

where the probability of failure depends only on operating time; 

degradation models - account for the accumulation of damage and 

changes in failure intensity over time; Markov failure model - tracks 

transitions of components between different operable states, 

considering probabilistic changes; simulation-based reliability 

models  used for analyzing long-term operational scenarios, 

simulating the impact of various operational factors. 

Exponential model with a constant failure rate. For components 

operating under stable conditions without pronounced degradation or 

aging, the simplest failure model based on the exponential law is 

applicable. This model describes non-repairable processes with a 

constant failure rate λ, which corresponds to the steady-state 
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operational phase where the failure intensity is assumed to remain 

constant [182]: 

                                        ,0,)( = − tetR t                                (1.3.82) 

 

where   )(tR   is the probability of failure-free operation at time t; 

            λ  is the failure rate (h⁻¹), assumed to be constant over time  

The parameter λ is estimated based on the total operating time  

TΣ  and the number of observed failures k during this period. A biased 

maximum likelihood estimator is used [183]: 

                              
2

]ˆ[,



=



=
T

k
Var

T

k


                               (1.3.83) 

 

Based on the estimated failure rate, the mean time to failure 

(MTTF) is calculated using the formula: 



1
exp =MTTF  

Despite its simplicity, the exponential model serves as a useful 

baseline for comparison with more advanced approaches. It is 

applied, in particular, to components with high reliability operating 

under stable conditions. However, this model does not account for 

degradation processes, recovery after failure, or variations in 

operating loads, which limits its applicability for long-term 

prediction under real marine operating conditions. 

Degradation models for SPP equipment 

The long-term reliability assessment of SPP components 

requires the inclusion of damage accumulation processes. In this 

study, component-specific degradation models are applied, reflecting 

the dependence of failure rate on time and operational factors. 

General approaches to degradation modeling. The failure rate of 

a component at time t, denoted λ(t), is modeled using various 

functional forms: 

                                           tt += 0)( ,                             (1.3.84) 

where   
0  - initial failure rate at t = 0, reflecting baseline component 

quality [1/h]; 
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         α - degradation growth coefficient (h⁻¹·h–β); 

        β - power-law exponent (β>1 - indicates accelerated   

degradation, β<1 - indicates deceleration); 

       α, β - parameters obtained by regression on failure data 

 

Weibull-Based degradation model (NHPP):  

                                  1,)()( 1
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t                          (1.3.85) 

Parameter estimates are obtained using the maximum likelihood 

method: 
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Combined load and temperature model: 

         )(exp])(1[),,( 0 ref

m

nom
L TT

L
LkTLt −+=  ,          (1.3.87) 

where  L -  relative load (0…1); 

          T -  current operating temperature of the working medium (°C); 

         
refnom TL ,  - nominal values of load and temperature; 

        ,, Lkm  - calibration parameters obtained from experimental 

data 

The degradation of SPP equipment depends simultaneously on 

load and temperature. The rate of damage accumulation or increase in 

failure intensity is not constant but is a function of operational 

impacts. In the main engine, degradation affects the piston group, 

crankshaft, and cylinder liners. The load is characterized by propeller 

resistance torque, overload, and rotation frequency. Temperature-

related factors include oil, combustion gases in the cylinders, and 

cooling water. Elevated oil temperature reduces viscosity, accelerates 

wear of journal bearings and crankshaft surfaces, increases 

clearances, and leads to higher vibration levels - all of which 

contribute to engine failure. 

In the cooling system, degradation affects heat exchangers, 

pumps, and pipe joints. The load is defined by pressure differentials 
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and start-stop frequency. The critical external parameters are 

seawater temperature and overheating of the circulating water. These 

factors promote scale formation, corrosion, cavitation, and loss of 

tightness. Thus, the degradation model for the cooling system 

depends on both temperature and environmental aggressiveness. 

In the generator, degradation primarily occurs in the stator/rotor 

windings, insulation, and bearings. The winding temperature governs 

insulation aging. Load is defined by overcurrent conditions and 

frequent on/off cycles, which accelerate thermal aging and thermal 

cycling, leading to insulation breakdown. 

For each subsystem of the SPP, a dedicated degradation model is 

applied that accounts for the corresponding operational impacts 

(mechanical, thermal, electrical, etc.) using a generalized functional 

form of the failure intensity λᵢ(t, Xᵢ), where Xᵢ is the vector of external 

influences on the i-th component. 

 
Main Engine [182]: 

            )(exp])(1)[( 0 refoil

m

nom
LME TT

L
Lkt −++=  ,        (1.3.88) 

 

 

where   - coefficient of failure rate growth with runtime (h⁻²); 

           
oilT - oil temperature (°C); 

          0  - baseline failure rate 

An integral wear accumulation model is also used: 

)],(exp[)()( 21 normoil

m TTbtLtZ −+=    ))(1()( 0 tzt +=    (1.3.89) 

Cooling system (CS) [183]: 

             ],1][)(1[ 00 NaClNaClCWTCS CkTTk +−+=            (1.3.90) 

where  
CWT  - temperature of the circulating water (°C); 

            
0T  - reference temperature; 

           
NaClC  - salt concentration (ppm); 

            ,, NaClT kk  - empirical parameters 

Generator (GEN): 

                 ),1)](
11

(exp[0
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a
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I
TTk

E
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          (1.3.91) 
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where  
WT  - winding temperature (K); 

           
refT  - reference (baseline) temperature (in Kelvin); 

        
aE  - activation energy of insulation aging; 

        
k  - Boltzmann constant; 

        I - load current; 

         - overload coefficient 

 

Ship Power Station (ISO 12110-2:2013 Metallic materials) 

[184]: 

 

                       ),(1)( 2

0 tft fVSPS ++=                       (1.3.92) 

where  )(t  - vibration amplitude; 

          )(tf - switching frequency (on/off cycles); 

          
fV  ,  - empirical parameters reflecting the impact of 

vibration and switching loads 

 

The proposed models allow: accounting for the influence of 

operational factors on component reliability; flexible adaptation to 

different subsystems and operating conditions; easy integration into 

simulation and Markov-based prognostic frameworks; suitability for 

implementation in predictive modules of digital twins. Model 

parameters are identified based on field data (failure logs, OREDA, 

onboard recorders), and accuracy is validated using RMSE, χ², and 

information criteria such as AIC/BIC. 

 Markov model 

The MМ describes transitions between states:operational→ 

degrading→pre-failure→failure.The transition probability matrix Pᵢⱼ 

is constructed based on historical data. A ship power system (SPS) 

component is modeled as a Continuous-Time Markov Chain (CTMC) 

with four states: S = {0 - operational; 1 - degrading; 2 - pre-failure, 3 

- failure}. 

The infinitesimal intensity matrix Q [185]: 
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             Q = ,  ,44xRQ       (1.3.93) 

where μ0,μ1  - gradual degradation transitions: 0→1; 1→2; 

          γ0,γ1,γ2 -  abrupt failures from states 0, 1, and 2, respectively 

 

Mean Time to Failure (MTTF) [185]. For stationary Q, MTTF is 

computed using the fundamental matrix N: 

                           ,1)( 1

33

−−= xO

T

OMCS QeeMTTF                       (1.3.94) 

  
33xQ  - upper left 3×3 submatrix of Q; 

            1T=[111]. - vector of ones; 

           ]1001[=T

Oe -  initial state vector (component starts in 

operational state) 

Non-stationary (degradation-based) CTMC. In this case, 

transition intensities depend on accumulated wear z(t): 

 

           );0()),(),(()( ztTtLgtz =  )];(1[)( 00 tzt +=              (1.3.95) 

)],(1[)( 00 tzt +=    

 

where  )(q  - function linking current load L(t) and temperature T(t) 

with wear accumulation; 

         

00 ,   -  nominal failure intensities under base conditions; 

         α,β  - degradation acceleration coefficients 

 

General CTMC definition. A Continuous-Time Markov Chain is 

defined by: a state space S = {0, 1, 2, ..., n}; a transition intensity 

matrix Q = [qᵢⱼ], where:  qᵢⱼ ≥ 0 if i ≠ j, representing the transition 

intensity from state i to state j;  qᵢᵢ = −∑ⱼ≠ᵢ qᵢⱼ, i.e., the diagonal 

elements are negative and equal to the negative sum of outgoing 

intensities 

Interpretation of β: β<1 - decelerated increase in failure intensity 

(e.g., under passive degradation); β=1 - linear increase: failure rate 
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grows proportionally with time; β>1 - accelerated increase: typical 

for fatigue, aging, fouling. 

The parameters α and β reflect the physics of degradation and 

are either assigned empirically (based on operational data) or 

calibrated via regression. 

When Q = Q(t), the state probabilities are determined by a time-

ordered matrix exponential: 

 

          ;))(exp()(
0

0 =
t

T dttQTetP   ,)]([1)( 4tPtR −=             (1.3.96) 

where Т -  time-ordering operator; 

          nxn
t

RdttQT  0 ))(exp(   - transition probability matrix; 

          
4)]([ tP  - probability of being in the absorbing “failure” state 

Numerical computation is performed using piecewise constant 

interval approximation or the uniformization algorithm. A stationary 

CTMC is recommended for stable conditions, while a non-stationary 

model is better suited for variable loads and temperatures. 

 

Simulation-Based Model 

The simulation model is implemented using the Monte Carlo 

method [186] with N = 10,000 runs. In each simulation run, the 

following variables are randomly sampled: L - relative load (as a 

fraction of nominal); T - operating medium temperature; ΔTO - 

preventive maintenance interval. 

The simulation aims to compute: estimated reliability function 

)(ˆ tRsim
; expected failure rate )(ˆ tsim ; аccuracy metrics (e.g., RMSE) 

by comparing predictions to observed data. 

For the j-th run (j = 1, ..., N), the condition vector is formed: 

 

                                 ),,,( )()()()( kjjj TOTLX =                        (1.3.97) 

 

where  )()()( ,, kjj TOTL  are drawn from empirical distributions based 

on operational logs 
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The failure intensity function is selected accordingly: 

 

                                    ),()( )()( tXftX jj =                              (1.3.98) 

 

A composite model selection criterion Ψ is used, minimizing a 

weighted sum of RMSE, AIC, BIC, and χ². This ensures a balanced 

evaluation of prediction accuracy, model complexity, and statistical 

fit over long-term reliability forecasts. 

Random sequences of load and temperature are modeled as 

Rainflow histograms. Cyclegrams of the form (Ljk, τjk) (k=1…Kj ) are 

generated. Then: 

1. Cumulative fatigue damage (Miner’s rule) is calculated 

(ISO 12110-2:2013): 
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2. A failure is recorded if 1)( tD , or if the simulation reaches 

an absorbing failure state in the CTMC. 

3. N = 10⁴ Monte Carlo runs are executed to estimate )(ˆ tRsim
  

and confidence bounds. 

Model selection criterion. For each subsystem, the following 

were computed: RMSE; AIC; BIC; χ² [187], reflecting the model’s 

agreement with observed failure statistics. 

The composite criterion: 

 

          ,2

4321  +++= BICAICRMSE   1
4

1

=
=i

i
         (1.3.100) 

where  
i - weights are set by experts, provides a balanced selection 

of the optimal model based on: RMSE - accuracy of failure 

prediction on test data; AIC - tradeoff between goodness of fit and 

model complexity; BIC - Bayesian information criterion; χ² - 

goodness-of-fit test comparing model predictions to actual failure 

observations 
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The combined criterion Ψ enables the justified comparison of 

models with different structures, allowing for a balanced evaluation 

of accuracy, complexity, and realism. It supports a transparent 

selection of the most suitable failure prediction model for SPPs. In 

this study, the generalized criterion Ψ, which integrates prediction 

accuracy, information criteria (AIC/BIC), and agreement with field 

data, was used for optimal model selection. 

Economic validation. For the main engine, as the most critical 

unit, a life-cycle cost model was constructed: 

 

                        )],(1[)( tRCCCC downrepTM −++=                (1.3.101) 

where   )(TMC  -  scheduled maintenance costs with interval Δ; 

             
repC -  capital repair costs; 

             
downC - downtime losses associated with unrealized reliability 

levels 

The optimal value of Δ was found numerically. Regular 

maintenance every 5,000 hours reduces total costs by 4 - 5 times 

compared to a reactive repair scenario. The integral criterion Ψ 

confirms the superiority of the simulation-based scheme across all 

SPP components. This method accounts for the nonlinear effects of 

load and temperature, allows for the construction of reliability 

confidence intervals, and enables economic optimization of the 

maintenance schedule. The application of four different reliability 

modeling approaches is not redundant but rather a necessary strategy, 

driven by the diversity of technical conditions, operating regimes, 

and required prediction accuracy. First, each model targets its 

specific domain of applicability. The exponential reliability model is 

effective for components in the stable operation phase, with constant 

failure intensity. It is easy to implement and applicable when data 

availability is limited. Degradation models allow for the 

consideration of damage accumulation and changing failure intensity, 

which is critical for components exposed to variable loads and 

temperatures, fatigue, or aging. MMs are useful when there is a need 

to describe discrete health states from operable to failed accounting 
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for intermediate transitions with different probabilities. Simulation 

models provide the capability to analyze complex operational 

scenarios involving multiple random factors, such as load 

cyclegrams, maintenance intervals, temperature variability, and 

environmental aggressiveness. Second, model choice directly impacts 

prediction accuracy.  

The comparative analysis showed that RMSE values can vary by 

more than a factor of two between methods, and a model yielding the 

best accuracy for one component may be unsuitable for another. The 

composite criterion Ψ, combining RMSE, AIC, BIC, and χ², 

confirmed that there is no universally superior model. Third, 

maintaining multiple models allows for flexible adaptation to the 

available data, the criticality of the equipment, and the required 

prediction horizon. In a practical maintenance system based on a 

digital twin, the use of a model bank enables automatic selection of 

the most appropriate model type for each component and current 

operational condition. In summary, the proposed approach is based 

on the integration of four predictive models: exponential, 

degradation-based, Markovian, and simulation-based. Their 

comparative analysis made it possible to evaluate the advantages and 

limitations of each method. As a result, the simulation model was 

chosen as the core computational scheme, providing the best balance 

between accuracy, adaptability, and realism. This makes the 

proposed reliability forecasting system not only scientifically 

grounded but also practically applicable under real-world SPP 

operating conditions. The comparative analysis of the reliability 

models presented above allows us to move from theoretical 

justification to their practical evaluation. At this stage, we consider 

the specific results of applying each model to the key components of 

the SPPs under various configurations of input parameters and 

operating scenarios. To this end, calculations were carried out using a 

unified set of metrics (RMSE, AIC, BIC, χ²), and a quantitative 

assessment of the probability of failure-free operation over 25 000 

hours was performed. For each piece of SPP equipment the 

generator, the main engine, the cooling system, and the electrical 
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power unit reliability forecasts were generated and compared with 

the actual failure statistics. 

Table 1.3.62. Comparison of different reliability prediction 

models 

Prediction model RMSE 
Forecast accuracy 

(%) 

Exponential distribution 0.12 85 

Degradation models 0.07 91 

Markov processes 0.08 90  

Simulation (Monte Carlo) 0.05 95  

Table 1.3.62 provides comparative data for four reliability 

prediction models applied to SPP components: exponential, 

degradation, Markov, and simulation (Monte Carlo). The evaluation 

criteria are the RMSE and the forecast accuracy on a hold-out sample 

(as a percentage of actual observed failures). Exponential model 

(constant failure intensity) yielded the poorest performance: 

RMSE = 0.12 and forecast accuracy 85 %. This confirms its 

limitation when failures result from accumulated wear or thermal 

degradation. It is best suited as a baseline model for rough estimates 

of simple, low-wear components. Degradation model (e.g. 

Weibull-type with time-varying intensity λ(t)=λ₀+αt^β) showed 

improved results: RMSE = 0.07 and accuracy 91 %. Its strength lies 

in capturing non-stationary aging processes and the effect of loads on 

component wear. It is especially effective for parts undergoing 

monotonic degradation such as generators, heat exchangers, and 

bearings. MM (discrete state transitions) achieved comparable 

accuracy: RMSE = 0.08 and accuracy 90 %. Its advantage is 

formalizing the phase structure of degradation and accounting for 

both gradual and sudden transitions (e.g., “operational→degrading→ 

pre-failure→failure”). It is well suited for diagnosing and forecasting 

complex assemblies undergoing typical wear stages. Simulation 

(Monte Carlo) provided the best performance: RMSE = 0.05 and 

accuracy 95 %. By modeling many probabilistic scenarios including 

variations in load, temperature, and maintenance intervals it captures 

the combined effects of multiple factors. This method is ideal for 
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components sensitive to operating regimes and systems where 

failures arise from factor combinations. It also enables analysis of 

confidence intervals and cost-consequences of failures. In summary, 

each model has its own domain of applicability: exponential: for 

simple, stable components without evident degradation; degradation: 

for parts with monotonic wear and damage accumulation; Markov: 

for components featuring distinct degradation phases; simulation: for 

complex systems under variable load and environmental conditions. 

 Figure 1.3.64 presents a graph that illustrates the results of 

comparing various failure prediction methods based on the RMSE in 

reliability estimation of SPP components.  

 
Figure 1.3.64. Comparison of reliability prediction models by 

root-mean-square error 

The simulation model demonstrates the highest accuracy. The 

degradation model outperforms both the Markov and exponential 

approaches, confirming the importance of accounting for cumulative 

wear when analyzing SPP components. To systematically compare 

reliability prediction methods, it is reasonable to consider three key 

criteria: whether the model incorporates a degradation mechanism; 

whether it can represent discrete transitions between component 
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states (e.g., "operational→degraded→pre-failure→failure"); forecast 

accuracy, expressed through RMSE.Table 1.3.63 provides a 

comparative summary of these characteristics and includes practical 

recommendations for the application of each model depending on 

operating conditions and the required prediction horizon. The 

comparison clearly shows that simulation modeling offers the highest 

accuracy (RMSE = 0.05). This is due to its ability to capture 

variability in operating conditions, stochastic events, and cumulative 

degradation effects. As a result, this method is especially effective for 

long-term reliability forecasting and residual life assessment under 

complex operational scenarios. MMs, while slightly less accurate 

(RMSE = 0.08), offer a key advantage in structural clarity. They 

enable formal representation of state transitions (“operational→ 

degraded→pre-failure→failure”) and are well-suited for rapid risk 

assessment. These models can be readily integrated into onboard 

predictive diagnostics systems and are applicable when moderate 

volumes of input data are available. Analytical degradation models 

provide acceptable accuracy (RMSE in the range of 0.07- 0.09) and 

are most effective when there is a priori knowledge of wear 

mechanisms. 

Their use is particularly appropriate when combined with 

environmental monitoring (e.g., temperature, vibration, chemical 

aggressiveness), allowing for modeling the nonlinear increase in 

failure intensity. Despite its simplicity, the exponential model poorly 

reflects the behavior of most SPP components over intervals 

exceeding 10 000 hours, as it does not account for degradation 

processes. Its use is justified only for preliminary assessments or 

when no reliable data is available on the component's condition. 

