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Abstract. The paper addresses the critical issues of strengthening business 

security during digital transformation. The authors demonstrate that the expansion 

of digitalization processes necessitates a reevaluation of the economic security 

concept. It is substantiated that in order to strengthen business resilience to risks 

and threats to digital security, it is necessary to implement a number of measures 

aimed at protecting the confidentiality, integrity and availability of information. A 

study of cyber threats to national economic entities and citizens was conducted, 

including with the use of artificial intelligence tools. This made it possible to 

identify a priority area of data protection – improving the RSA cryptosystem. This 

research details the development of efficient information processing strategies for 

reducing the latency of RSA cryptographic functions. To accelerate RSA 

cryptographic transformations, this study introduces methods for high-speed 

information processing. The core of suggested method involves the realization of a 

cyclic shift mechanism utilizing modular arithmetic, entirely implemented by the 

residue number system (RNS). The application of RNS demonstrates its effectiveness 

in structuring the process of implementing modular integer arithmetic operations 

for accelerating public-key cryptographic transformations. 

Keywords: binary remainder representation technique, cryptographic 

information protection, cryptography algorithm, cyclic shift arrays, digital 

transformation, high-speed crypto accelerators, modular arithmetic codes, residue 

number system, ring shift mechanism. 

Problem Statement. In today's world of rapid digitalization of society and 

globalization of economic processes, digital security is a fundamental prerequisite 

for the stable functioning of all sectors – from public administration and finance to 

industrial production and critical infrastructure. The constant growth in the volume 

of data processed and the introduction of Internet of Things (IoT), artificial 

intelligence (AI), and cloud computing technologies create not only new 

opportunities for the development of business and socio-economic systems, but also 
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new vectors of vulnerability [1]. In these conditions, the risks of unauthorized 

access, distortion, or destruction of information become a critical factor that can 

lead to large-scale economic losses, disruption of business processes, and loss of 

trust from consumers and partners. 

Ensuring digital security goes far beyond technical issues and has become a 

complex interdisciplinary task that combines scientific research in the fields of 

cryptography, mathematical modeling, cybernetics, and risk management [2]. At the 

same time, in practical terms, it involves the development and implementation of 

innovative solutions capable of countering increasingly complex cyber threats, in 

particular by adapting modern cryptographic transformations and optimizing 

computing processes. 

In this context, research aimed at improving the effectiveness of information 

protection systems by using residual number systems (RNS) as a tool for increasing 

the resistance of cryptographic algorithms to attacks and reducing computational 

costs is of particular importance [3]. Such research responds both to significant 

scientific challenges – the search for new mathematical models and encryption 

methods – and to the practical tasks of digital transformation of the economy, the 

formation of a secure cyberspace, and the reduction of threats to strategically 

important objects. 

Analysis of Previous Studies. The digital transformation, which now 

encompasses virtually all sectors of the economy and society, is bringing about a 

fundamental change in approaches to data processing, storage, and transmission. 

The introduction of intelligent information systems, cloud services, IoT, AI, and 

blockchain technologies opens up new opportunities for improving the efficiency of 

business processes, optimizing management decisions, and increasing the 

competitiveness of organizations [4]. However, along with these advantages, the 

range of cyber threats is also growing, putting the issue of ensuring reliable 

protection of digital assets on the agenda. 

The issue of digital security, particularly through cryptographic mechanisms, is 

key to ensuring trust in transformed digital processes. Research shows that the 

degree of integration of information security into business processes directly affects 

the stability and performance of organizations. One example is the analysis of the 

impact of digital transformation on business security and recommendations for 

strengthening its cyber resilience [5]. 

In scientific discourse, digital security is being rethought as a growing 

component of digital transformation that requires comprehensive solutions – from 

technological to managerial [6]. In addition, the growth of computing capabilities, 

especially with the approach of the era of quantum computing, is forcing a 

rethinking of traditional cryptographic approaches. In this context, post-quantum 

cryptography (PQC) is becoming critically important for protecting data today – to 

avoid “collect now, decrypt later” attacks – and to minimize the risks of future code 

breakthroughs [7]. 

From a scientific point of view, digital security challenges require innovative 

scientific solutions, such as combining cryptographic transformations with 



INFORMATION CONTROL SYSTEMS AND INTELLIGENT 

TECHNOLOGIES.     

ADVANCES AND APPLICATIONS 

9 

blockchain technologies that ensure data resilience, transparency, and authenticity in 

decentralized systems [8]. 

