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Abstract. The chapter is devoted to the performance efficiency gains from 

integrating binary communication protocols into event-driven distributed systems. It 

contends that while traditional text-based protocols like JSON provide human 

readability, they introduce substantial overhead in data size, 

serialization/deserialization speed, and network bandwidth, hindering high-traffic 

environments. The chapter offers a competitive analysis of binary serialization 

protocols including Protocol Buffers (Protobuf), MessagePack, and Apache Avro 

compared to text-based options such as JSON. This analysis is based on both 

quantitative metrics, such as serialization speed, compressed message size, and 

qualitative metrics like schema support, backward compatibility, and streaming vs. 

batch processing. The developed pipeline demonstrates that binary protocols offer 

substantial performance advantages, including reduced latency, increased 

throughput, and significant network bandwidth savings. For example, MessagePack 

and Protobuf are shown to achieve considerably higher serialization/deserialization 

speeds compared to JSON, and they also produce significantly smaller message 

payloads. The chapter concludes that for high-performance, low-latency, and high-

throughput event-driven systems, binary protocols are frequently a fundamental 

prerequisite rather than merely an optimization. The chapter also offers a decision 

framework to assist developers and architects in choosing the appropriate protocol 

based on specific system requirements, with an underlying focus on ensuring the 

integrity of intellectual property and guarding against unauthorized duplication. 

Keywords: Data serialization, text and binary formats, JSON, automated 

pipeline, performance, data serialization speed, serialized message size, network 

latency, data schema support and backward compatibility, event data streaming, 

event-driven architecture, .NET Core, MessagePack, Protobuf, Apache Avro, 

BenchmarkDotNet. 

Introduction 

Event-Driven Architecture (EDA) inherently promotes scalability, decoupling, and 

resilience, making it a cornerstone for modern distributed systems. However, the 
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choice of communication protocol significantly influences the realization of these 

benefits. Traditional text-based protocols, while human-readable, introduce 

considerable overhead in terms of data size, serialization/deserialization speed, and 

network bandwidth consumption. EDA represents a fundamental shift in how 

distributed systems are designed and operate. Instead of direct, synchronous 

interactions between components, EDA orchestrates system flow through the 

production and consumption of events. This architectural style is increasingly 

prevalent in modern computing environments due to its inherent flexibility, 

scalability, and resilience. The core characteristics of EDA that contribute to its 

suitability for distributed environments include: 

 asynchronous communication: components do not directly interact but 

communicate via events on the event bus; 

 decoupling and loose coupling: event producers and consumers operate 

independently and are largely unaware of each other's existence; 

 scalability: the event bus is designed to handle a high volume of events, 

allowing the entire system to scale horizontally; 

 resilience and fault tolerance: events are often stored persistently in message 

queues or logs (e.g., Kafka, RabbitMQ). 

While binary protocols undeniably enhance performance, their adoption 

introduces complexities related to development, debugging, and schema 

management. The report concludes that for high-performance, low-latency, and 

high-throughput event-driven systems, particularly in domains like high-frequency 

trading or large-scale data streaming, binary protocols are not merely an 

optimization but often a foundational requirement. Strategic selection and careful 

implementation are crucial to balance performance gains with development and 

operational considerations. 

This article provides a competitive analysis of binary serialization protocols 

compared to their text alternatives. Analysis is performed by quantitative metrics 

(like serialization speed, compressed message size, CPU/memory consumption 

required for serialization process) as well as qualitative metrics (like schema 

support, backward compatibility, streaming vs batch processing). 

The following formats are chosen during the analysis as representative of 

communication protocols: 

 JSON is used as a lightweight data-interchange format that is easy for humans 

to read and write (text-based format); 

 Protocol Buffer (Protobuf) is a popular binary serialization format developed 

by Google, emphasized by its simplicity and performance; 

 MessagePack is a highly efficient binary format that represents serialized data 

in structures like arrays and associative arrays; 

 Apache Avro is a data serialization format especially useful in big data 

environments and distributed systems due to its compact format, schema support, 

and efficient serialization. 
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Popular serialization protocols used by different programming languages and 

frameworks are outlined in Tables 1 and 2. 

Table 1  

Data serialization protocols compared with the typical characteristics 

Format Binary/Text Size efficiency Speed Use case 

JSON Text Large Slow WebAPI, REST 

MessagePack Binary Compact Fast Mobile, APIs 

Pickle Binary Medium Fast Python only 

Protobuf Binary Very compact Fast Cross-services 

communication 

Thrift Binary Compact Fast Microservices 

Cap`n Proto Binary Ultra-compact Ultra-fast High-perf 

systems 

Avro Binary Compact Moderate Big Data 

Table 2  

Data serialization protocols compared with the typical characteristics 

Format 
Schema 

required 

Schema 

evolution 
Human-readable 

JSON No Weak Yes 

MessagePack No Manual No 

Pickle No No No 

Protobuf Yes Strong No 

Thrift Yes Moderate No 

Cap`n Proto Yes Safe No 

Avro Yes Very flexible No 
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Literature review 

A research paper [4] offers a valuable comparative analysis that aligns well with the 

article's focus on binary serialization efficiency. This study specifically investigates 

the impact of different serialization protocols on latency and throughput in Apache 

Kafka, a widely used distributed streaming platform. 