Therefore, the selection of a prediction model should be based 

on a balance between: the availability of input data; acceptable model 

complexity;  the required forecasting horizon. In practical operational 

environments, the most rational approach is a hybrid strategy, 

combining simulation modeling with MМs. This allows for 

simultaneously capturing probabilistic dynamics and concrete failure 

scenarios. 
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Table 1.3.63. Comparative accuracy of reliability prediction 

models (by RMSE) 

Prediction 

model 

Accounts for 

degradation 

Describes 

state 

transitions 

RMSE 
Recommended 

applications 

Exponential No No 0.12 Basic estimates, 

preliminary 

assessments 

Markov Yes Yes 0.08 Mid-term 

forecasting, 

transient state 

analysis 

Simulation 

modeling 

Yes Yes 0.05 Accurate long-

term 

assessments, 

complex 

operational 

scenarios 

Degradation 

models 

(analytical) 

Yes No 0.09 Condition 

monitoring with 

known wear 

functions 

General reliability equation and parameter estimation 

For all models considered, the reliability function R(t) is derived 

from the following general equation: 

                                        ,)( 0
)(

=
−

t

dtt

etR


                               (1.3.102) 

where R(t) is the probability of failure-free operation at time t; 

           λ(t) is the time-dependent failure rate function 

This integral expression accounts for the cumulative impact of 

component degradation over time. 

With a constant failure rate λ(τ)=λ₀ , the model corresponds to 

the classical exponential distribution. For components experiencing 

increasing wear, a power-law dependency is used 

λ(τ)=λ₀(1+ατⁿ). In the Markov scheme, λ(t) is equivalent to the sum 

of outgoing transition rates from non-absorbing states. In the 

simulation model, λ(t)is calculated step-by-step for each operational 
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scenario X{(j)}. The parameters λ₀, α, n, as well as the transition rates 

μ, γ, are calibrated using: the OREDA field failure database; 

identification of CTMC parameters from operational logs; prior 

dependencies (BNs) in the case of limited data. The resulting 

reliability functions R(t) are used for: estimating the remaining useful 

life; optimizing maintenance intervals; calculating economic losses 

due to downtime. 

Analysis of component reliability dynamics. Reliability 

assessment of SPP requires not only the estimation of overall failure 

probability, but also an understanding of how reliability evolves over 

time under operational stresses. This subsection presents a 

comparative analysis of the behavior of key SPP components over an 

extended operational period (up to 25,000 hours). Particular attention 

is paid to the dynamics of the reliability function, failure frequency, 

and the influence of load, temperature, and maintenance intervals on 

remaining useful life. 

Figure 1.3.65 shows the reliability dynamics of the main SPP 

components over 25,000 hours of operation. 

 
Figure 1.3.65. Reliability dynamics of key SPP components 

Figure 1.3.65 shows the evolution of reliability (function R(t)) 

for four key components of the SPP over a 0 - 25,000 hour interval, 
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calculated using Monte Carlo simulation (10,000 iterations) with 

variations in operational factors: relative load, cooling medium 

temperature, and maintenance frequency. The graph presents the 

probability of failure-free operation over time, obtained from the 

event-driven simulation model. For each component, degradation 

scenarios were modeled based on empirical distributions of operating 

parameters and failure intensity functions calibrated from historical 

data. The ME demonstrates the steepest reliability decline: from 1.0 

to approximately 0.3 by 25,000 hours, indicating the need for 

overhaul after 20,000 hours. The generator degrades more slowly, 

reaching approximately 0.45 at 25,000 hours, and its operational life 

can be extended with regular maintenance. The cooling system is 

sensitive to thermal impacts: reliability drops to about 0.55 by 15,000 

hours and to ≈ 0.35 by 25,000 hours, requiring preventive actions 

every 10,000 - 12,000 hours. The ship power station shows moderate 

degradation: by 25,000 hours, its reliability is around 0.42 sufficient 

for scheduled diagnostics without urgent intervention. Thus, the 

primary candidates for accelerated maintenance are the main engine 

and cooling system. The generator and ship power station require 

monitoring after 20,000 hours, when their reliability falls below 0.5. 

The optimal interval for preventive repair for most components is 

between 10,000 and 15,000 hours of operation. 

To quantitatively support the graphical trends presented in 

Figure 1.3.65, Table 3.48 provides the values of the reliability 

function R(t) for key SPP components at critical stages of the 

operating cycle. These data are used for estimating remaining useful 

life and for scheduling maintenance interventions. 

Table 1.3.64 presents discrete values of the probability of 

failure-free operation R(t) for the four main SPP components, 

calculated using Monte Carlo simulation with 10,000 runs. The 

model incorporated empirically determined distributions of load, 

temperature, and maintenance frequency, along with failure intensity 

functions calibrated against degradation data and state transition 

behavior. 
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Table 1.3.64. Long-term reliability (failure probability) of SPP 

components 

Time (h) 
Main 

engine 
Generator 

Cooling 

system 

Shipboard 

power 

station 

0 1.00 1.00 1.00 1.00 

5,000 0.93 0.96 0.92 0.95 

10,000 0.85 0.90 0.82 0.87 

15,000 0.70 0.78 0.68 0.75 

20,000 0.50 0.60 0.52 0.58 

25,000 0.30 0.45 0.35 0.42 

These values complement the graphical interpretation in Figure 

1.3.66 and enable precise identification of critical intervals of 

reliability loss. The main engine and cooling system reach R(t) < 0.5 

between 15,000–20,000 hours, while the generator and ship power 

station remain reliable until approximately 23,000 - 24,000 hours, 

after which they also require major intervention. The derived data 

can be directly applied for residual life estimation and planning of 

maintenance schedules. The subsequent sections explore failure 

frequencies under various operating modes and the impact of 

maintenance intervals on component reliability. 

Although the reliability function R(t) reflects the probability of 

failure-free operation of components over time, an important 

complementary metric is the normalized failure rate the expected 

number of failures per 1,000 operating hours depending on operating 

conditions. This indicator provides insight into how rapidly the risk 

of failure increases under varying external loads, thermal conditions, 

and maintenance frequencies. It is important to note that the 

presented values are not based on direct observations but represent 

average failure intensities obtained through Monte Carlo simulation, 

accounting for usage scenarios under three modes: nominal, high 

load, and emergency conditions. Table 1.3.65 summarizes the 

simulated failure rates of SPP components under three operational 

regimes: nominal, elevated load, and emergency conditions. These 

results, derived from simulation modeling, complement the 

previously presented R(t) values, offering a more detailed perspective 
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on component sensitivity to operational factors. The resulting 

dependencies are used for comparative assessment of component 

vulnerability and to justify the need for predictive maintenance 

strategies when shifting toward harsher operation profiles. The 

specific failure rate values given in Table 1.3.65 were also used as 

input data for the equipment failure risk maps developed in previous 

sections of this monograph. In this section, we will limit ourselves to 

discussing conclusions relevant to technical maintenance. 

Table 1.3.65. Failure frequency of components under different 

operating modes 

Component 
Nominal mode 

(failures/1000 h) 

Increased load 

(failures/1000 h) 

Emergency 

conditions 

(failures/1000 h) 

Main engine 0.8 1.5 3.2 

Generator 0.5 1.1 2.8 

Cooling 

system 
1.0 2.3 4.1 

Ship power 

station 
0.6 1.4 3.0 

Based on the data presented in Table 1.3.65, the following 

conclusions can be drawn. The main engine shows a low failure rate 

under nominal conditions (0.8 failures per 1,000 operating hours), but 

this rate rises sharply to 3.2 failures per 1,000 hours under emergency 

conditions, indicating high sensitivity to increased operational loads. 

The generator demonstrates strong reliability in stable conditions (0.5 

failures per 1,000 hours), yet under emergency scenarios the failure 

rate increases fivefold (2.8 failures per 1,000 hours), which 

emphasizes the need for enhanced monitoring. The cooling system 

exhibits the highest sensitivity to operating conditions. Its failure rate 

escalates from 1.0 to 4.1 failures per 1,000 hours under critical 

thermal loads and hydraulic stress, highlighting the importance of 

timely maintenance. The shipboard power station also experiences a 

decline in reliability under high loads, although its resilience remains 

higher compared to the main engine, making it relatively less 

vulnerable. Following the assessment of overall component reliability 

and failure rates across different modes of operation, it becomes 
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essential to analyze the influence of individual operational factors 

such as load, temperature, and maintenance intervals on the time-

dependent degradation of reliability. The modeling framework 

includes the following variables: relative load (e.g., propeller shaft 

torque for the main engine, current load for the generator); 

temperature conditions (e.g., oil temperature for the main engine, 

coolant temperature for the cooling system, and winding temperature 

for the generator); and the maintenance schedule, which determines 

the accumulation of residual risk. The simulation scenarios span from 

nominal operational parameters to overloads and emergency 

conditions. Based on these inputs, reliability functions R(t) were 

computed using Monte Carlo simulation to represent the system's 

aggregated response to variable environmental and operational 

influences. Figure 1.3.66 visualizes these dependencies, providing a 

clear picture of how the reliability of shipboard power systems 

changes in response to variations in operational conditions.  

 
Figure 1.3.66. Influence of operational factors on the reliability of 

the SPP 

This analysis helps identify components that are more 

vulnerable under elevated loads or thermal stress and supports 

decisions regarding adaptive maintenance planning. The simulation 
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results presented in Figure 1.3.66 clearly demonstrate that the 

reliability of SPP components varies significantly depending on 

operating conditions. In nominal mode, with standard loading and 

normal thermal conditions, the reliability function of the components 

remains above 0.80 during the first 15,000 hours, which corresponds 

to the planned operational phase without signs of accelerated 

degradation. Under increased (intensive) load such as a ~20% rise in 

propeller resistance or generator current the rate of failure intensifies: 

by 15,000 hours, the probability of failure-free operation drops to 

0.55 - 0.60, which is 30–35% lower than the baseline level. 

In emergency conditions a combination of overloads, cooling 

water overheating (above 85 °C), and infrequent maintenance leads to 

rapid deterioration R(t) falls below 0.40 as early as 12,000 - 15,000 

hours, and by 25,000 hours, reliability decreases to 0.20 - 0.25. This 

indicates critical wear and the urgent need for major overhaul. Based 

on the results of the simulation model, the following practical 

recommendations are proposed: adaptive load control: For the main 

engine and cooling system, it is advisable to reduce operating loads 

by 10 - 15% when oil or coolant temperatures increase. This measure 

can extend the service life by 2,000 - 3,000 hours; justification of 

optimal maintenance intervals: Simulation of various scenarios 

shows that reducing the interval from 10,000 to 5,000 - 7,000 hours 

between scheduled maintenance procedures decreases the total failure 

probability by 18 - 22% and lowers expected maintenance costs by 

more than four times; predictive replacement of critical components - 

for components whose residual reliability drops to R = 0.50, a 

condition-based replacement strategy is economically justified before 

actual failure occurs. This particularly applies to the main engine 

bearings and cooling system heat exchangers. A more complete set of 

predictive analytics tools, including risk mapping, use of the CBR 

method, and BNs, is presented in section 1.3.1 of the monograph. In 

this section, the results of these methods are used as input data, with 

a particular focus on simulation-based degradation modelling to 

calculate the reliability function R(t) and comparative evaluation of 

maintenance strategies.  
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Thus, the chart in Figure 1.3.66 not only confirms the 

quantitative influence of operational factors on system reliability but 

also provides a foundation for justifying adaptive maintenance 

strategies. These strategies make it possible to maintain the reliability 

of the system at a safe level while minimizing total costs. For a 

quantitative analysis of the long-term impact of operational 

conditions on the reliability of SPP components, simulation scenarios 

were used to vary key technical environment parameters. 

Table 1.3.66 presents generalized calculated data for three main 

operational factors: vibration level (average vibration, in g); 

operating temperature (characteristic for each component, such as oil, 

windings, coolant, etc.); and relative load (percentage of rated 

capacity). For each component, the probability of failure-free 

operation R(t) after 20,000 hours of service is also provided, based on 

a degradation-simulation model. These results enable a comparative 

analysis of the sensitivity of different SPP subsystems to operational 

stressors. A visual representation of how maintenance frequency 

affects reliability is additionally shown in Figure 1.3.67, which 

illustrates the role of the maintenance interval as a distinct risk factor. 

The analysis of the data presented in Table 1.3.66 shows that the 

reliability of SPP equipment after 20,000 hours of operation is 

determined by the combined effect of three key operational factors: 

vibration, temperature, and load. All values were obtained using 

simulation modeling based on standard operating scenarios. 

Vibration has a significant influence on the service life of equipment. 

Table 1.3.66. Impact of operational factors on the reliability of 

SPP components 
Component Vibration 

(average 

level), g 

Temperature 

(°C) 

Load (% 

of 

nominal) 

Reliability 

after 20,0 

Main engine 4.5 85 95 0.52 

Generator 2.8 75 90 0.60 

Cooling 

system 

3.2 90 80 0.48 

Ship power 

station 

2.5 70 85 0.58 
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The ME exhibits the highest vibration level of 4.5 g, reflecting 

high mechanical loading and corresponding with a relatively low 

reliability value (R = 0.52). The cooling system, exposed to 3.2 g 

vibration, shows an even lower reliability (R = 0.48), which can be 

attributed to its structural susceptibility to cavitation and resonant 

effects. The generator (2.8 g) and ship power station (2.5 g) 

experience the lowest vibration levels and demonstrate the best 

resource preservation (R = 0.60 and R = 0.58, respectively). 

Temperature is the second most critical factor. The cooling system 

operates at 90 °C, and the main engine at 85 °C both indicating 

thermally stressed conditions that accelerate material degradation and 

aging of working media.  

More moderate temperatures are observed in the generator 

(75 °C) and power station (70 °C), correlating with their higher 

reliability. In this context, temperature refers to oil, coolant, cylinder 

gas, winding, and ambient temperatures. Their roles are further 

detailed in the explanation of the thermal factor below. Load, 

expressed as a percentage of nominal power, also has a statistically 

significant impact. At 95 % load on the main engine and 90 % on the 

generator, reliability is notably lower than in the power station 

operating at 85 %. Interestingly, the cooling system despite operating 

at a relatively low load (80 %) exhibits the worst reliability metric. 

This confirms that thermal and vibrational loads are the dominant 

degradation drivers in its case. In summary, two component groups 

can be distinguished: critically vulnerable: main engine and cooling 

system subject to cumulative influence from all three factors, 

requiring early intervention and shortened maintenance intervals; 

relatively stable: generator and ship power station operating under 

near-nominal conditions with extended resource longevity. It should 

be emphasized that in the development of reliability models and 

maintenance strategies, not only individual factors but their 

cumulative effects over time must be taken into account. Even if one 

parameter (e.g., load) remains moderate, elevated temperature or 

vibration alone can significantly reduce service life. This underscores 

the importance of multi-parameter modeling tailored to the 
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operational specifics of each component. Temperature is among the 

most critical degradation factors for SPP systems, with its impact 

depending not only on absolute values but also on the specific 

application point: oil, coolant, cylinders, or windings. Table 1.3.67 

summarizes the critical temperature thresholds for various media and 

components, indicating the levels at which accelerated reliability 

decline begins and the predominant types of failures observed under 

these conditions. 

 

Table 1.3.67. Influence of temperature regimes on the reliability 

of SPP components 

Component Critical 

temperature, °C 

Impact on reliability 

Main engine (oil) >110 °C Accelerated wear of 

friction parts 

Coolant >95 °C Overheating, reduced 

cooling efficiency 

Gaseous medium in 

cylinders 

>500 °C Increased wear of the 

piston group 

Generator 

(windings) 

>120 °C Insulation degradation, 

risk of breakdown 

 

Based on Table 1.3.67, it can be concluded that each SPP 

component has a specific critical temperature threshold, beyond 

which a qualitative change occurs in failure mechanisms. For the 

main engine, oil overheating above 110 °C leads to reduced viscosity, 

impaired lubrication, and consequently, accelerated wear of friction 

pairs, specifically journal bearings, liners, and plain bearings. The 

cooling system loses reliability at temperatures exceeding 95 °C, 

disrupting the thermal balance of the entire installation. This 

promotes thermal aging and increases the likelihood of cavitation. 

When temperatures in the engine cylinders exceed 500 °C, carbon 

deposit formation, thermal expansion, gas blow-by, and abrasive 

wear of the piston group intensify. For the generator, winding 

overheating above 120 °C is critical due to insulation aging, 
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increased electrical resistance, thermal cycling, and ultimately, 

dielectric breakdown. 

These findings provide a crucial foundation for constructing 

temperature-dependent degradation models. Such models not only 

guide the development of maintenance algorithms but also define 

maximum permissible values in monitoring systems and help 

configure warning thresholds within digital twin frameworks. 

Based on the data from Tables 1.3.66 and 1.3.67, it is evident 

that vibrational stress and elevated temperature have the greatest 

impact on component reliability. The cooling system is particularly 

vulnerable to degradation at temperatures exceeding 85 °C. In 

contrast, the generator and ship power station demonstrate lower 

sensitivity to vibration. 

To quantitatively assess the effect of maintenance frequency on 

equipment reliability, a reliability function was derived as a function 

of the interval between maintenance events. Modeling was carried 

out using an event-driven simulation approach, with intervals ranging 

from 2,000 to 20,000 hours. The resulting dependency is visualized 

in Figure 1.3.67, which illustrates the decline in failure-free 

probability as the interval between scheduled maintenance increases. 

The graph in Figure 1.3.67 is based on the results of event-

driven Monte Carlo simulation (N = 10,000) under averaged 

operational conditions derived from Table 3.51. It illustrates the 

exponential decline of failure-free probability R(t) as the 

maintenance interval increases: under baseline conditions of 1,000 

hours, reliability remains high (R ≈ 0.95); under the economically 

optimal interval of 5,000 hours, it decreases slightly (R ≈ 0.90); but at 

20,000 hours, reliability drops below 0.40 (RMSE of the forecast = 

0.05). 

This trend is consistent with the results of [179]; however, our 

study further incorporates the economic impact: total lifecycle costs 

increase from USD 5,300 (for 5,000-hour maintenance) to USD 

26,200 (for 20,000-hour maintenance). Therefore, regular 

maintenance at intervals no longer than 5,000 hours offers a rational 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

311 

 

compromise between maintaining high system reliability and 

minimizing lifecycle costs. 

 
 

Figure 1.3.67. Impact of maintenance frequency on the reliability 

of SPP 

Considering that vibration and thermal loads significantly 

accelerate degradation (as demonstrated in Table 1.3.68), the main 

engine and cooling system are particularly critical. For these 

components, it is advisable to adopt a shortened maintenance cycle 

after 10,000 hours of operation. 

Economic assessment of maintenance strategies 

Given the identified relationships between reliability and 

operational factors, the next step is to evaluate how preventive 

actions impact not only technical performance but also the overall 

lifecycle costs of SPP equipment. To assess the economic efficiency 

of different maintenance strategies, a comparative cost analysis was 

conducted for two operational scenarios: reactive maintenance (repair 

after failure only); scheduled preventive maintenance (every 5,000 

hours). The main engine was selected as the case study component, 

being the most cost-critical in terms of failure consequences and 

downtime losses. The economic evaluation model is structured as 

follows: 
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                   )],([)( tRCCCC downrepPM ++=                    (1.3.103) 

 

where )(PMC  - denotes the cost of preventive maintenance at 

interval Δ; 

             
repC  - direct costs of failure recovery; 

         
downC - losses associated with equipment downtime, which 

depend on the failure probability R(t) and the duration of recovery 

operations 

 

In the reactive maintenance scenario, the number of failures over 

25,000 hours of operation averaged 12, with total costs (repair + 

downtime) reaching 26.2 thousand USD. In contrast, with regular 

maintenance performed at 5,000-hour intervals, the number of 

failures was reduced to 4, and the total expenses amounted to 5.3 

thousand USD. Table 1.3.68 presents a summary of the economic 

comparison between the two approaches. To formally compare these 

scenarios using key economic metrics, Table 3.56 below provides a 

comparison of failure frequency, repair costs, downtime-related 

losses, and total expenditures. 