Contemporary public-key cryptosystems widely utilize algebraic curve-based 

transformations, including elliptic curves (EC), hyperelliptic curves (HEC) [9, 10], 

Picard curves (PC), and superelliptic curves (SEC) [11], in addition to the 

traditional RSA scheme. The practical implementation of these systems relies on 

various scalar multiplication algorithms, such as the Kantor divisor addition 

method, the Koblitz method, arithmetic transformation techniques for HEC Jacobian 

divisors, weighted divisor addition methods, the Karatsuba algorithm for modular 

multiplication, polynomial function field reduction, and approaches based on the 

Chinese Remainder Theorem. However, many of these methods do not fully meet 

the high efficiency requirements of modern cryptographic applications. In contrast, 

recent studies [12, 13] demonstrate that modular arithmetic codes, particularly those 

based on the Residue Number System (RNS), offer significant advantages in 

accelerating digital information processing, including tasks such as digital filtering, 

Fast Fourier Transform (FFT), and Discrete Fourier Transform (DFT) computations. 

This context underscores the critical importance and timeliness of developing 

novel approaches to improve the performance of cryptographic transformations, 

particularly RSA, through the utilization of RNS. The RSA system, initially 

proposed in 1977, remains the most prevalent public-key cryptosystem in use today 

[14, 15, 16]. 

The primary goal of the studies documented in [17, 18] is to formulate a method 

for rapid execution of public-key cryptographic transformations and to design a 

structural model for the operating unit (OU) of a high-speed cryptographic 

coprocessor, leveraging the capabilities of RNS. The research [19] presents a 

modified stream cipher cryptographic processor equipped with specialized 

instructions based on the VLIW architecture. The proposed system utilizes a 

distributed (clustered) memory structure and is designed for efficient execution of 

stream cipher operations. Such architecture ensures high performance in processing 

stream cryptographic algorithms. 

Research in [20] investigates the impact of fundamental properties of the 

modular number system (MNS), such as remainder independence, equality, and the 

presence of low-order digits, on the architecture and operational principles of crypto 

accelerator systems utilizing MNS. Specifically, it highlights that the presence of 

low-order digits in modular representations allows for a wide array of system and 

technical design choices when implementing integer modular arithmetic operations. 

There are four primary methodologies for performing arithmetic operations 

within RNS: the summation method (utilizing low-order bits of binary adders 

modulo RNS); the table lookup method (employing read-only memory); the direct 

logical method, which involves defining and implementing modular operations at 

the switching function level to generate result values (systolic arrays, programmable 

logic matrices, and programmable logic devices (PLDs) are suitable hardware 

platforms for this approach) [21]; and the ring shift mechanism (RSM), which 

leverages cyclic shift arrays (CSA). 
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A significant and highly advantageous characteristic of RNS, when based on 

modular multiplication algorithms, is the absence of inter-remainder carry 

propagation during cryptographic transformations within the cryptographic 

coprocessors employing the ring shift mechanism (RSM). While intra-remainder 

carries exist between binary digits within each modulus np
, the elimination of 

carry propagation between remainders during modular operations [22] presents a 

key benefit. 

Unresolved Issues. A prevailing direction in cryptographic information 

processing research focuses on extending key lengths. However, this approach 

inherently leads to a reduction in the processing speed of public-key cryptosystems. 

This slowdown is particularly problematic when implementing EC-based 

cryptosystems in resource-constrained environments, such as specialized systems 

and devices where the use of high-performance, multi-precision computers is not 

feasible. Consequently, there is a pressing need for the development of techniques 

that enhance the efficiency, reliability, and security of cryptographic 

transformations. 

Objective of the Article. The objective of this article is to investigate methods 

for enhancing the performance and security of public-key cryptographic systems. 

The work focuses on the RSA cryptosystem, which remains a fundamental 

mechanism for data protection. A primary goal is to address the issue of 

computational latency that arises from the need for increasingly long key lengths, 

which in turn diminishes the processing speed of cryptographic transformations. 

To achieve this, the article aims to develop and substantiate a novel approach 

based on the RNS. The proposed method involves the implementation of a cyclic 

shift mechanism utilizing modular arithmetic, entirely within the RNS framework. 

This approach is designed to accelerate core cryptographic operations, such as 

modular multiplication and exponentiation, which are the most computationally 

intensive components of the RSA algorithm. 

Ultimately, the research seeks to demonstrate that the application of RNS can 

provide a more efficient and reliable solution for high-speed crypto accelerators. 

The findings are intended to offer a practical and academically sound contribution 

to the field of information security, paving the way for the development of more 

robust and responsive digital security infrastructure. 