The primary research goal and context primary objective is to evaluate the 

performance trade-offs of various serialization protocols within the context of 

Apache Kafka, a critical component in many event-driven and data-intensive 

applications. 

It aims to investigate how the choice of serialization format impacts key 

performance metrics, such as message throughput (records per second) and latency, 

which are essential for maintaining high performance and scalability in streaming 

environments. 

The research compared the following protocols: JSON, MessagePack, Protocol 

Buffers (Protobuf), and Apache Avro. Performance tests were conducted to measure 

throughput, latency, and data sizes. 

In comparison, current research is not explicitly focused on any message broker 

or communication channel (such as Apache Kafka, REST, HTTP, or GRPC). Still, it 

mainly focuses on the main performance metrics of the widely used serialization 

protocols in general (serialization speed, message size of serialized data, 

CPU/memory consumption, schema support and backward compatibility). 

In the meantime, the provided article’s results largely corroborate the benefits of 

binary protocols over JSON, while also providing nuanced insights into their 

strengths: throughput and Latency. 

Another related study [5] further supports these findings, highlighting that the 

compactness of serialized payloads is more critical than sheer serialization speed in 

reducing end-to-end latency in distributed settings. 

This study also indicates that Avro, Thrift, and Protobuf exhibit more balanced 

performance compared to FlatBuffers and Cap'n Proto, which can underperform 

despite achieving high serialization speeds, suggesting that overall message size 

optimization is crucial for network efficiency and throughput. 

While the current research provides a more general analysis of event-driven 

systems, the analyzed research specifically benchmarks performance within Apache 

Kafka, offering direct, quantifiable results for that popular streaming platform. 

The analyzed research provides more detailed insights into the specific strengths 

of each binary protocol. In this paper, the authors classify various serialization 

formats (including XML, JSON, YAML, Protocol Buffers, Apache Avro, Apache 

Parquet, and ORC) for inter-service communication (ISC) in distributed systems, 

examining their historical development and current industry adoption. 

The authors observe a significant industry shift toward binary formats, such as 

Apache Avro and Google Protocol Buffers, due to their in-deep optimization for 

speed and compactness. 

Another paper [6] proposes an algorithm to optimize binary serialization by 

separating pure data from its definition, allowing for dynamic object building using 
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predefined templates. It highlights that binary serialization generally yields smaller 

times compared to JSON, especially when human-readability is not a priority. 

In this research, the popular file formats (Apache Avro, Apache Parquet, JSON, 

and Protocol Buffers) were compared in terms of performance, ease of use, 

compatibility, storage efficiency, and real-world use cases for big data processing in 

distributed systems. It demonstrates Protobuf's efficiency in both message size and 

processing speed. 

In the insightful article [7], the author provides an empirical analysis of widely 

used data streaming technologies and their associated serialization protocols, 

benchmarking their efficiency across various performance metrics. 

The findings reveal significant performance differences and trade-offs. It 

highlights that while FlatBuffers and Cap'n Proto offer high serialization speeds, 

they may underperform in distributed settings compared to more balanced options, 

such as Avro, Thrift, and Protobuf, underscoring the importance of message size 

optimization for network efficiency. 

Another article [8] focuses on analyzing and benchmarking the performance of 

distributed cache systems, investigating factors like the number of clients and data 

sizes. The study demonstrates that while factors like concurrent clients and data size 

significantly affect distributed cache performance, data serialization and object 

formats are crucial underlying implementation factors. 

 

Data transformation mechanics: challenges and obstacles 

Effective communication is the bedrock of any distributed system. The choice 

between text-based and binary communication protocols profoundly impacts 

performance efficiency. Understanding their fundamental differences is crucial for 

optimizing event-driven architectures. 

In the comparative analysis of binary and text-based serialization formats, 

several key aspects warrant consideration [9]. These include schema evolution (i.e., 

the ability to accommodate changes in data structures over time), code generation 

requirements (which influence ease of integration), communication paradigms 

(streaming vs. batch processing), and security implications. 

Text-based protocols, such as HTTP utilizing JSON, represent data in human-

readable ASCII text formats. 