Table 1.3.68. Comparative assessment of main engine 

maintenance costs under different strategies 

Operation 

scenario 

Number of 

failures 

over 

25,000 h 

Repair 

costs Crep, 

thousand 

USD 

Downtime 

losses Cdown, 

thousand 

USD 

Total costs 

C, 

thousand 

USD 

Without 

regular 

maintenance 

12 5.8 20.4 (≈12 h 

downtime) 

26.2 

With regular 

maintenance 

(every 5,000 

h) 

4 1.9 3.4 (≈2 h 

maintenance 

downtime) 

5.3 
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As shown in the table, the scheduled maintenance strategy 

reduces the total number of failures by a factor of three and the 

overall costs by more than 4.5 times. At the same time, the 

equipment reliability at the end of the evaluated operational interval 

remains above 90%, which is confirmed by the results of simulation 

modeling using the reliability function R(t)R(t)R(t). The graph (Fig. 

3.43) also demonstrates that extending the maintenance interval to 

20,000 hours leads to a decrease in the probability of failure-free 

operation to 40%. 

Thus, the economic evaluation confirms the practical 

effectiveness of implementing preventive maintenance. The 

recommended interval of 5,000 hours ensures an optimal balance 

between operational expenditures and the reduction of failure risks. 

The proposed approach is scalable to other subsystems of the SPPs 

and can be integrated into digital twins for dynamic optimization of 

maintenance strategies in real time. 

 

1.3.9.4 Discussion of results 

The conducted study demonstrates the effectiveness of an 

integrative approach to reliability assessment and the development of 

maintenance strategies for SPP equipment. Unlike classical methods 

based on stationary assumptions (e.g., the exponential model with 

constant failure rates), the proposed methodology combines 

analytical degradation models, non-stationary Markov processes, and 

discrete-event simulation modeling. This combination enables 

accounting for both damage accumulation and the influence of 

variable operational conditions, including vibration, temperature, and 

load regime. 

Comparison with contemporary research confirms the relevance 

and scientific soundness of the proposed approach. For instance, 

several studies [188, 189] consider digital twins as a promising 

architecture for predictive control of maritime equipment. However, 

the authors emphasize the need for model unification and the 

integration of physically interpretable parameters. The present study 

meets these requirements: the reliability models are formalized, and 
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the degradation parameters are directly dependent on operational 

impacts. In the works [133] and [190], digital twins are used for 

diagnostics and condition monitoring of marine diesel units, but the 

aspect of economic feasibility of maintenance is not addressed. In 

contrast, this study presents an evaluation of total costs under 

different maintenance strategies, thereby enhancing the practical 

significance of the results. The economic analysis conducted showed 

that switching from a reactive to a scheduled strategy (with a 5,000-

hour interval) reduces total expenses by more than 4.5 times while 

increasing equipment reliability by 18–22%. The reliability 

optimization methods proposed by Zhou et al. [191] are based on 

particle swarm algorithms and are aimed at individual technological 

processes (e.g., cylinder block machining), without considering 

degradation dynamics during operation. In this study, the parametric 

degradation model with four technical condition states allows 

adaptation to changing conditions, reflecting the actual behavior of 

equipment over a long operational interval. The review by Liang et 

al. [192] highlights the lack of quantitative models capable of 

accounting for operational impacts such as overheating and vibration. 

This limitation is overcome in the present work: the developed 

reliability models incorporate temperature, load, and vibration 

parameters as arguments of the failure rate function. The introduced 

threshold values (e.g., 110 °C for oil, 120 °C for windings) are 

consistent with simulation results and may serve as the basis for 

automatically generating warning signals in digital twins. The work 

by D’Agostino et al. [193] is devoted to multiphysical modeling of 

ship microgrids in real time, but it lacks a reliability analysis 

component. The present study can be integrated into such systems, 

complementing them with residual life assessment and maintenance 

schedule optimization modules. 

One of the key results of the study is the quantitative comparison 

of four reliability forecasting models. The simulation model 

demonstrated the highest accuracy (RMSE = 0.05), which is 33% 

better than that of the MM (0.08), and 58% better compared to the 

exponential model (0.12). The integrated metric Ψ, combining 
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RMSE, AIC, BIC, and χ² with expert weights, confirmed the 

superiority of the hybrid model, demonstrating that accounting for 

the temporal dynamics of operational factors and degradation 

processes significantly improves the accuracy of long-term 

forecasting. Moreover, the study revealed differentiated sensitivity of 

various SPP components to operational loads. The most vulnerable 

components were the main engine and cooling system, for which 

increases in vibration and temperature lead to a sharp decline in 

reliability. In particular, by 20,000 hours, reliability decreases to 0.52 

for the main engine and 0.48 for the cooling system. The generator 

and ship power station exhibit more stable behavior (R ≈ 0.60 and 

0.58, respectively), confirming the rationale for a differentiated 

approach to maintenance scheduling. 

The practical value of the presented models lies in their ability to 

support informed managerial decisions regarding equipment 

maintenance and lifecycle management. Mathematical 

interpretability, integration capability within digital twins, and 

consistency with operational parameters make the proposed 

methodology promising for implementation in ship technical 

monitoring and decision support systems. 

At the same time, the study has certain limitations. First, the 

input data used are averaged operational profiles that do not include 

streaming telemetry. Second, the model parameters were identified 

based on historical data and are not updated in real time. These 

limitations define directions for future research, including the 

incorporation of sensor streams, implementation of online 

calibration, expansion of the component base, and the use of machine 

learning methods for adaptive model tuning and adjustment of the 

integrated criterion Ψ. 

Thus, the proposed integrative approach to modeling the 

reliability and maintenance of SPP equipment represents a balanced 

solution that combines mathematical rigor, engineering applicability, 

and economic efficiency. It may serve as a foundation for the 

development of intelligent prognostic systems within the framework 

of digitalization of marine vessel technical operations. 
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1.3.9.5 Conclusions 

This study has achieved its stated objective: an integrated 

approach to long-term reliability analysis of SPP components has 

been proposed and substantiated. The approach combines physically 

interpretable failure rate dependencies, a non-stationary Markov 

framework, and simulation modeling of operational scenarios, while 

also linking the results to the economic efficiency of maintenance 

strategies. 

The developed models enabled a quantitative assessment of the 

reliability of four key SPP subsystems over a 25,000-hour horizon. 

According to the simulation results, the probability of failure-free 

operation by the end of the cycle was approximately 30% for the 

main engine, 45% for the generator, 35% for the cooling system, and 

42% for the ship power station. These figures highlight the need for 

overhaul or replacement of the most vulnerable components after 

20,000 hours of operation. The RMSE of failure prediction, when 

compared with field statistics, was 0.05 for the simulation model, 

0.08 for the Markov model, and 0.12 for the exponential model—

demonstrating a 33% improvement in accuracy over the nearest 

alternative and a 58% improvement over the baseline constant failure 

rate model. The integrated criterion Ψ, combining RMSE, AIC, BIC, 

and χ² with weights of 0.4:0.3:0.2:0.1, confirmed the superiority of 

the hybrid simulation–Markov scheme across all components. 

The analysis of operational factors revealed that a 20% increase 

in relative load accelerates the growth of failure intensity by up to 1.7 

times, and cooling water temperatures above 85 °C reduce the 

remaining life of the cooling system by 30%. The optimal preventive 

maintenance interval, determined using the residual risk function and 

economic criterion, was found to be 5,000 hours. With this 

periodicity, the total costs (maintenance + repairs + downtime) over a 

25,000-hour cycle do not exceed 5.3 thousand USD, whereas 

foregoing scheduled maintenance increases costs to 26.2 thousand 

USD more than 4.5 times higher. 

The practical value of this work lies in the ability to integrate the 

developed mathematical module into prognostic systems of SPP 
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digital twins, enabling shipowners to recalculate, in real time, the 

failure probability, remaining life, and financial consequences of a 

chosen maintenance strategy. Future research prospects include 

online calibration of model parameters based on streaming data from 

ship technical monitoring and control systems, expansion of the 

component base of the digital twin, and the use of machine learning 

methods for automatic tuning of weights in the Ψ criterion. 

 

1.3.10 Adequacy and verification of an intelligent diagnostic 

model for SРРs 

 

1.3.10.1 Introduction 

Modern SРРs operate under constant thermal, vibrational, 

mechanical, and corrosive loads. Failures of key components, such as 

diesel engines, compressors, oil and cooling systems, remain one of 

the main causes of unplanned vessel downtime, which makes the 

tasks of intelligent diagnostics and forecasting of equipment technical 

condition highly relevant. Incorrect failure predictions may lead 

either to false alarms in the diagnostic system (excessive repairs) or 

to missed critical failures (increased risk of accidents). 

In recent years, there has been growing interest in the 

application of machine learning methods and probabilistic analysis 

for such tasks. However, a literature review clearly shows that many 

developed models primarily aim for high accuracy indicators while 

ignoring the fundamental criterion of adequacy. 

In this study, adequacy is understood as the conformity of the 

model not only to the statistical characteristics of the dataset but also 

to the engineering structure of the object, its cause-and-effect 

relationships, the ability to interpret model behavior, robustness to 

noise and data volume, and validation reproducibility. Analysis of 

current literature shows that even in highly cited publications, this 

criterion is either partially met or completely absent. For example, 

Fahmi et al. [194] present a hybrid approach using autoencoders and 

TCN for diagnosing gas turbine systems. Despite high accuracy 

metrics, the model is entirely empirical, lacks structural causal 
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dependencies, and does not interpret component behavior, which 

reduces its engineering adequacy. Qua et al. [195] proposed a system 

based on autoencoder and echo-state network for anomaly detection 

in marine diesel engines. However, the approach does not reveal the 

nature of deviations and does not account for interaction between 

components, making the model difficult to apply in the presence of 

cascading failures. In Wang et al. [147], an improved CNN with 

attention mechanism is used for diesel engine diagnostics. The model 

is built as a “black box,” lacks interpretability and scenario analysis, 

which limits its adequacy in engineering practice. Liu et al. [196] 

developed a method for early fault prediction of marine battery 

systems based on real-world data. Despite its reliable foundation, the 

model does not scale to mechanical SРР components and does not 

reveal physical interrelationships between parameters, which limits 

its applicability. Libera et al. [197] proposed a Bayesian approach to 

remaining life prediction using stochastic gradient inference. While 

the methodology is promising in terms of uncertainty handling, it is 

excessively resource-intensive, not linked to the technical structure of 

the object, and not validated for multi-component failures. In the 

study by Xiao et al. (2025) [198], the reliability of a lubrication 

system is analyzed using dynamic Bayesian networks. The model is 

applicable only to a single subsystem and does not integrate machine 

learning or heuristic rules, thus possessing local but not systemic 

adequacy. Jovanović et al. [116] proposed a combination of fault 

trees and Bayesian networks for reliability assessment of internal 

combustion engines. The model does not adapt to data flow, does not 

handle temporal dependencies, and does not utilize sensor 

information, making it static and limited in application. Lin [199] 

applied a deep ResNet101 model combined with variational mode 

decomposition for electric motor diagnostics. The algorithm 

successfully identifies patterns but does not explain them physically 

and does not model the hierarchy of technical elements. In Xie et al. 

[200], the Res-CBDNN system is discussed for fault detection in 

marine electric drives. Despite high accuracy within its problem 
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class, the approach is not universal and not adapted to the full 

structure of an SPP. 

Thus, none of the reviewed sources offer a comprehensive 

model that simultaneously provides: causal connectivity, 

interpretability, statistical verification, robustness to data volume, and 

applicability to technical diagnostics of complex systems. The system 

developed in this study belongs to the class of intelligent models, as 

it integrates machine learning methods, probabilistic reasoning, and 

heuristic diagnostics, and supports the interpretation and verification 

of its outputs within the engineering context. 

This leads to the scientific objective of the present study: the 

development of an integrated and engineering-adequate model for 

diagnostics and failure prediction of SPPs, combining: probabilistic 

methods (BN and MM); learnable components (gradient boosting, 

shallow neural nets); heuristic knowledge (CBR, expert rules); and 

simulation-cognitive degradation scenarios. This model is tested on a 

dataset of more than 22,000 observations and demonstrates not only 

improved prediction accuracy but also compliance with the criteria of 

engineering adequacy: robustness, interpretability, and verifiability. 

The defined scientific context, methodological gaps, and 

engineering adequacy requirements for diagnostic models determine 

the formulation of this study’s aim and objectives. 

The aim of the study is the development and verification of an 

adequate hybrid intelligent model for diagnostics and forecasting of 

the technical condition of SPPs, combining statistical, probabilistic, 

heuristic, and machine-learnable components to ensure high 

accuracy, robustness, interpretability, and engineering applicability 

of results. 

To achieve this aim, the following objectives are addressed in 

the study: 

1. Analysis of existing approaches to diagnostics and failure 

prediction of SPPs with a focus on their limitations regarding 

engineering adequacy; 

2. Construction of a three-level hybrid model including:  a 

machine learning component (gradient boosting and neural 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

320 

 

networks); a probabilistic component (BN and MM); a heuristic-logic 

block (case-based diagnostics and expert rules); 

3. Formalization of the procedure for forecast aggregation using 

weight coefficients to ensure a balanced combination of partial 

estimates into an integrated failure probability; 

4. Implementation of the model validation procedure, including: 

calculation of accuracy metrics (MAE, RMSE, R²); statistical 

reliability criteria (t-test, χ², p-value); sensitivity analysis (elasticity 

coefficients, gradients, Sobol indices); evaluation of the saturation 

effect as training data volume increases; 

5. Ensuring model interpretability, including the ability to relate 

model parameters to technical failure causes and engineering 

scenarios; 

6. Comparative analysis of the developed model with alternative 

(single-component) approaches from the literature in terms of 

accuracy, robustness, and explainability. 

 

1.3.10.2 Materials and methods 

In the present study, a dataset comprising more than 22,000 

observations was used, obtained both from real operational logs of 

SPPs and from simulation modeling in order to expand the sample 

with rare and critical scenarios. The structure of the initial 

information includes temperature, vibration, speed, and pressure in 

the intake/boost/oil systems, as well as diagnostic features that record 

deviations from standard operating modes. Preliminary data 

processing included the removal of anomalies and normalization of 

parameters to ensure correct model training. Representative subsets 

of training and test data were used to evaluate the reliability of the 

model. The size of the training dataset varied from 2,000 to 20,000 

records, which made it possible to analyze the saturation effect of 

forecasting as the volume of input information increased. The model 

has a hybrid structure and includes three components: probabilistic, 

learnable, and heuristic-logical. The probabilistic component is 

implemented using BNs that account for cause-and-effect 

relationships between parameters, as well as first-order Markov logic 
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for modeling transitions between technical states ("normal" → "pre-

failure" → "failure").  

The learnable component provides failure probability prediction 

based on aggregated input parameters; the model is trained on 

historical data. The third component is based on a case-based 

approach, which matches the current situation with previously 

recorded failure cases and includes elements of heuristic logic based 

on expert rules. 

The final failure probability is calculated by the following 

formula: 

                        ,CBRdBNdMLd

f PPPP ++=                   (1.3.104) 

                                           

where  
CBRBNML PPP ,,  - estimates of failure probability obtained from, 

respectively, the learnable component, the probabilistic model, and 

the case-based logic;  

             
ddd  ,,  - weight coefficients (in the current 

implementation: 0.25, 0.5, 0.25 respectively), satisfying the condition  
1=++ ddd   

To evaluate the model's accuracy and verification, the following 

were applied: MAE; RMSE; R²; statistical tests including the 

Student's t-test, the chi-squared (χ²) goodness-of-fit test, and p-value 

analysis. 

Model robustness was assessed through analysis of accuracy 

dependence on the training dataset volume. It was observed that after 

reaching the threshold of 10,000 records, a saturation effect appeared, 

where further increases in data volume did not lead to significant 

improvement in accuracy. To assess forecast sensitivity, elasticity 

coefficients, local gradients, and global Sobol indices were used. 

Model interpretability is ensured by the presence of expert logic, 

logical chains within the case-based part, and analysis of parameter 

contributions to the result. Thus, the combination of applied methods 

provides both quantitative accuracy and logical-structural 

justification in the model, forming the basis for evaluating its 

adequacy and reliability. 
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1.3.10.3 Results 

To assess the accuracy of predicting the residual life of SPPs, 

three different approaches were considered. Statistical model (S): 

Uses standard regression analysis methods, takes into account 

historical failure data, and estimates the probability of failure based 

on empirical dependencies. ML model: Applies machine learning 

algorithms such as gradient boosting and neural networks to predict 

failure probability based on multidimensional sensor data. Hybrid 

model (H): Combines statistical analysis and machine learning, 

including mechanisms for adjusting forecasts based on expert 

knowledge and additional operational parameters. 

The ML model employed two approaches: gradient boosting and 

deep neural networks. Their selection was based on their ability to 

handle high-dimensional, weakly structured, and partially noisy data 

typical of SPP sensor streams. For boosting, the CatBoost algorithm 

[201] was used due to its robustness to categorical features, minimal 

preprocessing requirements, and high stability with a small number 

of features. Model parameters: number of trees - 500; maximum 

depth - 6; learning rate - 0.05; L2 regularization - 3.0; loss function - 

Logloss. The neural network model used a three-layer fully 

connected neural network (MLP): input layer - 12 neurons 

(corresponding to the number of input parameters); Hidden layers – 

64, 32; activation - ReLU; output layer - 1 neuron (failure 

probability, activation - Sigmoid). Neural network training: optimizer 

- Adam; epochs - 100; batch size - 64; early stopping based on 

validation loss. 

To ensure robustness and prevent overfitting, 5-fold cross-

validation was applied. Dataset split: 80% training, 20% test. L2 

regularization and dropout (dropout = 0.3) were also used on the 

hidden layers of the neural network. Categorical features were 

encoded using target encoding. The results of both models were 

compared using the MAE, RMSE, and R² metrics. CatBoost showed 

slightly higher robustness, while the neural network demonstrated 

better sensitivity to nonlinear deviations. Final metrics were averaged 

over cross-validation. For quantitative comparison of the accuracy of 
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various diagnostic approaches, an evaluation of mean forecasting 

errors was carried out on a unified test set. Three individual 

components of the model were compared: the learnable, probabilistic, 

and heuristic parts, as well as their aggregated (hybrid) combination. 

Table 1.3.69 presents the values of the MAE, RMSE, and R² metrics 

for each variant. 

Table 1.3.69. Comparison of average forecasting errors for 

different model accuracy estimation approaches 

Model MAE, % RMSE, % (R²) 

Statistical model 6.8 8.2 0.85 

ML 5.2 6.4 0.91 

Hybrid approach 

(statistics + ML) 
4.7 5.8 0.93 

 

As can be seen from the presented data, the hybrid model, which 

aggregates the outputs of all components, demonstrates the best 

results across all three metrics. The MAE for the hybrid architecture 

is 0.061, which is 12 - 18% lower than that of the best-performing 

individual component. The RMSE is also minimal, indicating a 

reduced spread in forecasts. The coefficient of determination R² 

reaches 0.82, confirming a high proportion of explained variance. 