Main Content. In a positional number system (PNS), arithmetic operations 

necessitate sequential digit processing due to operation-specific rules, preventing 

completion until all intermediate results, reflecting inter-digit dependencies, are 

determined. Consequently, PNS, prevalent in contemporary high-speed crypto 

accelerators (HSCA), suffers from inherent inter-digit connections that complicate 

arithmetic operation implementation, demand complex hardware, compromise 

computational reliability, and limit cryptographic transformation speed [23]. 

Therefore, a number system devoid of inter-digit dependencies is desirable. The 

RNS offers this advantage, possessing a unique property: the independence of 

remainders based on the chosen base [24]. This independence facilitates the 
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development of novel machine arithmetic and fundamentally new HSCA 

architectures, thereby expanding the applicability of machine arithmetic. Numerous 

studies [25, 26, 27] suggest that adopting non-traditional data representation and 

parallel processing in digital systems enhances computational efficiency, 

particularly in modular arithmetic, which exhibit maximum internal parallelism 

during information processing. RNS falls within this category. 

The primary bottleneck in high-speed digital systems, including crypto 

accelerators, is the "carry propagation problem" inherent in positional number 

systems. In PNS, the calculation of each digit in an arithmetic operation, such as 

addition or multiplication, depends on the carry from the preceding position. This 

sequential dependency creates a critical path that directly limits the maximum 

operating frequency and overall processing speed. This issue is particularly 

pronounced when dealing with the large bit-length numbers required for modern, 

secure cryptographic algorithms like RSA. As key sizes increase, the carry 

propagation delay scales almost linearly, creating a fundamental barrier to achieving 

real-time performance in resource-constrained environments. This fundamental 

limitation of PNS makes alternative number systems, such as the RNS, highly 

attractive for high-performance applications where parallel processing can be 

leveraged. 

To further illustrate the effectiveness of the proposed approach, let's consider a 

simple example of adding two large numbers in a traditional binary system (PNS) 

versus in the Residue Number System (RNS). Suppose we need to compute the sum 

of two 64-bit numbers, for example, Y and U. 

1. The Traditional Approach (PNS): In the binary system, addition is performed

sequentially, bit by bit. Each subsequent bit's value depends on the carry from the 

previous position. For a 64-bit number, the result in the 64th bit cannot be computed 

until all intermediate carries from the 1st to the 63rd bit are known. This 

dependency on carry propagation is the primary factor limiting the computation 

speed. The addition time is the sum of the time required to process each bit, which 

can be notionally represented as 
64 ,PNS gateT T 

 where gateT
– is the switching

time of a single logic gate. 

2. The Proposed Approach (RNS): In contrast, let's use the RNS with a set of

relatively prime moduli. For a 64-bit number, this could be a set of 8-bit moduli. 

Adding the numbers Y and U in RNS is performed in parallel for each modulus, 

with no carry propagation between them. The calculations are performed as follows 

 1 1 1 2 2 2( )(mod ),( )(mod ),...,( )(mod ) .n n ny u m y u m y u m  
Each of these 

calculations is executed independently in a separate arithmetic processing unit 

(APU). The proposed ring shift mechanism (RSM) allows each remainder to be 

computed in a time that depends only on the size of its respective modulus, not on 

the total length of the number. 

This example demonstrates that while PNS speed is limited by the number's 

length, RNS calculations occur in parallel. This parallelism eliminates the delay 
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caused by carry propagation, achieving a significant speedup that is critical for high-

performance cryptographic applications. 

Several factors support the effective utilization of RNS in HSCA: HSCA, like 

RNS, processes only integer data; HSCA primarily performs modular arithmetic 

operations; RNS excels in executing modular multiplication and squaring 

operations, which constitute over 95% of RSA cryptosystem operations, particularly 

in modulus np
; as the word length (W) of HSCA processors increases, a trend in 

modern RSA system development, RNS application efficiency improves; the 

widespread use of CSA in HSCA for RSA transformations; the limitations of PNS 

in achieving significant HSCA efficiency and reliability gains; and promising 

preliminary results demonstrating RNS's effectiveness in enhancing real-time 

HSCA performance and reliability [28]. 

Research presented in [29] elucidates the operational principle of integer 

residual arithmetic, specifically the ring shift mechanism (RSM). This mechanism is 

distinguished by its ability to determine the result of arithmetic operations, such as 

( )modn n ny u p
, for any modulus np

 within the RNS base set 
{ } ( 1,  )np n q

, 

without necessitating the computation of partial sums nS
 or carry values nC

 from 

binary adders in PNS. Instead, the result is derived through cyclic shifts of a 

predefined digital structure. This approach is grounded in Cayley's theorem, which 

establishes an isomorphism between the elements of a finite abelian group and those 

of a permutation group [30]. 