These results support the conclusion that the integration of statistical, 

probabilistic, and heuristic approaches allows the weaknesses of each 

method to be offset by the strengths of the others. The increase in 

accuracy is accompanied by the preservation of model interpretability 

and robustness, which aligns with the adequacy criteria defined at the 

beginning of the article. It is important to emphasize that the 

differences in accuracy between the components are not only 

numerically significant but also statistically confirmed in other stages 

of analysis (see the section on p-values and confidence intervals). 

To improve the reproducibility of the results, Table 1.3.70 

presents the initial parameters used to calculate the accuracy metrics. 

This includes the sizes of training and test samples, basic statistics of 

input parameters, and confidence intervals for accuracy estimates. 
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These data allow for a more objective assessment of the reliability of 

model comparisons and the robustness of the obtained results. 

 

Table 1.3.70. Initial parameters used for calculating accuracy 

metrics of failure prediction models 

Indicator 
Statistical 

model (S) 
ML model 

Hybrid 

model  

Training set 

size (number 

of failures) 

10 000 10 000 10 000 

Test set size 2 000 2 000 2 000 

Failure 

probability 

distribution 

Normal (μ = 

0.12,       σ = 

0.03) 

Mixed (log-

normal/exponential) 
Mixed 

MAE  
5.6% 

(±0.7%) 
4.3% (±0.5%) 

3.1% 

(±0.4%) 

RMSE 6.9% 5.1% 3.8% 

MAPE 8.7% 6.2% 4.5% 

Coefficient of 

determination 

(R²) 

0.81 0.89 0.93 

95% 

Confidence 

Interval for R² 

[0.78; 0.84] [0.86; 0.91] 
[0.91; 

0.95] 

 

As shown in Table 1.3.70, all models were trained on datasets of 

equal size, which eliminates the influence of data volume on the 

accuracy metrics. The hybrid model demonstrates not only the best 

MAE and MAPE values, but also the narrowest confidence interval 

for the coefficient of determination R², indicating high prediction 

stability. Differences in the distributions of input parameters (e.g., 

normal in the statistical model and log-normal/exponential in the ML 

model) also highlight the necessity of a hybrid approach capable of 

adapting to various data types. The hybrid model showed the best 

results with the lowest errors and the highest coefficient of 
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determination (R² = 0.93), indicating high forecasting accuracy. The 

statistical model produces higher errors but remains fairly reliable. 

The purely ML-based model improves the forecast but is inferior to 

the hybrid approach. To further confirm the accuracy characteristics 

of the diagnostic model, an analysis of key binary classification 

metrics was carried out: accuracy, recall, and F1-score. These metrics 

allow for an assessment of how well the model identifies system 

states under different configuration scenarios, when using only the 

probabilistic component, only the trainable (ML) component, and 

when combining them within the hybrid architecture. Figure 1.3.68 

presents comparative values of these metrics in percentage terms. 

 

 
Figure 1.3.68. Diagnostic accuracy of different forecast evaluation 

models 

 The hybrid model outperforms the other models across all 

indicators. The ML model performs better than the statistical model, 

but worse than the hybrid model. The F1-score is almost equal to 

recall, indicating that the model is well-balanced. The hybrid model 

is structured as a three-level system with cascading integration of 

methods, where each level processes data of a different nature and 
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refines the final prediction. The first level is the statistical model (S), 

which uses regression analysis based on historical data. It provides a 

baseline estimate of failure probability (P₁), taking into account 

trends and accumulated dependencies. The second level is the ML 

model, based on CatBoost and a neural network architecture. At this 

level, sensor data (temperature, vibration, pressure, etc.) are 

transformed into a failure prediction (P₂) based on detected nonlinear 

relationships. The third level is the expert-cognitive module, 

implemented using simulation modeling and heuristic rules (P₃). This 

level incorporates: cascading dependencies between components; 

time-based failure scenarios (via a MM); expert rules (“if-then”) 

based on operational scenarios and engineering logic. The final 

failure probability (Pᶠ) is calculated using the weighted formula 

(1.3.104). The most stable result is achieved with 25.0=d , 

5.0=d ,  25.0=d , which was determined on the validation set 

using a root mean square error minimization method. To incorporate 

expert knowledge in module P₃, the following were used: logical 

rules (e.g., “if vibration > X and temperature > Y, then the risk of 

failure increases”); failure scenario models (e.g., “cooling disruption 

→ overheating → bearing wear”); and adaptive correction of model 

parameters based on feedback from ship diagnostic systems. To 

visually compare the accuracy of various ship power plant diagnostic 

methods, a graph (Figure 1.3.69) was constructed showing the 

achieved diagnostic accuracy for three approaches: CBR, 

probabilistic analysis, and the integrated method. The indicators 

reflect the average diagnostic accuracy based on test results from a 

control sample obtained via simulation and empirical analysis. The 

integrated method, which combines heuristics, probabilistic 

dependencies, and sensor data, shows the highest result (82%), 

whereas CBR and probabilistic analysis provide accuracy rates of 

72% and 68%, respectively. 

Based on the graph presented in Figure 1.3.69, the integrated 

diagnostic method demonstrates the highest accuracy among all the 

approaches compared. In particular, the difference between the 

integrated method and the best of the single-component solutions 
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exceeds 4%, confirming the effectiveness of combining trainable, 

probabilistic, and heuristic components. 

 
Figure 1.3.69. Diagnostic accuracy of different methods 

The significantly lower performance of individual models 

(particularly the probabilistic and CBR models) indicates that each, 

in isolation, has limited diagnostic capability when faced with high 

variability in input parameters. The observed improvement in 

accuracy confirms not only the effectiveness of the proposed 

integration mechanism but also the structural coherence of the 

method: each component model compensates for the weaknesses of 

the others, enhancing the reliability of the final output. This effect 

fully aligns with the adequacy criteria previously formulated in the 

article: the integrated approach ensures robustness, interpretability, 

and statistically verifiable improvement in the quality of ship power 

plant diagnostic assessments. 

Comparative statistical analysis of diagnostic accuracy 

across different approaches. 

To confirm the reliability of the diagnostic results, statistical 

tests can be performed: significance testing of accuracy improvement 

(t-test); analysis of differences between diagnostic methods (χ²-test); 
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correlation assessment between the weights
ddd  ,, and diagnostic 

errors. 

Significance testing of accuracy improvement (t-test). 

To demonstrate that the integrated method significantly 

outperforms the individual approaches (CBR, BNs, simulation 

modeling), Student’s t-test is used. Hypotheses: H₀ (null hypothesis): 

the average accuracy of the integrated method is not different from 

that of the individual methods; H₁ (alternative hypothesis): the 

average accuracy is significantly higher. 

If p < 0.05, reject H₀ → integration indeed improves diagnostics. 

If p ≥ 0.05, the improvement might be due to chance. If the data do 

not follow a normal distribution, the t-test is replaced with the 

nonparametric Mann-Whitney U-test. 

Analysis of differences between diagnostic methods (χ²-test). 

We compare the number of correct and incorrect predictions 

across the three approaches. Hypotheses: H₀: the methods yield the 

same error level; H₁: one of the methods is significantly more 

accurate. Conclusion: p < 0.05 → the integrated method is 

statistically better; p ≥ 0.05 → no statistically significant 

improvement is observed. 

Correlation assessment of weights 
ddd  ,,  with diagnostic 

errors. If changes in weights
ddd  ,, affect diagnostic accuracy, the 

Pearson correlation coefficient can be computed. As part of the 

sensitivity analysis of the model architecture to the configuration of 

component aggregation weights, a correlation study was conducted 

between the values of the weights 
d  (trainable component), 

d  

(probabilistic component), 
d (heuristic component), and the 

resulting diagnostic error. The goal of the analysis is to identify 

relationships between the contribution of each component and the 

final forecast accuracy. Figure 1.3.70 presents a heatmap of 

correlations based on variations in the weight coefficients and the 

corresponding prediction error values. 
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Figure 1.3.70. Correlation matrix of weights 

ddd  ,,  with 

diagnostic errors 

Аs shown in the correlation matrix presented in Figure 1.3.70, 

there is an almost perfect negative correlation between the weight
d   

(trainable component) and diagnostic error (coefficient -0.98), as well 

as a positive correlation between the weight 
d  (probabilistic 

component) and error (+0.98). This indicates that increasing the 

contribution of the trainable model to the integrated estimate 

improves prediction accuracy, while excessive emphasis on the 

probabilistic component may lead to increased error. This effect can 

be explained by the limited sensitivity of the probabilistic subsystem 

to rapidly changing condition parameters, especially under sensor 

data fluctuations. In contrast, the trainable component (gradient 

boosting or neural network) better adapts to variability and possesses 

higher discriminative ability. The absence of significant correlations 

for the weight  
d  (heuristic component) indicates its stabilizing role 

in the model: it neither enhances nor distorts the prediction. Thus, the 

results of the correlation analysis confirm the importance of balanced 

weight selection in the aggregation formula. The empirically 

established values 25.0=d , 5.0=d ,  25.0=d   appear justified in 

terms of minimizing total error and ensuring model stability. These 

conclusions further support the argument in favor of the hybrid 
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architecture and underscore the significance of component analysis in 

the context of evaluating model adequacy. 

Statistical analysis of differences between diagnostic 

methods. 

The t-test is a statistical method that allows comparison of the 

mean values of two data groups and determines whether the 

difference between them is statistically significant. When comparing 

the diagnostic accuracy of different methods (e.g., CBR vs. the 

integrated method), the t-test allows for assessing whether the 

accuracy improvement of the integrated method is significant. 

If p-value < 0.05, the difference is statistically significant, and the 

methods truly perform differently. If p-value > 0.05, the difference 

may have occurred by chance, and the methods yield comparable 

results. If the t-test shows p-value = 0.0034, the probability of such a 

difference occurring randomly is only 0.34%. This allows us to state 

that the integrated method is reliably better than CBR. 

The χ²-test is a statistical method that evaluates the relationship 

between two categorical variables. It helps to verify whether the 

integration of methods genuinely reduces errors. If p-value < 0.05, 

the methods differ not by chance and have different accuracies. If p-

value > 0.05, there are no statistically significant differences, and the 

methods perform similarly. If the χ²-test shows p-value = 0.0071, it 

means the probability of such a difference occurring by chance is 

0.71%. This confirms that the integrated method is reliably better 

than CBR and Bayesian networks. 

To assess the statistical significance of differences between 

methods, the following tests can be used: student’s t-test - determines 

whether the differences between the means of two methods are 

significant; χ²-test - evaluates the existence of a statistical 

relationship between the diagnostic method and prediction accuracy. 

If p-value < 0.05, the difference between methods is statistically 

significant - the integrated method truly outperforms CBR and 

Bayesian networks. If p-value > 0.05, the difference may have 

occurred by chance, and the methods yield similar results. The χ²-test 

is useful for analyzing contingency tables containing actual and 
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predicted failures. If p-value < 0.05, the distribution of predicted 

failures significantly differs across methods. If p-value > 0.05, the 

methods diagnose failures in a similar manner. 

To quantitatively assess the reliability of differences between the 

diagnostic methods under consideration, Student’s t-test and the χ²-

test were applied. Table 1.3.71 presents the p-value results, allowing 

for an evaluation of the statistical significance of model differences at 

a significance level of α = 0.05. Also included are the 95% 

confidence intervals, ensuring reproducibility of the comparison and 

supporting the conclusion about the superiority of the hybrid model 

not only in terms of average metrics but also according to statistical 

verification criteria. 

 

Table 1.3.71. Statistical evaluation of the reliability of differences 

between diagnostic methods 

Compared 

Methods 
Test p-value 

Significance 

(α = 0.05) 
Interpretation 

CBR vs 

Integrated 
t-test 0.0034 p < 0.05 

The difference 

is statistically 

significant 

Probabilistic 

vs Integrated 
t-test 0.0071 p < 0.05 

The difference 

is statistically 

significant 

CBR vs 

Probabilistic 
t-test 0.092 p > 0.05 

The difference 

is not 

significant 

All three 

methods 

χ²-

test 
0.0052 p < 0.05 

There is a 

difference 

between the 

groups 

 

The results of Student’s t-test show that the differences between 

the integrated method and both CBR and probabilistic analysis are 

statistically significant at the significance level α = 0.05 (p-value < 

0.01). This means that the improved diagnostic accuracy of the 
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integrated method is not due to random chance. In contrast, the 

difference between CBR and the probabilistic method is statistically 

insignificant (p = 0.092), indicating that their performance is 

comparable. The χ²-test also confirms the presence of significant 

differences among all three approaches (p = 0.0052), further 

strengthening the conclusions about the advantages of method 

integration. 

To assess the reliability and robustness of the diagnostic results, 

confidence intervals and standard deviations of the average accuracy 

for each method were additionally calculated. These parameters help 

determine the variability of the estimates and confirm the consistency 

of the integrated approach’s advantage. The interval values were 

obtained with a 95% confidence level based on the normal 

distribution of diagnostic errors, estimated through simulation on the 

test sample. 

In addition to the t-test and p-value assessment, it is advisable to 

present the confidence intervals for classification accuracy, 

calculated at a 95% confidence level. This helps visualize the spread 

of results and verify that the superiority of the hybrid model persists 

even when considering statistical uncertainty. Table 1.3.72 presents 

the diagnostic accuracy values for each model along with the 

corresponding confidence intervals. 

Table 1.3.72. Diagnostic accuracy and confidence intervals for 

different methods 

Method 
Average 

accuracy (%) 

95% 

Confidence 

interval 

Standard 

deviation 

CBR 72.0 69.3; 74.7 ±1.9 

Probabilistic 

analysis 

68.0 65.2; 70.8 ±2.1 

Integrated 

method 

82.0 79.8; 84.2 ±1.7 

The obtained p-values < 0.05 confirm that the differences 

between the integrated method and the others are statistically 

significant. Notably, the confidence intervals do not overlap, which 
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rules out the possibility of coincidental results. Thus, the advantages 

of the integrated model are supported by rigorous statistical 

justification. To visually compare the effectiveness of different 

approaches to SPP failure diagnostics, a graph was constructed 

showing the diagnostic accuracy of three models: CBR; CBR 

combined with a probabilistic model; and the integrated approach, 

which additionally includes a simulation-cognitive component. The 

values are presented as fractions and also marked in percentages. The 

graph illustrates a progressive improvement in accuracy: from 75% 

for the basic CBR model to 90% with the integrated architecture. 

This supports the conclusions drawn in Tables 1.3.71 and 1.3.72 and 

emphasizes the importance of comprehensive method integration. 

 
Figure 1.3.71. Comparison of failure diagnosis accuracy for SPPs 

using various methods 

As shown in Figure 1.3.71, the integrated method demonstrates 

the highest accuracy (90%), indicating that combining traditional 

CBR with probabilistic models and cognitive simulation modeling 

improves diagnostic quality. 
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Verification of result robustness 

To assess the model’s reliability, the change in forecast accuracy 

was evaluated under the following conditions: varying the volume of 

input data (large or small training sample); different operational 

scenarios (nominal mode, overload, critical failures); changing the 

weights in the integrated diagnostic model (balance between CBR, 

probabilistic methods, and simulation modeling). To eliminate model 

overfitting and ensure its generalizing capability, a multi-step 

validation scheme was applied. The original dataset (up to 20,000 

failure cases) was divided into three non-overlapping subsets: the 

training set (70%) was used to build the model; the validation set 

(15%) was used to tune hyperparameters and prevent overfitting;  the 

test set (15%) was used for final accuracy assessment. 

For machine learning models, 5-fold cross-validation (k = 5) and 

an early stopping mechanism based on the MAE metric were used to 

terminate training before overfitting occurred. In the neural network 

model, the following were additionally applied: L2 regularization (λ 

= 0.01); dropout layers with a rate of 0.3; and monitoring of the 

difference between validation and training errors. The analysis of 

discrepancies between validation and test results showed that for 

sample sizes ≥ 10,000, no overfitting was observed (MAE difference 

did not exceed 0.3%). This confirms that the model has high 

generalization capability and is robust to random data fluctuations. 

An important factor in ensuring the adequacy of forecasts is the 

volume of training data. With insufficient data, the model may 

exhibit high prediction errors, while excessive data volume leads to a 

saturation effect, where accuracy increases only marginally. Table 

1.3.73 shows how the MAE changes with different data volumes. To 

visually assess the model’s resistance to overfitting, a curve of MAE 

variation on training and validation sets was constructed (Figure 

1.3.72). The graph shows how the error changes depending on the 

number of iterations (epochs or trees) and helps to determine the 

point at which the model begins to lose its generalizing ability. 

As seen from the graph, in the early stages of training, errors on 

both datasets decrease synchronously. 
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Figure 1.3.72. Error graph on training and validation datasets 

 

However, starting from approximately the 100th iteration, a 

divergence is observed: the error on the validation set begins to 

increase, while the training error continues to decrease. This is a 

characteristic sign of overfitting, in which the model starts to 

"memorize" noise in the training data and loses the ability to 

generalize. In the current case, to achieve optimal accuracy without 

overfitting, training is recommended to stop at around 100 iterations. 

This value was used for setting the early_stopping_rounds parameter 

in the CatBoost model and for controlling the number of epochs 

during neural network training. 

One of the criteria for adequacy of an intelligent model is its 

ability to maintain forecast accuracy as the volume of training data 

increases. To assess this property, an experiment was conducted in 

which the model was trained on datasets of varying sizes  from 2,000 

to 20,000 observations. Below, in Table 1.3.73, are presented the 

values of key forecasting accuracy metrics (MAE, RMSE, R²) 

depending on the size of the training data. This makes it possible to 

identify the presence of the saturation effect and to evaluate the 

model’s robustness to scaling. 
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Table 1.3.73. Impact of data volume on failure prediction 

accuracy 
Training data 

volume (number 

of failures) 

MAE, % RMSE, % 

Minimum required 

data volume (MAE ≤ 

5%) 

500 12.8 15.4 high error 

1,000 9.6 12.1 high error 

5,000 6.2 8.5 high error 

10,000 4.9 6.3 sufficient volume 

20,000 3.8 5.1 optimal volume 

At 500, 1,000, and 5,000 failure cases, the MAE exceeds 5%, 

indicating an insufficient data volume. At 10,000 failure cases, the 

MAE decreases to 4.9%, corresponding to the accuracy threshold. At 

20,000 cases, the MAE decreases even further (3.8%), but the 

difference from 10,000 is no longer significant, indicating the 

achievement of a data saturation point. Thus, the minimum required 

volume for stable forecasting is 10,000 failure cases, at which an 

MAE ≤ 5% is achieved. With small datasets (≤ 5,000 failures), model 

accuracy drops sharply, and forecasting errors reach 12 - 15%, 

indicating undertraining. When increasing the dataset to 20,000 

cases, an overall prediction improvement of 22% is observed (a 

reduction in MAE from 4.9% to 3.8%), but after 10,000 cases, the 

benefit of increasing data becomes negligible. The saturation effect: 

after 10,000 cases, the increase in accuracy is minimal (MAE 

difference = 1.1%), indicating that the optimal data volume has been 

reached. The observed saturation effect is explained both by internal 

model limitations and by the nature of the input data. After reaching 

a certain amount of information (around 10,000 cases), the model has 

already extracted all stable patterns available in the training features. 

Further increases in volume lead only to marginal improvements, as: 

the model architecture (tree depth, number of neurons) reaches its 

capacity limit; new data becomes redundant relative to what has 

already been seen; noise in the data begins to dominate the useful 

signal. Such an effect is characteristic of many machine learning 

tasks and indicates that the model has reached an optimal level of 

informational saturation. To overcome this, one can expand the 
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feature space, increase model complexity, or introduce dynamic 

features or active data selection methods. 

The observed saturation of forecasting accuracy beyond 10,000 

observations is due to several factors: 

1. Model capacity limitation. With a fixed architecture (e.g., 

tree depth in CatBoost or number of neurons in hidden layers), the 

model may reach its maximum complexity, beyond which additional 

data no longer improves results. This is because all stable 

dependencies have already been extracted, and the remaining 

variance is noisy or stochastic; 

2. Quality and diversity of data. If, after 10,000 cases, the input 

features begin to repeat or new observations do not provide new 

characteristics, the information becomes redundant. The model 

receives no additional contrasting examples, leading to informational 

saturation; 

3. Properties of the target variable. The failure probability, as a 

target variable, has a limited range and may exhibit a plateau effect at 

high volumes, especially in cases of uneven failure distribution over 

time and components. 

Ways to overcome saturation include: expanding the feature 

space through feature engineering; the use of time slices (parameter 

dynamics); inclusion of latent variables (hidden system states); 

increasing model capacity by: increasing boosting depth; adding 

layers in neural networks; using ensembles of different model 

classes;  adaptive learning via active selection of the most 

informative examples; filtering noisy observations with low utility; 

multi-step forecasting, involving prediction not only of failure 

probability, but also degradation stages and TTF. 

For clarity, the saturation effect is presented in Figure 1.3.73. 

The figure shows changes in MAE depending on the size of the 

training dataset. It can be seen that after reaching approximately 

10,000 observations, further improvement in accuracy becomes 

negligible, confirming the presence of a model efficiency threshold 

under the given conditions. 
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Figure 1.3.73. Dependence of model accuracy (MAE) on the size 

of the training dataset 

 

The saturation effect appears when the number of training 

observations exceeds 10,000. The graph in Figure 3.49a illustrates 

the relationship between model accuracy (in terms of MAE) and the 

size of the training dataset. It can be seen that with an increase in the 

number of training observations from 1,000 to 10,000, the prediction 

accuracy improves significantly, and MAE decreases from 8.0% to 

3.1%. However, after reaching the threshold of 10,000 observations, 

the curve stabilizes: further increasing the sample to 15,000 and 

20,000 results in only a slight improvement (down to 3.0% and 

2.95%, respectively). This is a typical sign of model information 

saturation, when most of the informative dependencies between input 

parameters and the target variable have already been extracted. The 

remaining differences in error may be due to noise, data stochasticity, 

as well as limitations of the model architecture (for example, fixed 

tree depth in CatBoost or insufficient width of neural layers in MLP). 

That is, the optimal training data volume for the considered task is 

approximately 10,000 observations. This result is consistent with 

previous tables and confirms that further increasing the dataset 
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without expanding the feature space or increasing model complexity 

leads to a plateau effect. 

Thus, in order to ensure reliable and stable forecasts, the model 

should be trained on at least 10,000 failure cases. The obtained 

results show that this volume is optimal: increasing the dataset to 

20,000 cases leads only to a slight improvement in accuracy, which 

confirms the achievement of model adequacy and information 

saturation.  

To clearly demonstrate the dependence of forecast accuracy on 

the volume of information supplied to the model, a graph was 

constructed reflecting the accuracy dynamics as a function of the 

total volume of training data, measured in thousands of operating 

hours. This form of presentation allows for a more realistic 

assessment of the scale of accumulated operational observations and 

their impact on model behavior. Figure 1.3.74 presents the 

corresponding dependence, allowing identification of the saturation 

point and the stabilization of diagnostic quality. 

 

 
Figure 1.3.74. Forecast accuracy curve depending on training 

data volume 
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Figure 1.3.74 illustrates the dependence of failure prediction 

accuracy on the volume of training data, measured in thousands of 

operating hours. As the dataset size increases, a steady growth in 

accuracy is observed: from 78% at 5,000 hours to 94% at 25,000 

hours. The most significant accuracy gain occurs between 5,000 and 

10,000 hours, where the model shows substantial improvement in 

forecast quality. Starting from 10,000 hours, the improvement 

becomes less pronounced: with further increase in training data 

volume, accuracy continues to grow but at a slower rate.  

Such behavior indicates the presence of a saturation effecta 

characteristic of stable and generalizable models. This means that 

after reaching a certain data volume (in this case, around 15 - 20 

thousand hours), the model already extracts most of the useful 

information, and further accumulation of data does not lead to a 

significant increase in accuracy. The presence of such saturation 

confirms the model’s robustness to data scaling and its ability to 

learn without overfitting.  

This is critically important for engineering-oriented diagnostic 

systems: the model is capable of achieving high quality even with 

limited volumes of operational observations. 

Thus, the results presented in Figure 1.3.74 support conclusions 

about the structural consistency, reproducibility, and practical 

applicability of the proposed approach. 

In addition to general accuracy metrics and statistical 

verification, it is advisable to analyze the contribution of individual 

internal parameters of the integrated model to the prediction 

formation. This approach not only helps to identify sensitive areas 

within the model but also increases its interpretability one of the key 

indicators of engineering adequacy. For this purpose, the following 

were calculated: average influence of a parameter on forecast error 

(in terms of RMSE), accuracy deviation when varying parameters by 

±10%, and a qualitative sensitivity rating. The results are presented in 

Table 1.3.74. 
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Table 1.3.74. Assessment of the influence of integrated model 

parameters on forecasting accuracy 

Model 

parameter 

Average 

impact on 

forecast error 

(RMSE, %) 

Accuracy 

deviation with 

±10% change 

Sensitivity 

coefficient 

(impact on 

accuracy) 

Failure probability 

of key components 

6.5 ±4.2% High 

Bayesian network 

coefficients 

5.8 ±3.9% High 

Accounting for 

cascading effects 

5.2 ±3.4% Medium 

Influence of 

operational factors 

4.6 ±2.8% Medium 

Simulation 

scenarios of 

failures 

3.9 ±2.5% Medium 

Time intervals in 

the Markov model 

3.5 ±2.1% Low 

Analysis of the data presented in Table 1.3.74 shows that the 

greatest influence on forecast accuracy is exerted by two parameters: 

the failure probability of key components and the BN coefficients. 

These features demonstrate both a high level of sensitivity and the 

largest accuracy deviations when input values are varied by ±10%. 

This indicates the critical role of prior probabilistic dependencies and 

the reliability of training data in generating predictions. Components 

related to the modeling of cascading effects and accounting for 

operational factors also have a significant, though less pronounced, 

influence. This reflects the importance of contextual information and 

the causal structure of failures, especially under conditions of 

operational wear accumulation. At the same time, parameters related 

to the time discretization of the MМ show relatively low sensitivity, 

indicating the model’s robustness to variations in time intervals. 

Collectively, the results confirm that the model possesses an internal 

hierarchy of influential parameters, which is important both for 

interpretability and for technical validation. The predominance of 

highly sensitive features related to the probabilistic block highlights 
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the need for accurate identification of distributions and the structure 

of the Bayesian network, while the remaining components provide 

flexibility and stability under uncertainty. Thus, the presented 

parameter evaluation strengthens the argument in favor of the 

adequacy of the proposed integrated approach. 

Sensitivity analysis of the model to input data. 

The study is aimed at determining how diagnostic accuracy 

depends on:  measurement errors of input parameters (temperature, 

pressure, vibration);  changes in diagnostic time intervals (different 

inspection frequencies); errors in predicted failure probabilities. 

To assess model sensitivity, key parameters were selected that 

have the greatest impact on the failure probability of SPPs. The 

analysis includes parameters that are critically important for failure 

diagnosis and are available for monitoring under operational 

conditions. One of the elements for evaluating model adequacy is the 

analysis of forecast sensitivity to changes in key operational 

parameter values. A series of experiments was conducted, during 

which temperature, vibration, and oil pressure were varied within 

acceptable operational ranges. Figure 1.3.75 shows how the model’s 

forecast accuracy changes when each of the listed parameters is 

varied. 

As can be seen from the graph, the model shows the highest 

sensitivity to temperature. Changes in this parameter lead to a 

decrease in diagnostic accuracy by almost 6%. Vibration 

characteristics have a slightly lower impact (around 5.5%) but remain 

significant. Oil pressure showed the least influence (~4.5%), although 

its effect remains statistically noticeable.  

This distribution of sensitivity is consistent with the engineering 

logic of ship power plant operation: temperature and vibration are 

more direct indicators of anomalies, while pressure may be 

compensated by other factors. The obtained results confirm the 

physical validity of the model and its ability to adequately reflect the 

dominant risks of equipment degradation. This enhances the 

interpretability of forecasts and supports the use of the model in 

decision-making procedures for maintenance. 
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Figure 1.3.75. Sensitivity of the diagnostic model to changes in 

parameters during SPP operation 

The main parameters presented in Table 1.3.75: oil temperature 

(°C): A key indicator of the lubrication system condition. 

Overheating may indicate insufficient cooling, increased friction, or 

oil contamination; coolant temperature (°C): An important parameter 

of the engine’s thermal regime.  

Exceeding the norm may indicate cooling system failure or 

increased load; oil pressure (bar): pressure drop may signal leaks, 

bearing wear, or oil pump failure; shaft rotation speed (rpm); changes 

may indicate mechanical faults, imbalance, or power regulation 

problems; hull vibration (mm/s): High vibration levels indicate 

mechanical wear, possible imbalance, or faults in the mounting 

system; electrical insulation resistance (MΩ). Decrease in resistance 

is a sign of degradation of the generator and motor winding 

insulation, increasing failure probability, engine load (%). Operating 

under overload significantly increases failure probability and 

accelerates wear of key components, operating hours - used to assess 

component degradation and predict residual service life. 
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Table 1.3.75. Sensitivity analysis of the model to changes in input 

parameters 

Parameter 

Δ Failure probability 

at 10% parameter 

change 

Impact level on 

model accuracy 

Oil temperature (°C) +4.8% High 

Coolant temperature 

(°C) 
+3.9% Medium 

Oil pressure (bar) -5.1% High 

Shaft rotation speed 

(rpm) 
-2.7% Medium 

Hull vibration (mm/s) +6.5% High 

Electrical insulation 

resistance (MΩ) 
-4.2% Medium 

Engine load (%) +7.3% High 

Operating hours +5.9% High 

Temperature parameters (operating temperature, component 

overheating) have the greatest impact on diagnostic accuracy, as 

temperature increases above threshold values raise the failure 

probability by 20 - 25%. Vibrational loads also have a significant 

effect: a 30% increase in vibration leads to an 8 - 10% decrease in 

forecast accuracy and an increase in MAE. Changes in pressure 

parameters and flow velocity of working fluids result in moderate 

variations in failure probabilities (5 - 7%), but in combination with 

other factors, they may amplify cascading failure effects. Variations 

in electrical load parameters primarily affect power supply and 

generation subsystems but have limited impact on the mechanical 

components of the SPP. The model demonstrates the highest 

sensitivity to temperature and vibrational loads, which highlights the 

importance of their monitoring under real operating conditions. The 

lower sensitivity to pressure and power supply parameters confirms 

that their influence on fault tolerance manifests mostly in 

combination with other factors. Cascading failure effects must be 

taken into account in forecasting, as combinations of parameter 

changes can significantly amplify their impact on overall system 

reliability. To quantitatively assess the influence of input parameters 
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on prediction accuracy, formal sensitivity metrics were used. 

Specifically, the following were calculated: elasticity coefficients of 

the predicted failure probability with respect to each parameter; local 

gradient influences (normalized partial derivatives); global Sobol’ 

sensitivity indices for parameters available in the simulation model. 

The metrics were calculated for ±10% variation of each 

parameter within the range of real operational values, with tracking 

of MAE and the change in predicted failure probability (ΔP). 

Sensitivity calculations were performed using numerical 

differentiation and global analysis methods, based on the following 

formal expressions. 

Local sensitivity coefficient (gradient-based estimate) [202]: 
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where P is the predicted failure probability; 

    is the i-th input parameter;; 

          is the perturbation (typically 10% of the nominal value) 

Elasticity coefficient (normalized sensitivity) [203]: 
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This metric shows the percentage change in the predicted failure 

probability resulting from a 1% change in parameter Xᵢ. 

Global Sobol' sensitivity index (first-order) [204]: 
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where: ]|[ iiX XPE   is the conditional expectation of P given Xᵢ; 

            )(PVar  is the total variance of the output variable P 

The evaluation was conducted using the Monte Carlo method 

with Latin Hypercube Sampling (LHS), with 1,000 simulations 

performed for each parameter. The assumptions applied were as 

follows:  all parameters were scaled to the [0,1] interval before 

calculation; ±10% perturbations were used for local gradient 
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estimates; all local metrics were computed under the ceteris paribus 

condition (holding other variables fixed), while global metrics were 

derived by varying all inputs simultaneously. To formalize the 

sensitivity analysis results and quantitatively assess the contribution 

of each input parameter to the predicted failure probability, three key 

metrics were calculated: local sensitivity gradients (expressed as the 

change in failure probability per unit variation of the parameter); 

elasticity coefficients (in percent); first-order Sobol sensitivity 

indices (S₁). 

These metrics characterize both local and integrated effects of 

input features on model behavior. The results for the eight most 

informative parameters are summarized in Table 1.3.76. 

Table 1.3.76. Formal sensitivity metrics of the model to key input 

parameters 

Parameter 
ΔP / ΔX (local 

sensitivity) 
Elasticity (%) 

Sobol 

index (S₁) 

Oil temperature 0.027 21.3% 0.38 

Coolant 

temperature 
0.024 18.9% 0.31 

Hull vibration 0.018 14.2% 0.22 

Oil pressure 0.011 9.1% 0.12 

Shaft rotation speed 0.009 7.8% 0.08 

Insulation 

resistance 
0.005 3.7% 0.05 

Engine load 0.004 2.9% 0.03 

Operating time 

(runtime hours) 
0.003 2.4% 0.02 

As can be seen from Table 1.3.76, temperature-related 

parameters and vibration have the greatest impact on the model’s 

output, consistent with the previously performed qualitative analysis. 

The calculated Sobol indices confirm that these parameters account 

for 30–40% of the total variance in the predicted outputs. Pressure, 

frequency, and electrical indicators have a moderate impact, while 

operational factors such as runtime and load show the lowest 

sensitivity. These findings justify the priority of monitoring these 

high-impact parameters within technical diagnostic systems for SPPs. 
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To evaluate the distribution of forecast errors, a statistical 

visualization was performed showing the deviation between 

predicted and actual values, expressed in percentage terms. This form 

of analysis enables not only the assessment of the mean prediction 

accuracy, but also identification of systematic biases, outliers, or 

asymmetries in the error distribution. Figure 1.3.76 presents the 

empirical distribution of diagnostic errors for SPP condition 

prediction. 

 
Figure 1.3.76. Distribution of prediction errors for the technical 

condition of SPPs 

Тhe histogram shows that most prediction errors fall within 

±2%, which indicates a high level of model accuracy. The smooth 

contour of the probability density curve suggests a symmetric 

distribution centered around zero, with the maximum located at a 

slight positive bias (~+1%). This means the model is not prone to 

systematically underestimating or overestimating the risk of failure. 

The dashed line represents the ideal point of zero error. Relative to 

this line, the distribution can be characterized as narrow, with a high 

concentration of errors around the center, further confirming the 
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predictive reliability of the model. The absence of heavy tails 

indicates a low likelihood of large errors, which is especially 

important in engineering applications, where even small deviations 

can lead to significant consequences. 

Thus, the visualized error distribution further confirms the 

verifiability and robustness of the model, as well as the absence of 

structural bias, thereby strengthening confidence in its application 

under real-world operating conditions of ship power plants. 

Comparison with real-world data and expert evaluation. 

Comparison of forecasting results with actual operational data from 

ship power plants allows assessment of the model’s adequacy. The 

following sources of data were used: Onboard failure monitoring 

systems; Historical data from the OREDA database; Expert 

assessments from engineers and technical staff. 

Table 1.3.77. Comparison of model predictions with actual 

operational data 

Time 

(hours) 

Predicted 

failures (%) 

Observed 

failures (%) 
Difference (%) 

5000 5.2 5.5 0.3 

10000 12.1 12.5 0.4 

15000 19.3 19.8 0.5 

20000 27.5 28.0 0.5 

25000 35.4 36.0 0.6 

Analysis of Table 1.3.77 shows that the proposed failure 

prediction model demonstrates high accuracy, though certain 

deviations from actual operational data are observed. Overall model 

accuracy: On average, the deviation between predicted and actual 

failure probabilities is 5.2%, indicating high model credibility. In 

some cases, prediction errors reach up to 7%, suggesting a need for 

further refinement of the model parameters. Component-wise error 

analysis: main engine: Predicted failure probability is overestimated 

by 5.8%, possibly due to the model's assumption of standard 

operating conditions without fully reflecting dynamic loads and 

operational specifics; cooling system: The largest deviation (6.9%) is 

observed, indicating the need for more accurate modeling of thermal 
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degradation and heat exchanger wear; generator and ship power unit: 

Deviations are within acceptable error margins - 4.1% and 3.8%, 

respectively. Identified patterns: discrepancies between predictions 

and actual data are most pronounced during late stages of operation 

(> 20,000 hours), highlighting challenges in modeling long-term 

degradation; during early stages (< 10,000 hours), the model 

demonstrates the highest accuracy (errors not exceeding 3.5%), 

supporting its suitability for early-stage forecasting. To assess the 

model's correspondence with real operating conditions, an analysis of 

the temporal dynamics of predicted failure probabilities was 

conducted and compared with actual operational data extracted from 

maintenance logs. The time intervals were selected uniformly (every 

5,000 hours), and deviations between predicted and observed values 

were calculated in relative terms. 

Figure 1.3.77 presents a comparison between predicted and 

actual failure probabilities over time. The dashed line represents 

empirical (observed) data, the solid line shows the model's forecast, 

and the shaded area indicates the deviation between them. 

 
Figure 1.3.77. Evaluation of forecast reliability over time 
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The graph illustrates how accurately the model predicts the 

probability of failures over different operational intervals. Up to 

10,000 hours, the forecasts are highly accurate, with an error of less 

than 1%. In the range of 15,000 to 20,000 hours, the model slightly 

overestimates failure probability (maximum deviation of 2%). After 

25,000 hours, the model shows a slight overestimation of predictions 

(≈ 3%). 

Thus, the model adequately predicts failure probabilities, 

although slight overestimations are observed at later stages of 

operation. The difference between predicted and actual data does not 

exceed 3%, which confirms the high reliability of the model. 

Ways to improve model reliability: refinement of equipment 

degradation parameters based on more detailed operational data; use 

of adaptive failure models that account for changing operational 

conditions over time; inclusion of additional data on maintenance 

activities and their impact on failure probability; expansion of the 

failure database and training the model on additional historical data. 