From Cayley's theorem, it can be inferred that the action of abelian group 

elements on the group of integers is homomorphic [36]. This property enables the 

organization of arithmetic operation result determination in RNS through the 

application of RSM. Thus, an operand in RNS is represented as a set of q

remainders 
{ } ( 1,  )ny n q

, obtained by successively dividing an initial number Y

by n  pairwise prime numbers
{ }np

. In this context, the collection of remainders 

{ }ny
directly corresponds to the sum of q  simple Galois fields

( )nGF p
 [32]. 

An algebraic system 
( )A

 consists of a plural 
( )P

 and a set of operations 
( )F

defined on this set. This system is denoted as A ,( P,F )  where P  is a non-empty 

plural of integers ( )Z ; F  is a set of binary operations (specifically, in RNS

implementation, the operations executed in a single clock cycle are the arithmetic 

operations: , ,   ) [33]. That is, F  is the set of operations addition (+),

subtraction ( ), multiplication ( ) for any n ny , u  Z , n ny u , n ny – u ,

n ny u
 also belong to .Z  It is important that the operations be closed on the plural 

P, that is, the result of the operation on elements from P  also belongs to P . 

Therefore, it is very important that the range of representation of numbers in the 
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MSN 1

q

n

n

D p



 overlaps the set P , that is, that the elements a and b themselves, 

and the result of the arithmetic operations , ,   , lie in this range. In cryptography,

where information security is a key aspect, the use of large numbers becomes 

necessary to ensure the reliability and robustness of cryptographic systems. The 

larger the number of bits, the more difficult it is to break a cryptographic algorithm, 

as the number of possible combinations grows exponentially. Asymmetric 

cryptography algorithms, such as RSA, DSA, and ECC, are based on the use of 

large prime numbers to generate cryptographic keys [34]. The key operations in 

these algorithms are modular multiplication and exponentiation, which are 

performed on large-bit numbers. Given the increasing requirements for the speed of 

cryptographic systems, the optimization of these operations is a relevant area of 

research. In this context, the goal of our research is to develop and analyze a method 

for ultrafast execution of the modular addition operation in RNS, which can serve as 

an effective replacement for the modular multiplication and exponentiation 

operations, ensuring increased performance of cryptographic transformations [35]. 

Algebraic systems A  is a plural P  with operations F  forming an algebraic 

system, for example, a group, ring, or field. Groups, rings, and fields are 

fundamental structures in abstract algebra, each defined by a set of axioms that 

specify the properties of operations. These structures are used to model a variety of 

mathematical objects and processes, from simple arithmetic operations to complex 

cryptographic algorithms. 

One of the important directions in the study of algebraic systems is the study of 

factor structures, which allow us to build new algebraic objects based on existing 

ones. In particular, in the case of rings, we can construct a ring of subtraction 

classes, or a factor ring, which is a powerful tool for analyzing the structure of rings 

and their properties. 

Let us consider in more detail the process of constructing a ring of subtraction 

classes. Let R  be a ring with the operations of addition (+) and multiplication ( )

defined on it, and J  be an ideal of the ring R . The ideal J  is a subset of R  that

satisfies certain conditions that allow us to partition R  into subtraction classes. The

subtraction class containing an element ny R
is defined as the set 

 n ny J y j | j J   
. The set of all subtraction classes forms a new ring, called 

the subtraction class ring or factor ring, and is denoted by / .R J  The operations of

addition and multiplication in /R J  are defined in terms of the operations in R , 

allowing us to inherit many properties from the original ring. 

Subtraction class rings are an important tool for studying the structure of rings 

and their applications in various fields of mathematics and computer science, 

including cryptography, number theory, and algebraic geometry. 
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The factor ring /R J  can be expressed as
/ nZ p

, where V  represents the set of 

integers. When np
, the base of the RNS, is a prime number, 

/ nZ p
 forms a finite 

field. Given the methodology for performing arithmetic operations within the RNS, 

it is advantageous to focus on an arbitrary finite Galois field 
( )nGF p

, where n  

remains constant, corresponding to a specific defined residue system. Leveraging 

the aforementioned properties, modular addition and subtraction operations in RNS 

can be implemented without inter-digit carry propagation using the RSM through 
q

CSAs with a range of with a range of elements representation D , effectively

achieved through ring shifts of digit representations utilizing bit shift registers [36]. 

Based on the RSM proposed in the research, a method for performing arithmetic 

operations within the RNS is introduced, namely the binary remainder 

representation technique (BRRT). This approach, grounded in the principles of 

RNS, which originates from the Chinese remainder theorem [37], facilitates 

efficient execution of arithmetic operations, including addition, subtraction, and 

multiplication, on large-bit numbers. A key feature of BRRT is the utilization of 

binary representations for remainders [38], which allows for the substitution of 

complex multiplication and exponentiation operations with simpler shift and 

addition operations. This significantly enhances the speed of arithmetic 

computations, a critical factor for cryptographic algorithms where computational 

efficiency is paramount. Furthermore, BRRT enables parallel processing, further 

accelerating operation execution. These advantages render the proposed method 

highly promising for cryptographic systems that demand high performance and 

reliability [39]. Utilizing this approach, the primary (foundational) digital structure 

of the CSA for each modulus np
 of RNS is represented by the initial row (column) 

of the Cayley addition table, specifically ( )modn n ny u p , as illustrated in Fig. 1. 

Figure 1. Primary digital structure of the CSA for modulus np
 in RNS 

The primary digital structure of the CSA content for each modulus np
 can be 

expressed as:  
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 0 1 1_ _ || _ || ... || _ ,
nn pB p B y B y B y    (1) 

where symbol ||  denotes the concatenation operation (combining, merging);
_ jB y

is a m-bit binary representation of the number jy
 (while jy

 iterates from 0 to 

1np 
) for modulus np

. 

The bit width m of the binary code of the primary digital structure of the CSA is 

determined by: 

 2log ( 1) 1 ,n nm p  
(2) 

where square brackets [x] denotes the integer part of x, discarding the fractional 

part. 

Given a specific modulus 
7np 

, the primary digital structure of the CSA 

content, derived from mathematical expression (1), is as follows: 

 _ 7 000 || 001|| 010 || 011||100 ||101||110 .B  1.

Therefore, leveraging CSA, which are prevalent in binary PNS, especially 

within cryptography, facilitates the straightforward implementation of addition 

operations in the RNS. The degree k of cyclic displacements (shift) is established 

through the following expression, as per structure (1): 

0 1 1

1 0 1

_ || _ || ... || _ 

_ || _ || ... || _ || ... || _ ,

n

n

p

k

k k p

B y B y B y

B y B y B y B y



 

   

   

(3) 

0 1 1

1 0 1 2

_ || _ || ... || _ 

_ || _ || ... || _ || _ || ... || _ .

n

n n n

k

p

p k p k p k

B y B y B y

B y B y B y B y B y





    

   

   

(4) 

It is noteworthy that 0 1 1_ || _ || ... || _ 
n

n

p

pB y B y B y 
 
  , implying that when

nk p
, all elements of the ordered set 

{ _ }jB y
 remain in their original positions. 

For the practical realization of this approach, the first term ny
 indicates the 

quantity of CSA digit positions that hold the result of the modular operation 

( )modn n ny u p , while the second term nu
 indicates the number k shifts CSA 

applied to the primary CSA content (1), as defined by expressions (3)-(4). The 

number of shifts equals the product of the second term nu
 and the bit width nm

 of 

the CSA's primary digital structure binary code, i.e. n nu m
– the total binary digit

displacement in a positive direction within the CSA Figure 2 depicts a potential 

operational architecture for the HSCA operating unit (OU) within the RNS. 
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Figure 2. HSCA OU operation scheme for arbitrary RNS 

For a comparative analysis of the execution time of integer addition in binary 

PNS and the RNS, it is necessary to determine the time required to add two numbers 

 1 2|| || ... || || ... ||n qY y y y y
and 

 1 2|| || ... || || ... ||n qU u u u u
, within the SRC 

utilizing the RSM. In the RSM, the time   for modular addition of two remainders

ny
 and nu

, specifically in the circuit that calculates 
( )modn n ny u p ( 1, )n q , is 

primarily governed by the time   needed to shift the primary contents of CSA digit

positions (hereafter, we assume   ). The time of a single bit shift (trigger

activation time) of the digital contents of CSA digit positions is given by the 

expression: 

3 ,t      (5) 

where t  – switching time of a single logic gate (an AND, NOT, or OR gate).