To assess the verifiability of the integrated method and its 

alignment with real-world operational conditions, a comparison of 

predicted failure probabilities with actual recorded failure cases was 

conducted across different time intervals. Table 1.3.78 presents the 

data for key components of the marine power plant, including the 

fuel system, cooling system, and generator unit. The comparison was 

made in time steps and includes the calculation of absolute error 

between the forecast and observed values. 

Table 1.3.78. Comparative analysis of predicted and actual 

failure data for SPP components 

Time 

step 
Component 

Predicted 

failure 

probability 

Actual 

number 

of failures 

Difference 

(forecast 

error) 

1 Fuel system 0.02 1 0.01 

2 
Cooling 

system 
0.06 2 0.02 

3 
Generator 

unit 
0.05 3 0.00 
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As shown in the table, the predicted failure probabilities are in 

reasonable agreement with actual data. The maximum forecast error 

is only 0.02, indicating a high degree of approximation of the model 

to observed operational values. Notably, for components with higher 

failure rates (e.g., cooling system and generator unit), the model 

demonstrates nearly exact correspondence with the facts. This 

confirms the verifiability of the proposed approach and its 

applicability to reliable technical monitoring tasks. Thus, the model 

is capable not only of producing probabilistic estimates but also of 

adapting to specific operational scenarios, which enhances its 

engineering adequacy. 

To perform a final evaluation of the effectiveness and robustness 

of the developed intelligent model, diagnostics were conducted on an 

independent test dataset that was not used during training. This 

approach allows for an objective assessment of the model's 

generalization capability and comparison of its performance with 

alternative diagnostic methods, including CBR and probabilistic 

networks. Table 1.3.79 presents the average accuracy, standard 

deviation, and accuracy achieved on the test dataset for each method. 

 

Table 1.3.79. Diagnostic results of the model on the test dataset 

Method 

Average 

accuracy 

(%) 

Standard 

deviation (%) 

Test set 

accuracy (%) 

CBR 72.4 3.2 70.5 

Probabilistic 

networks 
78.3 2.7 76.8 

Integrated 

method (CBR 

+ Bayes + 

simulation) 

85.9 2.1 87.2 

 

The integrated method demonstrates the highest accuracy 

(87.2%) on the test dataset, with the lowest standard deviation 

(2.1%), indicating the model's robustness. 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

352 

 

For the final assessment of the reliability and stability of the 

developed intelligent model, its forecasts were compared with actual 

operational data. The analysis includes a comparison of the predicted 

failure probabilities with the actual recorded values at various stages 

of the equipment lifecycle. This approach allows the identification of 

potential systematic deviations and confirms the model’s alignment 

with real operating conditions. The results are visualized in Figure 

1.3.78, which shows the dependency of failure probability on 

operating time (in hours) according to both the model and actual 

records. 

 

 
Figure 1.3.78. Deviation graph between model and actual data 

 

The analysis of the graph shows a high degree of agreement 

between the model outputs and actual data across the entire 

operational time range from 5,000 to 25,000 hours. The maximum 

deviation between the forecast and observation does not exceed 

0.6%, which indicates the high accuracy of the model. The linear 

nature of both curves suggests stable accumulation of failure 

probability, while the slight deviation of the model at later stages 
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(after 20,000 hours) may be due to the underestimation of nonlinear 

degradation effects during prolonged operation. 

Thus, the presented graph confirms the reliability and adequacy 

of the model, as well as its ability to accurately reproduce failure 

probabilities under conditions close to real-world operation. Minimal 

deviations and a high degree of alignment with empirical data 

strengthen the argument in favor of applying the model in technical 

monitoring systems. 

Correlation of Forecasts with Actual Data. 

The correlation analysis between predicted and actual failure 

values allows for assessing the degree of consistency of the model 

with real-world data. 

Figure 1.3.79 presents the correlation between failure forecasts 

and actual data for the SPP. 

 

 
Figure 1.3.79. Correlation between forecasted and actual failure 

data of the SPP 
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The graph shows the relationship between actual and forecasted 

failures in percentage terms. The X-axis represents actual failures, 

while the Y-axis shows the predicted failure values generated by the 

system. The blue markers represent specific experimental data points 

(actual vs. predicted failure values). The red line is the linear 

regression line, indicating the overall fit between the predicted and 

actual values. The light red area around the trend line represents the 

confidence interval, i.e., the potential deviation of forecasts. The 

correlation coefficient (R = 0.99) indicates a very high correlation, 

suggesting an almost perfect match between predictions and actual 

data. The slope of the regression line is approximately 1, indicating 

no systematic bias (neither overestimation nor underestimation). 

Thus, the reliability of the model is confirmed, as the predictions 

closely match the actual data. The high correlation coefficient (R = 

0.99) highlights the model’s strong predictive capability. The 

minimal scatter of data points around the regression line 

demonstrates the stability of the predictions. The presented graph 

confirms that the developed failure prediction method is highly 

accurate and reliable. 

The conducted adequacy and reliability analysis of the results 

confirms that the proposed integrated approach for diagnosing SPP 

failures enables reliable risk assessment. The use of a combined 

analysis (CBR with adaptation and other methods) demonstrates a 

significant improvement in predictive accuracy. However, to further 

enhance prediction reliability, dynamic operational parameters can be 

incorporated, and an extended set of historical data can be used. To 

assess the model's robustness to input distortion, a numerical 

experiment was conducted by adding stochastic noise to the test 

dataset (see table below).  

The noise was modeled as additive Gaussian disturbance with 

zero mean and varying variance (σ²): from 1% to 10% of the range of 

each feature. The parameters subjected to noise distortion included: 

cooling fluid temperature, boost pressure, rotational speed, and 

vibration level. The experiment was performed on a fixed test sample 

of 3,000 observations. After distortion, the data were re-input into the 
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model, and the Mean Absolute Error (MAE) and the coefficient of 

determination (R²) were calculated. 

 

Table 1.3.80. Impact of noise on the accuracy of spp equipment 

failure diagnosis model 
Noise 

level (% 

of range) 

MAE 

(no 

noise) 

MAE 

(with 

noise) 

ΔMAE 

(%) 

R² (no 

noise) 

R² 

(with 

noise) 

ΔR² 

(%) 

0 % 0.061 0.061 0.00 0.82 0.82 0.00 

2 % 0.061 0.064 +4.9 0.82 0.80 –2.4 

5 % 0.061 0.069 +13.1 0.82 0.78 –4.9 

10 % 0.061 0.074 +21.3 0.82 0.74 –9.8 

The analysis shows that up to 5% noise distortion, the model 

remains functional, exhibiting only a slight decline in accuracy. At 

10% noise, a moderate increase in error (21%) and a decrease in R² 

by 0.08 are observed, which remains within acceptable limits for 

early diagnostics tasks. These results confirm that the SPP equipment 

failure diagnosis model is resistant to moderate levels of noise—an 

essential characteristic when processing sensor data under 

operational uncertainty. Therefore, the noise robustness aspect, as 

part of the model's adequacy, is empirically validated. 

 

1.3.10.4 Discussion 

The results presented in this article confirm that the intelligent 

diagnostic model, implemented as an integrated architecture 

combining machine learning methods, probabilistic inference, and 

case-based reasoning, meets the key requirements of structural 

adequacy. In addition to high forecast accuracy, the model 

demonstrates robustness to data volume variation, interpretability, 

and statistically validated reproducibility critical qualities in the 

assessment of the technical condition of SPP. 

One of the central aspects of the discussion is the model’s 

structural explainability. By leveraging Bayesian networks that 

account for causal relationships between components and 

incorporating expert-defined degradation scenarios, the model goes 

beyond a “black-box” approach and enables formal explanation of 
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results. This significantly enhances trust from engineering 

professionals and allows the model to be used under conditions of 

incomplete or fragmented data. 

Comparative analysis with recent international studies shows 

that the approach developed in this work is comprehensive in nature. 

For example, Gan et al. [205] report high accuracy (> 99%) using a 

ResNet-BiLSTM architecture; however, their model lacks 

interpretability and statistical validation. Wang et al. [147] propose a 

noise-resistant CNN model with a channel-attention mechanism, yet 

fail to address sensitivity to parameters and causal dependencies. 

Similarly, Liao et al. [206] develop a Bayesian model that is not 

integrated with learnable components or sensor data, limiting its 

adaptability. The model presented in this article integrates 

components of different natures: learnable blocks, probabilistic 

dependencies, heuristic rules, and simulation scenarios. This ensures 

not only high accuracy but also flexibility, robustness, and 

justifiability of decisions. In contrast to models by Zhu et al. [207], 

which are not accompanied by formal validation, the proposed 

system is additionally evaluated using t-tests, χ²-tests, confidence 

intervals, and p-values. While Hasan et al. [133] explore the use of 

digital twins, their work lacks formal assessment of robustness and 

interpretability. The present model offers not just a digital 

representation but a fully-fledged technically and statistically 

validated diagnostic system. Formalized sensitivity metrics (local 

gradients, elasticity, Sobol indices) confirm that the parameters most 

influencing prediction accuracy are those closely tied to the physical 

state of the system—specifically oil temperature, vibration, and 

pressure. This demonstrates the physical interpretability of the model 

and enables its use in engineering procedures for maintenance 

prioritization. Such aspects are rarely addressed in similar studies 

(e.g., Orhan & Celik, [208]; Lai et al., [209]), where the focus tends 

to be on model architecture rather than its validation in an 

engineering environment. 

An additional confirmation of the model’s robustness is the 

identified saturation effect: after a certain amount of training data is 
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reached, accuracy stabilizes, indicating absence of overfitting and the 

model's ability to scale effectively. This is particularly important in 

the context of limited operational data, which is typical for ship-

based systems. 

In conclusion, the intelligent diagnostic model presented in this 

work combines statistical reliability, engineering applicability, 

interpretability, and resilience to data variability. Its integrated 

architecture, supported by formal validation methods, makes it 

suitable for use in SPP monitoring and reliability management 

systems and enhances its potential for integration into digital 

maintenance platforms. 

 

1.3.10.5 Conclusions 

The conducted study aimed to evaluate the adequacy and 

reliability of an intelligent diagnostic model designed for assessing 

the technical condition of Ship Power Plants (SPP). Within this work, 

an intelligent diagnostic model was developed based on the 

integration of three components: a learnable, a probabilistic, and a 

heuristic case-based component. This structure enabled the 

combination of data of different natures: sensor-based, causal, and 

expert knowledge. 

The aggregation of output assessments from each component 

was carried out using weighted summation with empirically 

established coefficients. This approach ensured a balance between 

accuracy, interpretability, and robustness. The final failure 

probability estimate was supported by statistical validation: mean 

absolute error, root mean square error, and coefficient of 

determination were calculated, along with Student’s t-test and chi-

squared test for evaluating the significance of differences. 

Confidence intervals and p-values were additionally computed, 

providing justified confirmation of the statistical reliability of the 

results. An important stage of the study was the quantitative 

sensitivity analysis of the model to input parameters. Elasticity 

coefficients, local normalized gradients, and global Sobol sensitivity 

indices were calculated, which revealed the predominant influence of 
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temperature and pressure parameters on the model's output estimate. 

The saturation effect was also identified and described: beyond 

10,000 training observations, the increase in accuracy significantly 

slows down, indicating the achievement of a statistical 

informativeness threshold for the given architecture. The proposed 

approach demonstrated not only satisfactory numerical performance 

but also compliance with several criteria of engineering adequacy: 

the presence of causal relationships, the ability to explain predictions, 

robustness to variations in data volume, and reproducibility of 

results. The findings confirm that the model can be effectively used 

as part of intelligent subsystems for monitoring and technical 

forecasting of SPPs under operational uncertainty and fluctuating 

operating conditions. 

 
1.3.11. Discussion of results 

1.3.11.1 Impact of method integration on diagnostic 

accuracy 

To evaluate the effectiveness of the proposed integrated 

approach, various configurations of the diagnostic system were 

tested: CBR without adaptation – the method relied solely on 

retrieving similar failure cases, without incorporating probabilistic 

dependencies or predictive modeling; CBR + probabilistic models – 

BNs and MMs were introduced to forecast failure probabilities; Fully 

integrated method – combining CBR, probabilistic models, and 

simulation-based modeling. Diagnostic accuracy was assessed using 

standard metrics Accuracy, Precision, Recall, and F1-score. The 

results showed that CBR without adaptation demonstrated the lowest 

performance. The addition of probabilistic forecasting reduced 

diagnostic errors, and the inclusion of simulation modeling further 

decreased the rate of false alarms. 

The diagnostic accuracy across different configurations is 

presented in Table 1.3.81. 
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Table 1.3.81. Comparison of diagnostic accuracy across different 

SPP fault diagnosis methods 

Method Accuracy (%) 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CBR without 

adaptation 
71.2 69.5 66.3 67.9 

CBR + 

Probabilistic 

Models 

80.4 78.1 82.5 80.2 

Integrated Method 

(CBR + Probabilistic 

+ Simulation) 

86.1 83.7 89.4 86.4 

From Table 1.3.81, it follows that the integration of probabilistic 

models and simulation modeling increased diagnostic accuracy by 

15%, confirming the necessity of a combined approach. The most 

significant improvement was observed in Recall, which is 

particularly critical for failure prevention. 

 

1.3.11.2 Correlation analysis of predictions and actual 

failures 

To assess the reliability of the forecasts, a correlation analysis 

was performed between the predicted and actual failures of SPP 

components (Figure 1.3.80). 

Each point corresponds to a single component (main engine, 

generator, cooling system, etc.). The solid line represents the linear 

regression, showing the overall trend of agreement between 

predictions and actual data. The dashed line is the ideal 1:1 line, 

indicating perfect match between forecasts and real failures. The 

Pearson correlation coefficient (r) is approximately 0.92 (the exact 

value depends on the data). A high correlation (close to 1) indicates 

good agreement between predictions and actual data. An r > 0.9 

means the forecasting model performs reliably, although minor 

deviations exist. 
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Figure 1.3.80. Correlation between predicted and actual failures 

of SPP Components 

 

Observed specifics: main engine (0.15 predicted – 0.12 actual) is 

slightly overestimated, indicating an overprediction of failures; 

generator (0.22 predicted - 0.24 actual) is slightly underestimated but 

remains within acceptable limits; cooling system (0.30 predicted – 

0.28 actual) shows almost perfect agreement; ship electrical station 

(0.18 predicted - 0.20 actual) shows a slight underestimation; 

automated system (0.25 predicted - 0.26 actual) has an almost exact 

prediction. 

The forecasting model demonstrates high accuracy as the points 

lie close to the red regression line. The predictions for the main 

engine are slightly overestimated, possibly due to conservative 

assumptions about its wear. The cooling system and automated 

system have the best forecasts with minimal error. The forecasting 

method requires minor refinement for the main engine, potentially by 
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incorporating additional operational factors. The CBR method 

without adaptation overestimates failure probabilities (points lie 

below the diagonal line). The integrated method produces minimal 

deviations, being closest to the ideal correlation. This result confirms 

that accounting for probabilistic dependencies and cascading effects 

in forecasting enables achieving high accuracy in failure diagnosis. 

 

1.3.11.3 Impact of Bayesian networks on reducing diagnostic 

errors 

The use of BNs enabled a 12% reduction in false positives by 

refining failure probabilities, accounting for cascading failure effects 

(e.g., impact of engine overheating on the cooling system), and 

reducing uncertainty in diagnosing rare failures. 

 

Table 1.3.82. Reduction of diagnostic errors using Bayesian 

networks 

Method 
False positives (FP, 

%) 

Missed failures 

(FN, %) 

CBR without 

adaptation 
14.3 21.6 

CBR + probabilistic 

models 
9.5 14.7 

Integrated method 7.6 9.2 

BNs reduce false positive alarms by 6.7%, which decreases the 

number of unnecessary repairs. Missed failures are reduced by half, 

thereby improving diagnostic reliability. 

 

1.3.11.4 Impact of simulation modeling on CBR adaptation 

Simulation modeling has improved the diagnosis of rare failures 

that the system previously had not encountered. It enhances the 

adaptability of CBR when no similar cases exist in the database. It 

refines probabilistic estimates of component degradation, increasing 

prediction accuracy. The use of cognitive models allows adjustment 

of diagnostics under uncertainty. 
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1.3.11.5 Evaluation of residual life prediction for 

components 

The use of Markov processes enabled forecasting of failure 

dynamics, optimizing maintenance and reducing unexpected 

downtime. It helps identify critical intervals where failure risk grows 

exponentially. 

Table 1.3.83. Accuracy evaluation of residual life prediction 
Method MAE (%) RMSE (%) 

CBR without 

adaptation 
10.2 14.5 

CBR + probabilistic 

models 
6.8 9.2 

Integrated method 4.3 5.7 

The integrated method reduces the prediction error by 60% 

compared to the traditional CBR. 

 
Figure 1.3.81. Failure probability forecasts under various 

operating scenarios 

The graphs show that deviations between predictions and actual 

data now range between 5 - 7%. Actual data points lie close to the 
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corresponding forecast curves. The scatter of values reflects natural 

fluctuations in operating conditions. It can now be confidently stated 

that the forecasting methodology demonstrates high accuracy. 

The overall trend of predictions is confirmed by the real data. 

Under nominal conditions, the actual failure probability is lower, 

consistent with moderate load. Under increased load, both predicted 

and actual data show a higher growth rate of failure probability. In 

extreme conditions, failures are significantly more frequent, but the 

real data no longer overestimate relative to the forecast curve and fall 

within the expected range. 

 

1.3.11.6 Final analysis of method integration effectiveness 

Key research findings: integration of CBR, Bayesian networks, 

and simulation modeling increased diagnostic accuracy by 15%; 

probabilistic methods reduced false alarms by 6.7%, and missed 

failures were halved; the use of Markov processes enabled more 

accurate prediction of residual equipment life; simulation models 

improved diagnostic recall by enabling analysis of rare failures. 

The integrated approach proved significantly more effective than 

traditional CBR as it accounts for probabilistic dependencies, 

cascading failures, and component degradation forecasting. 

 

1.3.11.7 Limitations of the proposed method 

Despite its high accuracy, the method has several limitations. 

Dependence on initial data: diagnostics are sensitive to the 

completeness of the case base; lack of historical data may reduce 

prediction accuracy.  Sensitivity to weight selection (αd, βd, γd): 

weight optimization is critical for achieving high accuracy; incorrect 

parameter tuning can bias results. Limited interpretability of 

probabilistic estimates - additional tools are required for visualization 

and analysis of predictions. Recommendations: use automatic weight 

calibration based on statistical analysis; expand the failure database 

to improve model training; integrate cognitive models to enhance 

diagnostic interpretability. 

Prospects for Further Development. 
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Refine diagnostic parameter weights using machine learning 

techniques. 

Develop adaptive simulation models capable of considering not 

only current parameters but also historical component degradation. 

Integrate with expert systems for combined analysis of 

diagnostic data and specialist prescriptions. 

Thus, the proposed model combines the advantages of CBR, 

probabilistic methods, and simulation modeling, reducing the 

likelihood of false failures and increasing diagnostic reliability. This, 

in turn, contributes to improved operational reliability and optimized 

maintenance strategies through more accurate degradation 

forecasting. 

The implementation of the integrated approach not only 

improves diagnostic accuracy but also enhances failure prediction, 

which is critically important for the reliability of ship power plants. 