Building upon prior research [40], the processing time for the modular addition 

of remainders ny
 and nu

, specifically 
( )modn n ny u p

, within the RNS can be 

expressed by the ensuing expression: 

,RNS n nV m       (6) 

where nV
 – the second term nu

 in the modular addition 
( )modn n ny u p

, which 

indicating the quantity of CSA digits cyclically shifted counterclockwise from the 

CSA's initial state, i.e. 0, 1n nV p  . 

Thus, based on expressions (5) and (6), for an arbitrary modulus np
 of RNS, 

the addition time of two remainders ny  and nu modulo np
 is defined by: 

 2log ( 1) 1 3 .RNS n nV p t         (7) 

In this case, the maximum possible value of expression (7) for the arbitrary 

modulus im
 of RNS is defined by: 

 _ max 2( 1) log ( 1) 1 3 .RNS n np p t       (8)
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However, for the specified RNS, the maximum addition time of two numbers 

 1 2|| || ... || || ... ||n qY y y y y
 and 

 1 2|| || ... || || ... ||n qU u u u u
 is determined by the 

maximum value of modulus qp
: 

_ max 2( 1) log ( 1) 1 3 .RNS q qp p t           
  (9) 

In general, the addition time of two numbers 
 1 2|| || ... || || ... ||n qY y y y y

and 
 1 2|| || ... || || ... ||n qU u u u u

in RNS is determined by the time (8) of 

realization of module operation 
( )modn n ny u p

 in n-th arithmetic processing unit 

(APUn), i.e. in HSCA, in which instance n nV m
 is reaches its peak ( max)n nV m   

across all ( 1, ; )eAPU e q n e  . 

Previous studies [24, 40], focused on the optimization of the RSA cryptographic 

algorithm through the utilization of the RNS, have thoroughly examined the 

implementation of modular addition for one- and two-byte digit numbers. A 

simplified OD scheme for a one-byte HSCA processor in RNS is presented in 

Fig. 3. 

Figure 3. Simplified HSCA OU scheme of low-bit representation of numbers in 

RNS [40] 

However, given the substantial range of number representation required for 

ensuring the robustness of the RSA cryptographic algorithm, there arises a necessity 

to investigate the effectiveness of RNS in processing large data arrays. A 

comprehensive analysis and illustrative examples demonstrating the advantages of 

employing RNS for modular addition of large-digit numbers will be presented. 

Cases where operand sizes reach values typical for contemporary cryptographic 

applications will be considered, and results will be compared with conventional 

computational methods. This will enable the evaluation of the practical value of 

RNS for enhancing the performance of cryptographic systems.  

Concrete example of implementing the addition operation for two numbers 

within the RNS are presented, utilizing the following set of moduli: 1 11p 
, 



INFORMATION CONTROL SYSTEMS AND INTELLIGENT 

TECHNOLOGIES.     

ADVANCES AND APPLICATIONS 

18 

2 13p  , 3 15p  , and 4 19qp p 
, which provides a number representation 

range from 0 to 1

11 13 15 19 40755
q

n

n

D p


     
in the RNS. According to 

equation (8), the modular addition operation's execution time depends on the second 

addend and the modulus np
 of the respective nAPU

, under the condition that 

maxn nV m 
. 

Example 1. If the second number 10( 95)U  is equal to 

2(111||100 ||101|| 000)RNSU  
10(7 || 4 || 5 || 0) , then it is necessary to find 

the APU with the largest product value n nV m
, therefore: 

In the 1APU
with modulus 1 11p 

, the following values are obtained: 

1 7V 
,    1 2 1 2log ( 1) 1 log (11 1) 1 4m p      

 and 1 1 7 4 28V m    .

In the 2APU
with modulus 2 13p 

, the following values are obtained: 

2 4V  ,    2 2 2 2log ( 1) 1 log (13 1) 1 4m p        and 2 2 4 4 16V m    .  

In the 3APU
with modulus 3 15p 

, the following values are obtained: 

3 5V 
,    3 2 3 2log ( 1) 1 log (15 1) 1 4m p      

 and 3 3 5 4 20V m    .
 

In the 4APU
with modulus 4 19p 

, the following values are obtained: 

4 0V 
,    4 2 4 2log ( 1) 1 log (19 1) 1 5m p      

 and 4 4 0 5 0V m    .

It is evident that the maximum binary digit shift, amounting to 28, is observed 

within the first arithmetic processing unit (APU1). Consequently, the execution time 

for the addition of two numbers Y and U, represented in the RNS utilizing the ring 

shift mechanism, is determined by the value of the second term U and is equivalent 

to: 

 1 2 1log ( 1) 1 3 7 4 3 84 .RNS V p t t t              

Example 2. If the second number 10( 78)U 
is equal to 

2)000(001|| || 011|| 010RNSU   10(1|| 0 || 3 || 2)
, then it is necessary to find the 

APU with the largest product value n nV m
, therefore: 

In the 1APU
 with modulus 1 11p 

, the following values are obtained: 1 1V 
, 

   1 2 1 2log ( 1) 1 log (11 1) 1 4m p        and 1 1 1 4 4V m    .  

In the 2APU
 with modulus 2 13p 

, the following values are obtained: 2 0V 
, 

   2 2 2 2log ( 1) 1 log (13 1) 1 4m p      
 and 2 2 0 4 0V m    .

In the 3APU
with modulus 3 15p 

, the following values are obtained: 

3 3V 
,    3 2 3 2log ( 1) 1 log (15 1) 1 4m p      

 and 3 3 3 4 12V m    .
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In the 4APU  with modulus 4 19p  , the following values are obtained: 

4 2V 
,    4 2 4 2log ( 1) 1 log (19 1) 1 5m p      

 and 4 4 2 5 10V m    .

It is evident that the maximum binary digit shift, amounting to 12, is observed 

within the third arithmetic processing unit (APU3). The execution time for the 

addition of two numbers Y and U, represented in the RNS utilizing the RSM, is 

equivalent to: 

 3 2 3log ( 1) 1 3 3 4 3 36 .RNS V p t t t              

An analysis comparing the time required to perform the addition of two 

numbers Y and U between PNS and RNS is provided. The addition time of numbers 

Y and U in PNS is: 

 (2 1) 3 (16 1),PNS r t l           (10) 

where 8r l   – the number of bits for an l-byte data unit; 
3 t  

 – the summation

time in the (n+1)th binary place of the positional adder for partial sum values 1nS 

and carry values 1nC  . 

Recognizing that an existing method achieves a two-fold shortening of the 

maximum operation time for modular addition in RNS, the following applies to 

RSM: 

_ max _ max / 2.RNS RNS    (11) 

The ratio of addition operation execution times in PNS and RNS will be 

represented by a coefficient, namely: 

_ max

2

2

/

(16 1) 3 2

( 1) log ( 1) 1 3

2 (16 1)
.

( 1) log ( 1) 1

PNS RNS

q q

q q

l

p p

l

p p

  





 

    
 

       

  


     

(12) 

The computational assessment and comparative evaluation of arithmetic 

operation execution times during cryptographic transformations demonstrated the 

significant effectiveness of the BRRT method, which utilizes the RSM within the 

RNS, when contrasted with a method employed in PNS (see Table 1). It is 

important to note that Table 1 specifically presents a comparative analysis of the 

modular addition operation within the RNS versus the PNS. While these results 

highlight the efficiency gains at the fundamental arithmetic level, a direct 

comparative analysis of the overall RSA cryptosystem's performance using the 

proposed RNS-based acceleration against other established RSA acceleration 

methods (e.g., Montgomery multiplication, Karatsuba algorithm, or dedicated 

hardware implementations) is a complex task that requires specific experimental 

setups and is beyond the scope of this initial theoretical and methodological paper. 



INFORMATION CONTROL SYSTEMS AND INTELLIGENT 

TECHNOLOGIES.     

ADVANCES AND APPLICATIONS 

20 

Table 1 

Data of comparative analysis of time of addition operation 

The presented data are derived without the inclusion of supplementary 

algorithms, which, if implemented, could expedite the execution of modular 

arithmetic operations. The resulting mathematical expressions (7)-(9) and (12), 

along with the determined operational times for arithmetic operations in RNS, can 

be utilized for evaluating and comparing the computational complexity of RSA 

cryptographic transformation algorithms. 

Conclusions and Prospects. Digital transformation necessitates a rethinking of 

existing approaches to digital security. To strengthen the ability of entities to 

counter dynamic and growing risks in the field of cyber security, existing tools and 

technologies need to be improved. Of particular importance in this context is the 

modernization of the RSA cryptosystem as one of the basic mechanisms for data 

protection, which ensures resistance to modern cyber threats and increases the level 

of trust in digital services. 

This paper introduced a novel method for accelerating cryptographic 

transformations within Galois fields, focusing on improving the efficiency of RSA 

cryptosystems with public keys. The proposed method leverages the RNS. By 

exploiting the fundamental theoretical properties of RNS, we have effectively 

streamlined the execution of modular operations essential for cryptographic tasks. 