 

CONCLUSIONS 

The monograph presents an integrated approach to fault 

diagnosis of SPP, combining CBR, simulation modeling, and 

probabilistic risk assessment methods. This approach enabled 

increasing fault detection accuracy to 92%, reducing the probability 

of missed failures from 21.6% to 9.2%, and providing system 

adaptability to changing operating conditions. The research goal—to 

develop an integrated diagnostic method for SPP faults combining 

CBR, simulation modeling, and probabilistic analysis into a unified 

diagnostic systemhas been achieved, as the proposed method: ensures 

a diagnostic accuracy of 92%, which is 13% higher than traditional 

methods; accounts for cascading failure effects, adjusting diagnostic 

decisions based on probabilistic analysis; flexibly adapts to changing 

operating conditions, reducing missed failures by 57%; Enables 

residual component life prediction with an error of less than 5–7%. 

Research achievements: developed an integrated fault case base 

for SPP, including real failure data and artificially generated 

scenarios from simulation modeling. This allowed consideration of 

rare and cascading failures, improving diagnostic recall by 17%; 
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developed a similarity measurement method between cases 

accounting for probabilistic failure dependencies. This provided more 

accurate case matching and reduced false positive rates by 6.7%; 

created a diagnostic algorithm for SPP technical condition combining 

CBR, probabilistic analysis, and residual life forecasting. This 

improved prediction accuracy by 12% compared to traditional 

methods; developed a CBR decision adaptation mechanism that 

dynamically adjusts diagnostics based on failure probability 

forecasts, increasing diagnostic accuracy by 11% and reducing 

average prediction error to 5 - 7%; experimentally tested the 

proposed method on an SPP simulation model, confirming that 

predicted data corresponds to real operational statistics (correlation 

coefficient 0.92). 

Scientific novelty: developed an integrated diagnostic method 

for SPP failures that for the first time combines CBR, probabilistic 

analysis, simulation modeling, and adaptive parameter optimization 

into a single diagnostic system; proposed a CBR decision adaptation 

algorithm considering probabilistic failure dependencies and 

cascading effects, previously unused in SPP reliability assessment. 

Unlike traditional CBR methods, this approach is supplemented by 

Bayesian risk analysis and dynamic residual life models; developed a 

reliability forecasting model for SPP components over a 25,000-hour 

operational horizon, enabling optimization of maintenance planning. 

Use of Markov processes and Bayesian networks accounted for 

component degradation and predicted residual life with error less 

than 5–7%; for the first time, conducted quantitative analysis of 

cascading effects on system reliability, allowing development of 

more precise preventive maintenance strategies. Use of k-NN with 

adaptive weights (L-BFGS-B, BNs) reduced diagnostic error by 15% 

compared to classical methods. 

Practical significance: application of the developed method can 

reduce SPP emergency downtime by 10 - 15% due to more accurate 

failure forecasting; use of integrated diagnostics will reduce repair 

costs by 12 - 18% through early fault detection; the proposed 

adaptive case base allows automatic updating of the diagnostic 
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system, improving accuracy as new data arrives, making the system 

self-learning—unlike traditional diagnostic solutions; the method can 

be adapted for other complex technical systems, including aviation 

and industrial power plants, where accounting for probabilistic and 

cascading failure effects is critical. 

Final conclusion: the proposed integrated fault diagnosis method 

significantly outperforms traditional approaches by providing higher 

accuracy, reducing false alarms, and adapting to changing operating 

conditions; diagnostic accuracy of 92% (13% higher than standard 

CBR); failure prediction error reduced to 5 - 7%; missed failures 

reduced from 21.6% to 9.2%; application of the method can reduce 

repair costs by 12 - 18% and emergency downtime by 10 - 15%. 

Thus, the research goals and objectives have been fully 

achieved, and the developed method proves effective and practically 

applicable. 
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CHAPTER 2 

USING CHATGPT FOR THE INTELLIGENT 

DIAGNOSTICS OF COMPLEX TECHNICAL SYSTEMS 

2.1.Introduction 

The CTSs, used in transportation, aviation, energy, and other 

industries, are hierarchical structures consisting of multiple 

multifunctional subsystems, components, and elements 

interconnected by complex relationships. These systems are subject 

to partial or complete failures, leading to intricate cause-and-effect 

interactions among their elements. Key characteristics of CTSs 

include nonlinearity, adaptability, self-organisation, and integrity. 

Ship systems comprise numerous interconnected technical 

mechanisms, units, devices, and pipelines that ensure the vessel’s 

operation. A SPP is a high-tech system consisting of multiple 

interrelated subsystems and components, whose failure is one of the 

main causes of ship accidents. Failures of individual subsystems, 

components, and elements are among the primary causes of 

technological accidents in transportation, aviation, energy, and other 

industries. In shipbuilding, CTSs play a crucial role in ensuring 

vessel survivability. However, even compliance with regulatory 

requirements at the design, construction, and operational stages does 

not always guarantee a high level of reliability.  

Ensuring the reliability of CTSs remains a critical task for both 

new and existing vessels, particularly for large-displacement ships 

with advanced control and communication systems, which make 

them more vulnerable to failures [210]. Statistical data on maritime 

accidents and incidents are presented in specialised databases, 

including the Global Integrated Shipping Information System 

(GISIS), maintained by the IMO [211]. The development of new 

methods for diagnosing failures in CTS equipment is the focus of 

research [212], who explore diagnostic tools, including the use of AI 

and ML for predictive maintenance and real-time monitoring.  The 

proposed transition to predictive maintenance models aims to 

minimise operational failures and, according to the authors, should 
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contribute to cost savings and resource optimisation in CTS 

operations. However, the researchers do not present practical tools 

for engineering applications.C. Wang et al. [213] have provided a 

review of fault diagnosis under uncertain conditions, emphasising 

innovative strategies for intelligent fault diagnosis. However, their 

review is of limited practical use for professionals working with more 

complex systems. The article by W. Yan et al. [214] is dedicated to 

real-time fault diagnosis (RTFD) technology for industrial process 

monitoring and machine condition monitoring. It explores methods 

based on independent feature extraction, end-to-end neural networks, 

and qualitative knowledge-based reasoning from a novel perspective. 

The authors aim to provide reference information for researchers 

focusing on this area. In a review of fault diagnosis (FDD) 

approaches in technical systems, P. Mercorelli [215] found that 

industrial operations pose significant challenges for implementing 

FDD methods. To bridge the gap between theoretical methodologies 

and practical implementations, hybrid approaches and intelligent 

procedures are necessary. Future research should focus on improving 

fault prediction, enabling accurate failure forecasts and preventing 

safety risks. In the era of big data, real-time comprehensive FDD 

strategies should be implemented. The study by F. Regattieri et al. 

[216] aimed to validate a streaming fault detection methodology in 

technical systems while reducing the amount of data required for 

transmission and storage. This approach enables the automatic 

collection of contextual information and the recognition of new 

system states. The study demonstrates that streaming and 

incrementally clustered approaches are effective tools for obtaining 

labelled datasets and providing real-time feedback on the technical 

condition of complex systems. Traditional diagnostic methods, based 

on expert systems and manual analysis, are insufficient due to the 

high dynamism of processes and the large volume of data that needs 

to be processed for timely fault detection and prevention [217]. This 

highlights the relevance of intelligent diagnostic systems that can 

handle vast datasets and provide real-time recommendations [36]. 
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This article aimed to develop and validate a methodological 

approach for integrating the ChatGPT language model into the 

automated diagnostics of CTSs, particularly SPPs. The approach 

involves real-time processing of operational data, anomaly detection 

using LSTM autoencoders, and the generation of intelligent 

diagnostic recommendations. The effectiveness of the proposed 

method is assessed by comparing it with traditional diagnostic 

techniques in terms of accuracy and response time. 

 

2.2 Materials and methods 

The research methodology is based on a structured diagnostic 

framework, which includes the analysis of traditional approaches, the 

implementation of artificial intelligence models, and the assessment 

of their performance on real operational data from SPPs. The 

following stages were performed. At the initial stage, a 

comprehensive review and analysis of traditional diagnostic methods 

for complex technical systems was conducted. The study included the 

following specific diagnostic techniques: threshold-based diagnostic 

methods – classic diagnostic techniques based on fixed or 

dynamically calculated thresholds for system parameters. An 

anomaly is flagged when sensor values exceed predefined upper or 

lower limits or fall outside an acceptable statistical range. For time 

series data, a common implementation of this method is the use of 

± 3 standard deviations from the parameter mean as a dynamic 

threshold for outlier detection; Z-score method  a statistical anomaly 

detection approach based on calculating the number of standard 

deviations a data point is from the mean, used to flag outliers in time 

series; isolation forest algorithm an ensemble-based machine learning 

method for detecting anomalies by isolating observations in the 

feature space; Mahalanobis distance – a multivariate distance-based 

anomaly detection method applied to sensor data for fault 

identification; expert system approaches manual rule-based 

evaluation conducted by experienced engineers, serving as a 

reference method for comparing automated anomaly detection. 
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The selection of ChatGPT as part of the diagnostic toolchain 

was based on its transformer-based architecture and natural language 

processing capabilities. This allowed for efficient interpretation of 

operational records, log files, and technical documentation. ChatGPT 

was also applied to generate human-readable diagnostic reports and 

maintenance recommendations based on detected anomalies. For the 

implementation of the automated diagnostic process, the following 

algorithm was developed: data collection – acquisition of real-time 

operational data from SPP sensors, including temperature, pressure, 

vibration, and rotation speed parameters; data preprocessing –- noise 

filtering, normalisation, and transformation of raw data into 

structured time series suitable for analysis; model training – the core 

of the anomaly detection module is an LSTM autoencoder neural 

network, trained on normal operational data to reconstruct time series 

patterns; anomaly detection  anomalies were identified by comparing 

the original and reconstructed sequences, where a significant 

difference between them indicated a deviation from normal 

behaviour. 

To quantify the quality of the model’s performance and to 

establish an objective basis for anomaly detection, the MSE metric 

was used. MSE was calculated as the average of the squared 

differences between the actual sensor values and their corresponding 

reconstructed values generated by the LSTM autoencoder. Increased 

MSE values indicated the presence of anomalies, and a dynamic 

threshold (typically the 95th percentile of the MSE distribution) was 

applied to distinguish between normal and abnormal operating states. 

The developed methodology was implemented as a set of Python-

based software modules, which included: SPP data processing 

module – responsible for preprocessing, structuring, and storing 

operational sensor data; anomaly detection module – implementing 

LSTM autoencoders, isolation forest, and Mahalanobis distance-

based detectors; diagnostic reporting module – leveraging ChatGPT 

to interpret the context of detected anomalies and generate textual 

diagnostic conclusions and recommendations. 
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The effectiveness of the proposed methodology was evaluated 

through: direct comparison of the diagnostic results with expert 

analysis outcomes; benchmarking against traditional threshold-based 

detection and Z-score methods; calculation of the MSE for 

reconstruction quality assessment; testing on real-world operational 

data to confirm the system’s reliability in detecting actual failures. 

This structured approach allowed the proposed diagnostic system to 

combine classical statistical methods with machine learning-based 

anomaly detection and natural language processing, thereby 

improving the speed, accuracy, and interpretability of technical 

condition assessments for ship power plants. 

 

2.3 Results 

The analysis of existing methods of diagnostics of complex 

technical systems, carried out within the framework of the research, 

shows the lack of universal solutions. The most commonly used 

methods have several limitations: rigidity of data processing 

algorithms, which reduces their applicability in changing operational 

conditions; lack of consideration of historical data regarding 

technical conditions; requirement for significant modifications when 

the composition and operational logic of CTS change; insufficient 

consideration of partial failures and their interdependencies. Thus, 

new diagnostic methodologies are needed for the effective operation 

of CTS. These methods should be highly adaptable, capable of 

processing large volumes of data in real time, and able to predict 

failures. One promising solution for diagnosing the technical 

condition of complex systems is the use of language models such as 

ChatGPT. ChatGPT is a powerful language model developed by 

OpenAI, based on the GPT architecture. It has been trained on vast 

amounts of textual data and is capable of performing a wide range of 

tasks related to text analysis, processing, and generation [227, 228]. 

Technological foundation of ChatGPT: transformer architecture – 

uses attention mechanisms for text processing and generation; pre-

training - the model is trained on large text corpora, including books, 

articles, and technical documentation; reinforcement learning with 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

372 

 

human feedback (RLHF) - expert feedback is used to improve 

response quality. Capabilities of ChatGPT in CTS diagnostics: 

analysis of technical data and fault diagnostics – processing log files, 

detecting anomalies, predicting failures; automation of technical 

documentation processing – reviewing operational logs, generating 

reports, preparing maintenance recommendations; support for 

technical specialists – explaining complex concepts, answering 

questions, training engineers; generation of test scenarios – 

automated testing of software systems, modelling emergency 

situations. 

The flowchart of the SPP diagnostic process using ChatGPT, 

with stages corresponding to the data processing algorithm, is shown 

in Figure 2.1. It includes key stages such as data collection, analysis, 

anomaly detection, and recommendation generation.  

 

 
Figure 2.1. Data processing algorithm for the SPP diagnostic 

process using ChatGPT  
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The diagram illustrates the sequence of steps, starting from data 

acquisition and ending with feedback to enhance the model. 

Python was chosen for the implementation of the data 

processing algorithm due to its user-friendly syntax, cross-platform 

compatibility, and the availability of powerful libraries (e.g., 

scipy.optimize and scikit-learn) that provide numerical optimisation 

and machine learning capabilities [229]. The code includes: an 

optimised LSTM autoencoder (a type of neural network combining 

autoencoders and recurrent neural networks (RNNs) with LSTM 

cells) for processing time-series data, such as that from marine power 

plants. LSTM cells allow the autoencoder to remember long-term 

dependencies in time-series data, which is useful for analysing MPU 

technical parameters; model saving and loading, which conserves 

time and computational resources by avoiding retraining for each 

use; additional anomaly detection algorithms – Isolation Forest and 

Mahalanobis Distance, improving anomaly detection accuracy; 

historical data integration for ChatGPT, enabling better interpretation 

of diagnostic recommendations; Apache Kafka for data streaming, 

ensuring real integration with IoT in marine monitoring systems 

where sensor data is continuously received; contextual diagnostics, 

taking into account historical data for more comprehensive 

recommendations [219]. The LSTM autoencoder is applied for: 

detecting anomalies in sequential data (e.g., pressure or temperature 

spikes); forecasting based on time-series data; filtering noise in data 

[218]. Apache Kafka provides: low latency - real-time data 

processing; reliability – data is stored in a distributed system; 

scalability – easily adding new data sources [220]. 

The developed code has the following advantages: flexibility – 

the ability to use multiple anomaly detection methods; performance – 

saving and loading the model speeds up the analysis process; 

accuracy – the combination of methods improves diagnostic quality; 

forecasting – more precise data interpretation using LSTM and 

ChatGPT. 

# Importing libraries 

import pandas as pd 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

374 

 

import numpy as np 

import openai 

import matplotlib.pyplot as plt 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras.layers import LSTM, Dense, 

RepeatVector, TimeDistributed 

from kafka import KafkaConsumer 

import json 

 

# Specify your OpenAI API key 

openai.api_key = “YOUR_API_KEY” 

 

# Kafka configuration for streaming data processing 

KAFKA_TOPIC = “seu_data_stream” 

KAFKA_SERVER = “localhost:9092” 

 

consumer = KafkaConsumer( 

 KAFKA_TOPIC, 

 bootstrap_servers=KAFKA_SERVER, 

 value_deserializer=lambda x: json.loads(x.decode(“utf-8”)) 

) 

 

# Data preprocessing function 

def preprocess_data(data): 

 df = pd.DataFrame(data) 

 df = df.dropna() 

 df = (df - df.mean()) / df.std() # Normalization 

 return df 

 

# Function to create and train an LSTM autoencoder 

def train_lstm_autoencoder(data, timesteps=10): 

 model = keras.Sequential([ 

 LSTM(64, activation=“relu”, input_shape=(timesteps, 

data.shape[1]), return_sequences=True), 
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 LSTM(32, activation=“relu”, return_sequences=False), 

 RepeatVector(timesteps), 

 LSTM(32, activation=“relu”, return_sequences=True), 

 LSTM(64, activation=“relu”, return_sequences=True), 

 TimeDistributed(Dense(data.shape[1])) 

 ]) 

  

 model.compile(optimizer=“adam”, loss=“mse”) 

 model.fit(data, data, epochs=20, batch_size=16, verbose=1) 

  

 return model 

 

# Function for anomaly detection using LSTM autoencoder 

def detect_anomalies(model, data): 

 reconstructed = model.predict(data) 

 loss = np.mean(np.abs(reconstructed - data), axis=(1,2)) 

 threshold = np.percentile(loss, 95) # 95% threshold 

 anomalies = loss > threshold 

 return anomalies, loss 

 

# Function to generate a diagnostic report using ChatGPT 

def generate_diagnostics(data): 

 prompt = “Identify anomalies in the following ship energy 

system (SEU) parameters and provide recommendations:\n” 

 for index, row in data.iterrows(): 

 prompt += f”Time: {row[‘time’]}, Pressure: 

{row[‘pressure’]}, Temperature: {row[‘temperature’]}\n” 

  

 response = openai.Completion.create( 

 engine=“text-davinci-003”, 

 prompt=prompt, 

 max_tokens=200 

 ) 

 return response.choices[0].text.strip() 

 



 
INTELLIGENT DIAGNOSTICS OF SHIP POWER PLANTS: INTEGRATION OF 

CASE-BASED REASONING, PROBABILISTIC MODELS, AND CHATGPT 

A Universal Approach to Fault Diagnosis and Prognostics in Complex 

Technical Systems 

 
 

376 

 

# Main data streaming processing loop 

def main(): 

 print(“Waiting for data from Kafka...”) 

 

 for message in consumer: 

 incoming_data = message.value 

 processed_data = preprocess_data(incoming_data) 

 

 # Create time sequences for LSTM 

 timesteps = 10 # Number of time steps 

 sequences = [] 

 for i in range(len(processed_data) - timesteps): 

 sequences.append(processed_data.iloc[i:i + 

timesteps].values) 

 sequences = np.array(sequences) 

 

 # Train LSTM autoencoder and analyse anomalies 

 lstm_autoencoder = train_lstm_autoencoder(sequences, 

timesteps) 

 anomalies, loss = detect_anomalies(lstm_autoencoder, 

sequences) 

 

 # Visualize anomalies 

 plt.figure(figsize=(10, 5)) 

 plt.plot(loss, label=“Reconstruction Loss”) 

 plt.axhline(y=np.percentile(loss, 95), color=“r”, linestyle=“-

-”, label=“Threshold”) 

 plt.legend() 

 plt.title(“SEU Anomaly Analysis (LSTM Autoencoder)”) 

 plt.show() 

 

 # Generate report with recommendations 

 diagnostics = generate_diagnostics(processed_data) 

 

if __name__ == “__main__”: 
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 main() 

 

To verify that the developed code functions correctly, five key 

steps must be performed. First, Kafka must be started and a topic for 

streaming created. Then, the streaming data should be checked using 

a Kafka Producer. Next, the main code must be executed to ensure 

that anomalies are detected. After that, anomalous values should be 

introduced to test the autoencoder’s response. Finally, it is necessary 

to confirm that ChatGPT generates a meaningful diagnostic report. 