The core advantage of this approach lies in its inherent parallelism, which 

fundamentally bypasses the carry propagation bottleneck that limits the speed of 

traditional positional number systems. This enables modular operations to be 

executed in constant time, regardless of the operand's bit length, a critical 

achievement for modern, high-bit-length cryptographic keys. 

Furthermore, we have presented a practical method for realizing arithmetic 

operations in RNS based on a ring shift mechanism, namely the binary remainder 

representation technique. The efficiency analysis and concrete technical 

implementation examples of modular arithmetic operations substantiate the practical 

feasibility of this approach. This method of information processing is highly 

recommended for crypto accelerators enabling real-time security surveillance and 

secure authentication. 

The application of the proposed method significantly reduces the execution time 

of operations, which is critical for ensuring real-time security. The obtained results 

confirm the practical value of RNS in enhancing the performance of cryptographic 

systems, particularly when processing large data arrays, which is typical for modern 

cryptographic applications. 
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The research findings offer significant potential for application in systems and 

devices designed for high-throughput, real-time digital information processing. 

Practical examples confirm its feasibility for real-time applications, strengthening 

digital security infrastructure, especially in dynamic environments. The 

implementation of this method not only improves the speed of critical cryptographic 

processes, but also enhances the overall security posture of digital systems. 

Moreover, while this study specifically focuses on RSA, the core principles of RNS-

based modular arithmetic and the cyclic shift mechanism are inherently adaptable to 

other cryptographic algorithms that heavily rely on modular exponentiation and 

multiplication, such as ElGamal, Diffie-Hellman, and various elliptic curve 

cryptography (ECC) schemes. The parallel processing capabilities offered by RNS 

make it a versatile foundation for accelerating a broad spectrum of public-key 

cryptographic operations beyond RSA. As such, it represents a substantial 

advancement in the field of secure computation.  

The research findings offer significant potential for application in resource-

constrained systems, such as embedded devices, Internet of Things (IoT), and 

industrial control systems, where high performance must be achieved with limited 

computational power. By enhancing the speed and efficiency of cryptographic 

operations, this method contributes to strengthening the digital security 

infrastructure, particularly critical in dynamic and challenging environments. 

Future work will focus on a comprehensive experimental evaluation of the 

proposed RNS-based RSA acceleration method against state-of-the-art hardware 

and software implementations of RSA, including detailed comparative performance 

indicators such as throughput, latency, and resource utilization. This will provide a 

more objective and complete assessment of its practical advantages and potential for 

real-world deployment. Moreover, the core principles of RNS-based modular 

arithmetic and the cyclic shift mechanism are inherently adaptable to other public-

key cryptographic algorithms that heavily rely on modular exponentiation and 

multiplication, such as ElGamal and Diffie-Hellman. Further research will also 

investigate the method's applicability to post-quantum cryptography (PQC), which 

demands exceptional computational efficiency for its large-integer-based 

algorithms. 
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Анотація. У роботі розглядаються критичні питання посилення безпеки 

бізнесу в умовах цифрової трансформації. Автори демонструють, що 

розширення процесів цифровізації вимагає перегляду концепції економічної 

безпеки. Обґрунтовано, що для зміцнення стійкості бізнесу до ризиків та 

загроз цифровій безпеці необхідно впроваджувати низку заходів, спрямованих 

на захист конфіденційності, цілісності та доступності інформації. Було 

проведено дослідження кіберзагроз для суб’єктів національної економіки та 

громадян, у тому числі з використанням інструментів штучного інтелекту. 

Це дало змогу визначити пріоритетну сферу захисту даних – удосконалення 

RSA-криптосистеми. У дослідженні деталізовано розробку ефективних 

стратегій обробки інформації для зменшення затримки криптографічних 

функцій RSA. Для прискорення криптографічних перетворень RSA в цьому 

дослідженні запропоновано методи високошвидкісної обробки інформації. 

Основа запропонованого методу включає реалізацію механізму циклічного 

(кільцевого) зсуву з використанням модулярної арифметики, повністю 

реалізованого системою залишкових класів (СЗК). Застосування СЗК 

демонструє її ефективність у структуруванні процесу реалізації модулярних 

цілочислових арифметичних операцій для прискорення криптографічних 

перетворень з відкритим ключем. 

Ключові слова: техніка представлення двійкового залишку, 

криптографічний захист інформації, алгоритм криптографії, масиви 

циклічного зсуву, цифрова трансформація, високошвидкісні криптографічні 

прискорювачі, модулярні арифметичні коди, система залишкових класів, 

механізм кільцевого зсуву. 
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