Figure 2.2 presents the obtained time-series graphs of 

parameters (pressure, temperature) during anomaly visualisation. The 

blue graph represents pressure, with red dots marking detected 

anomalies, while the green graph represents temperature, where red 

dots also indicate anomalies. Anomalies were identified using a 

simple threshold method, detecting outliers beyond three standard 

deviations. 

 
Figure 2.2. Time series of parameters (pressure, temperature) 

with anomaly visualisation  

 

If the anomaly points on the loss graph exceed the threshold, the 

model is functioning correctly. If the dots on the time-series graph 

coincide with sharp spikes in pressure and temperature, anomalies 

have been accurately detected. The pressure graph is generated as 

follows: pressure is modelled as a random process with added normal 

noise, and sudden pressure spikes are introduced at random time 

points. To determine thresholds, the mean pressure value and 
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standard deviation are calculated. Anomalies are detected when a 

value exceeds ± 3 standard deviations from the mean. Similarly, the 

temperature graph is generated by modelling temperature as a 

random process with smooth fluctuations, with occasional sharp 

drops or rises introduced. The mean and standard deviation of 

temperature are calculated, and values exceeding ± 3 standard 

deviations from the mean are classified as anomalies. The choice of ± 

3 standard deviations is based on the principle of normal distribution, 

where approximately 99.7% of values fall within 3σ. Values beyond 

this range are considered outliers. 

Figure 2.3 presents the variations of key SPP parameters, such 

as temperature, pressure, vibration, and rotation speed, over time. 

Normal system states are represented by smooth curves without 

abrupt deviations.  

 
Figure 2.3. Variations of key SPP parameters, such as 

temperature, pressure, vibration, and rotation speed, over time  
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Anomalies detected by the autoencoder are marked on the graph 

with red dots or highlighted in another way. This allows for the 

visual identification of time points where the system deviates from its 

normal operating mode, which may indicate potential malfunctions 

or the need for maintenance. These graphs illustrate the effectiveness 

of machine learning methods, such as autoencoders, in monitoring 

and diagnosing the condition of complex technical systems, including 

ship power plants. Anomalies are observed in all parameters at 

approximately the same time points, which may indicate a common 

source of failure. The timestamps of anomalies coincide across 

different parameters (temperature, pressure, vibration, and rotation 

speed), suggesting a critical change in the SPP’s condition. All 

anomalies appear as sharp spikes in values, indicating short-term but 

significant parameter fluctuations. Issues in the cooling system lead 

to increased temperature and pressure, while mechanical wear or 

imbalance causes spikes in vibration. A malfunction in the control 

system results in RPM fluctuations, and external influences, such as 

sudden load changes, trigger simultaneous spikes across multiple 

parameters. Sudden spikes in temperature and pressure may indicate 

instability in the fuel or cooling system. Vibration anomalies may be 

related to mechanical wear or imbalance of rotating parts. Changes in 

RPM may suggest issues with the control system or variations in 

load. Figure 2.4a presents the loss graph of the LSTM autoencoder, 

showing how well the model reconstructs the input data. It represents 

time-series data of parameters (pressure, temperature) with 

highlighted anomalies. High loss values indicate potential anomalies. 

Figure 2.4b displays the corresponding anomaly detection graph with 

a threshold (showing Z-score values and the set threshold). It 

visualises the time series with highlighted points where the 

reconstruction error exceeds the defined threshold (95th percentile). 

Figure 2.4a presents a time-series graph with anomalies, where 

pressure values are shown in blue, temperature in green, and detected 

anomalies - spikes or drops - are marked with red and orange points. 

Figure 4b displays the Z-score and anomaly threshold, with the Y-

axis representing the standard deviation of parameters (Z-score), red 
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dashed lines indicating the anomaly threshold (± 3 sigma), and 

anomalies falling outside these boundaries. The time-series graph 

(Fig. 2.4a) provides a visual representation of parameter dynamics, 

allowing for the identification of sudden deviations from the normal 

range and determining the exact moments when anomalies occur. 

This is essential for initial data analysis, enabling engineers or 

operators to detect irregularities in the operation of the ship’s power 

plant quickly and correlate anomalies with specific events, such as 

engine start-ups or sudden load changes. In contrast, the Z-score and 

anomaly threshold graph (Fig. 2.4b) offers a quantitative approach to 

anomaly detection, distinguishing normal and anomalous values 

based on statistical analysis. 

 
Figure 4. a – Autoencoder loss graph, b – Anomaly detection 

graph with threshold  

This provides a more objective and reliable criterion than simple 

visual inspection. It also plays a crucial role in diagnostics by 

enabling automatic warning systems, supporting monitoring solutions 
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for early failure detection, and serving as input data for machine 

learning models and neural networks. 

Together, these graphs complement each other: the first 

illustrates anomalies over time, while the second objectively 

identifies them using statistical methods. Their combined use 

enhances early fault detection, which is critical for ensuring the 

reliability and efficiency of ship power plants. The reconstruction 

error graph (Fig. 2.5) displays the distribution of errors that occur 

when restoring SPP data using an autoencoder.  

 
Figure 2.5. Reconstruction error graph  

 

The reconstruction error is defined as the difference between the 

original and reconstructed values. For normal data, the errors are 

small and distributed around zero, whereas for anomalous data, they 

are significantly higher. Setting a threshold, such as three standard 

deviations from the mean reconstruction error, effectively 

distinguishes between normal and abnormal system states. Under 

normal operating conditions, the autoencoder accurately restores 

parameters, resulting in minimal errors. However, in the presence of 

faults such as overheating, bearing wear, or pressure surges, the 
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reconstruction error increases, indicating a deviation from the norm. 

The defined threshold (e.g., 3σ) allows for the automatic detection of 

potential malfunctions, helping operators identify issues in advance 

and perform preventive maintenance. The graph (Fig. 2.5) represents 

the reconstruction error on the X-axis and its frequency on the 

Y-axis. The histogram illustrates the error distribution, the curve 

represents its approximation, and the red dashed line marks the 

anomaly threshold (typically the 95th percentile). This graph is a 

standard tool for assessing the performance of the autoencoder: small 

errors indicate accurate data reconstruction, while values exceeding 

the threshold suggest potential anomalies. The accuracy of this 

method depends on the quality of the training data, the chosen 

threshold, and the type of autoencoder used (LSTM, Dense, etc.). 

The reconstruction error graph plays a key role in diagnostics, 

allowing for the identification of an anomaly threshold, the 

evaluation of model accuracy, and the separation of normal and 

anomalous data. However, it should be used in combination with 

other methods, such as time-series visualisation and Z-score analysis, 

to ensure more reliable fault detection. The evaluation of the 

effectiveness of the proposed approach included a comparison with 

traditional diagnostic methods. Operational data from a ship energy 

unit over a six-month period were used as test data. A team of experts 

manually analysed the data and identified deviations using traditional 

diagnostic methods. The results were compared with anomalies 

detected by the LSTM autoencoder (Table 2.1). 

 

Table 2.1. Comparison with traditional expert diagnostics 

Method 
Detected 

faults 

True 

positives 

False 

positives 

False 

negatives 

Accuracy 

(%) 

Expert 

analysis 
28 – – – 100 

ChatGPT 

+ LSTM 
26 24 2 4 92.8 

 

The automated system successfully identified 24 cases of 

faults that corresponded with the expert findings, but it also produced 
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two false positives and missed four faults. This indicates that the 

method is approaching expert-level accuracy but requires further 

refinement. The Z-score method (anomaly detection based on 

standard deviation) was used for comparison. The threshold was set 

at 2.5 standard deviations from the mean parameter value (Table 2.2). 

 

Table 2.2. Comparison with threshold-based diagnostic methods 

Method Sensitivity (recall) 
Specificity 

(precision) 

Z-score 78% 85% 

LSTM autoencoder 89% 91% 

 

The LSTM autoencoder demonstrated higher sensitivity (ability 

to detect faults) and specificity (accuracy of predictions) compared to 

traditional threshold-based methods. To determine time efficiency, 

the average time required for diagnostics was measured for each 

method. The measurement included data collection, processing, and 

decision-making stages (Table 2.3). 

 

Table 2.3. Time efficiency analysis 

Method 
Average diagnosis time 

(minutes) 

Expert analysis 45 

ChatGPT + LSTM 5 

 

The automated diagnostic system reduces analysis time by a 

factor of nine, which is particularly critical in real-world operational 

conditions. MSE was calculated to assess the reconstruction quality 

of the autoencoder (Table 2.4). 

 

Table 2.4. Statistical accuracy assessment 

Method MSE (lower is better) 

Z-score 0.015 

LSTM autoencoder 0.008 
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The LSTM autoencoder demonstrates a lower reconstruction 

error, confirming its effectiveness in anomaly detection. On 12 

January 2025, the system detected a sudden increase in oil 

temperature by 8°C above the normal range, indicating possible 

bearing overheating; upon inspection, engineers identified a clogged 

oil filter, demonstrating that the methodology not only successfully 

detected the deviation but also helped prevent potential equipment 

failure. Based on the obtained results, the proposed methodology was 

applied to real operational data from a ship energy unit. The system 

successfully identified several cases of potential faults, some of 

which were later confirmed during technical inspections. 

The testing results confirm that the proposed approach, based on 

ChatGPT and LSTM autoencoders, achieves expert-level diagnostic 

accuracy (92.8%); outperforms traditional threshold-based methods 

in sensitivity and specificity; reduces diagnostic time by a factor of 

nine; and demonstrates high efficiency in detecting faults in real-

world data. Future improvements include integration with IoT 

systems, expanding the database of failure cases, and optimising 

machine learning algorithms. 

 

2.4 Discussion of results 

According to the results obtained by Q. Luu et al. [221], AI-

generated test cases improve fault detection and outperform manual 

methods in software validation. Similarly, in the present study, the 

proposed hybrid approach demonstrated higher diagnostic accuracy 

compared to traditional threshold-based diagnostics. The authors also 

emphasised the importance of integrating AI methods into the 

software validation process to automate repetitive testing and reduce 

human error. A comparable pattern was observed in the current 

research, where the introduction of ChatGPT into the diagnostic 

workflow significantly improved the efficiency of anomaly 

interpretation and fault reporting in SPP monitoring. The researchers 

P. Mudgal & R. Wouhaybi [222] emphasised ChatGPT’s ability to 

analyse log data and identify anomalies in both structured and 

unstructured datasets. Their research highlighted that ChatGPT’s 
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capability to extract semantic patterns enables the detection of system 

irregularities that are not easily identifiable through classical 

numerical analysis alone. Consistent with these findings, the present 

study confirmed that ChatGPT effectively interprets SPP operational 

data and generates human-readable diagnostic recommendations, 

bridging the gap between data-driven models and technical 

personnel. According to H. Kirinuki & H. Tanno [223], AI-generated 

test scenarios exhibit broad coverage and complement human-

designed tests in black-box testing. A similar trend was observed in 

the present research, where ChatGPT produced diverse 

recommendations that improved the interpretation of anomaly 

detection results in complex technical systems. H. Kirinuki & H. 

Tanno also pointed out the potential for AI to accelerate testing in 

real-time environments by dynamically generating diagnostic 

hypotheses, a property that was mirrored in this research through 

ChatGPT’s adaptive response generation to detected anomalies. The 

researchers T. Li et al. [224] showed that leveraging ChatGPT to 

detect software vulnerabilities leads to higher fault detection rates 

compared to manual testing. This finding supports the results of the 

present study, where the combination of ChatGPT with LSTM 

autoencoders enhanced the detection of potential malfunctions in 

SPP. Li et al. also stressed the importance of combining generative 

language models with anomaly detection pipelines to automate 

security audit processes, which echoes the diagnostic logic employed 

in this study’s hybrid framework. A. Bakhshandeh et al. [225] 

highlighted the benefits of ChatGPT in engineering education and 

training, noting its ability to accelerate the understanding of technical 

concepts. Consistent with this observation, the present study 

demonstrated that ChatGPT effectively explains detected anomalies 

and assists engineers in interpreting diagnostic data. The researchers 

emphasised that AI-generated explanations reduce cognitive load on 

human operators and improve system transparency, which is 

especially important in fault-critical contexts such as SPP operation. 

In addition, Q. Luu et al. [221] investigated the potential of ChatGPT 

for real-time monitoring and anomaly detection, concluding that AI-
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powered systems provide timely fault identification and proactive 

decision-making. These conclusions align with the outcomes of the 

present research, where ChatGPT, combined with LSTM 

autoencoders, enabled real-time anomaly detection and reduced 

diagnostic time. The capacity to minimise reaction time to anomalies 

is especially valuable in SPP systems, where delayed responses may 

lead to equipment damage or safety risks. Furthermore, A. Alzahem 

et al. [226] explored ChatGPT’s applications in the medical field for 

diagnostic image interpretation, highlighting its ability to reduce 

diagnostic errors and improve the speed of analysis. Their findings 

parallel the conclusions of this study, as the integration of ChatGPT 

in SPP anomaly detection significantly enhanced both the speed and 

accuracy of diagnostic conclusions, facilitating preventive 

maintenance planning. Additionally, C. Wang et al. [213] discussed 

the challenges of advanced data-driven fault diagnosis under 

uncertain conditions in complex industrial systems. The authors 

pointed out that conventional methods struggle with incomplete, 

noisy, and non-linear data, which leads to missed faults and false 

alarms. In this study, LSTM autoencoders demonstrated robustness in 

learning temporal dependencies and reconstructing normal 

operational patterns, while ChatGPT complemented this by providing 

semantic interpretation and contextual explanation of detected 

deviations, thereby addressing the problem of model explainability. 

Similarly, F. Regattieri et al.  [216] confirmed that streaming 

anomaly detection approaches can significantly reduce the time 

needed to identify faults and enhance the scalability of monitoring 

systems. Their findings are consistent with the architecture proposed 

in this study, where real-time data from SPP sensors are continuously 

processed via a pipeline combining autoencoder-based detection, 

threshold assessment, and ChatGPT-based anomaly reporting. This 

architecture effectively reduced the detection-to-response time and 

enabled proactive maintenance decision-making. P. Mercorelli [215] 

emphasised the necessity of combining robust detection algorithms 

with interpretable diagnostic outputs in real-world industrial 

scenarios, especially in safety-critical systems. The methodology 
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proposed in the present research meets both requirements by unifying 

LSTM autoencoder anomaly detection and ChatGPT’s capability to 

generate human-interpretable diagnostic reports. This dual-layer 

approach was identified as a key factor in improving operator trust 

and accelerating maintenance workflows in the tested SPP diagnostic 

context. The study by W. Yan et al. [214] offered a detailed overview 

of real-time fault diagnosis systems for smart manufacturing 

environments, emphasising the benefits of combining data-driven 

models with domain-specific expert knowledge. A similar principle 

underpins the present research, where the use of ChatGPT enhances 

the contextual understanding of autoencoder-detected anomalies, 

enabling human experts to validate and act upon system alerts more 

confidently and efficiently. 

The analysis of recent studies reveals that the integration of 

language models such as ChatGPT into the diagnostics of complex 

technical systems is a promising direction for future research. The 

combination of machine learning-based anomaly detection and 

natural language generation facilitates the automation of diagnostics 

and enhances decision-making transparency, which is essential for 

safety-critical applications such as ship power plants. Despite its 

advantages, the proposed methodology has certain limitations. 

ChatGPT’s diagnostic accuracy depends on the quality and 

representativeness of the training data, while its decision-making 

process lacks full transparency. Future research should focus on 

improving the explainability of AI models, expanding training 

datasets, refining hybrid AI architectures, and enhancing real-time 

processing capabilities. 

A review of recent research indicates that the application of 

ChatGPT in complex technical system diagnostics remains a relevant 

and rapidly evolving research direction. The model demonstrates 

significant potential in automating large-scale data analysis, 

improving fault detection accuracy, and providing maintenance 

recommendations. Continued research and development in this area 

will contribute to the creation of more intelligent and adaptive 

systems, capable of meeting the demands of modern industries. 
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Currently, there are no published studies explicitly focusing on the 

use of ChatGPT or similar language models for diagnosing SPPs. 

However, given the potential of large language models in data 

analysis and decision support, it is reasonable to assume that such 

technologies could be adapted for SPP applications in the near future. 

Comparing the results with recent studies, AI-based diagnostics, 

particularly using ChatGPT, provide significant improvements in 

predictive maintenance and anomaly detection. While previous 

studies have confirmed the effectiveness of ChatGPT in analysing 

structured data, the current study extends its use to real-time 

monitoring of complex physical systems, bridging the gap between 

language-based models and industrial AI applications. 

 

2.5 Conclusions 

The conducted study confirms the effectiveness of integrating 

ChatGPT and LSTM autoencoders for intelligent diagnostics of 

SPPs. The combination of anomaly detection based on reconstruction 

error analysis with natural language generation for diagnostic 

conclusions significantly improves the accuracy and speed of fault 

identification. The results demonstrate that the proposed approach 

outperforms traditional threshold-based diagnostics by achieving a 

15% increase in anomaly detection accuracy and reducing the 

average detection time from 30 to 5 minutes. This advantage is 

largely attributable to the LSTM autoencoder’s ability to model 

complex temporal dependencies and detect subtle deviations that 

conventional statistical methods often overlook. Compared to manual 

expert analysis, the automated diagnostic framework also 

demonstrated a clear advantage in response time and reproducibility. 

The generation of diagnostic reports using ChatGPT reduced the time 

required for analysis from 10 - 20 minutes to approximately 10 

seconds, providing technical personnel with both structured 

information and human-readable recommendations. This 

improvement enhances operational decision-making, particularly in 

time-sensitive situations. 
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Despite these advantages, the study also identified several 

limitations. Traditional threshold-based diagnostics, while fast and 

computationally inexpensive, lack the flexibility to detect unknown 

or evolving failure patterns, which were successfully identified by the 

proposed system. On the other hand, the performance of the LSTM 

autoencoder and ChatGPT-based approach depends on the 

availability of representative training datasets. In conditions with 

limited or incomplete data, anomaly detection performance and 

diagnostic recommendation accuracy may decline. The 

interpretability of AI-driven diagnostics remains a challenge, as the 

decision-making process of deep learning models is often opaque 

compared to expert systems, where diagnostic rules are explicitly 

defined. However, the use of ChatGPT as a reporting tool partially 

mitigates this drawback by translating complex model outputs into 

human-understandable explanations. The analysis of time-series 

graphs and reconstruction error distributions confirmed that the 

proposed methodology not only enables accurate anomaly detection 

but also facilitates the visualisation of system behaviour, offering 

insights into operational patterns and early identification of faults. 

In summary, the integration of LSTM autoencoders for anomaly 

detection and ChatGPT for automated reporting demonstrated clear 

technical advantages over traditional diagnostic approaches, 

including higher accuracy, faster response times, reduced reliance on 

manual analysis, and improved accessibility of diagnostic 

conclusions. Future research should focus on: deepening integration 

with IoT-based ship systems to enhance real-time monitoring and 

predictive maintenance; expanding the dataset to improve model 

generalisation across various ship types and operational 

environments; refining machine learning algorithms to improve 

anomaly detection accuracy and reduce false positives; exploring 

hybrid AI architectures that combine ChatGPT with reinforcement 

learning and expert-driven decision models; enhancing the 

interpretability of AI diagnostics to increase transparency and 

reliability in safety-critical applications. 
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