This approach offers several advantages: 

 human readability: data exchanged via text protocols is easily readable and 

interpretable by developers without requiring specialized tools, which simplifies 

debugging and development; 

 ease of use and wide support: text-based formats are generally simpler to 

implement and enjoy broad support across various programming languages, 

platforms, and existing tools; 

 schema-free flexibility (e.g., JSON): formats like JSON do not strictly require 

a predefined schema, offering flexibility in data structures and enabling rapid 

prototyping.   
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Despite these advantages, text-based protocols come with significant 

performance limitations, particularly in high-throughput or low-latency distributed 

systems: 

 inefficient data size: each character in a text-based format typically consumes 

a single byte, leading to larger message sizes compared to binary formats, which 

results in higher network bandwidth consumption for data transmission; 

 slower processing: parsing and processing text data require more CPU cycles 

for serialization and deserialization (data must be converted from human-readable 

text into a machine-readable binary form, which is a computationally intensive 

process);  

 overhead: text-based payloads often include unnecessary identifiers, names, 

and data types that are redundant for machine processing, adding to the message 

size and parsing overhead. 

These limitations make text-based protocols less ideal for the internal, high-

volume communication characteristic of event-driven distributed systems, where 

raw performance and efficiency are critical. 

Binary protocols encode data as sequences of bytes, representing information 

such as commands, identifiers, lengths, and actual data payloads directly in binary 

form. This approach offers inherent advantages for machine-to-machine 

communication:  

 efficiency: binary protocols are generally more efficient than text-based 

protocols in terms of both data size and processing speed; 

 compact data storage: messages are significantly smaller, requiring less 

network bandwidth for transmission (reduction in payload size directly translates to 

faster data transfer); 

 faster processing: data in binary format is closer to the machine's native 

language, enabling faster parsing and processing by computers, which minimizes 

the computational overhead associated with serialization and deserialization; 

 optimized for critical performance: binary protocols are commonly employed 

in scenarios where performance and efficiency are paramount, such as internal 

communication within distributed systems, database query protocols, file transfer 

protocols, and high-performance computing environments. 

While binary protocols offer clear performance superiority, it is essential to 

acknowledge a significant trade-off: the balance between raw performance and 

developer experience, including debuggability. 

Binary protocols are inherently more complex to implement and debug 

compared to their text-based counterparts. 

To facilitate this study, two representative data contracts have been defined for 

experimental evaluation. 

The first contract is relatively simple but incorporates a variety of primitive data 

types, whereas the second represents a more complex structure composed of 

multiple nested simple objects. 

The definitions of these contracts are outlined in Table 3 using C# language 

syntax. 
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Table 3  

Contract definition for the serialization process 

Simple data contract Complex data contract 

public class DeviceTelemetry 

{ 

        public int Id { get; set; } 
        public string Name { get; set; } 

        public bool IsActive { get; set; } 

        public float Temperature { get; set; 
} 

        public double Pressure { get; set; } 

        public DateTime Timestamp { get; 
set; } 

        public List<string> Tags { get; set; 

} 
        public Dictionary<string, int> 

SensorData { 

        get; set; 
        } 

} 

public class Invoice 

{ 

public int Id { get; set; } 
public string InvoiceNumber { get; set; } 

public DateTime InvoiceDate { get; set; } 

public DateTime DueDate { get; set; } 
public Vendor Vendor { get; set; } 

public Customer Customer { get; set; } 

public List<InvoiceItem> Details {get; 
set;} 

public string Notes { get; set; } 

} 
public class Vendor 

{ 

public int VendorId { get; set; } 
public string CompanyName { get; set; } 

public string ContactPerson { get; set; } 

public string Address { get; set; } 
public string Email { get; set; } 

public string Phone { get; set; } 

public string TaxNumber { get; set; } 

public string BankAccount { get; set; } 

} 

public class Customer 
{ 

public int CustomerId { get; set; } 

public string CompanyName { get; set; } 
public string ContactPerson { get; set; } 

public string Address { get; set; } 

public string Email { get; set; } 
public string Phone { get; set; } 

} 

public class InvoiceItem 
{ 

public string Description { get; set; } 

public int Quantity { get; set; } 
public decimal UnitPrice { get; set; } 

public decimal TaxRate { get; set; } 

} 

 

The DeviceTelemetry class defines a structured data model representing 

telemetry information generated by a device. It encapsulates a combination of 

scalar, collection, and complex types, making it suitable for evaluating serialization 

strategies across a range of data patterns. 
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Its properties describe device identification, operational status, current 

temperature/pressure parameters, the exact time at which the telemetry data was 

captured, and the collection of descriptive tags, metadata, and sensor identifiers. 

The Invoice class defines a comprehensive business document model used to 

represent billing information in transactional systems. It is composed of nested 

complex types and collections, making it suitable for evaluating serialization 

performance in hierarchical and object-rich data structures. 

Its data encapsulates the overall invoice data, including the organization or 

individual issuing the invoice, the buyer or recipient of the invoice, and defines the 

individual line items billed on the invoice. 

Multiple contracts are provided to analyze and compare serialization for objects 

of varying sizes and data types (custom nested properties). 

 

1.1 Text-based serialization process 

Text serialization format uses human-readable text to store and transmit data 

objects consisting of “name–value” pairs and arrays (or other serializable values). It 

is a commonly used data format with diverse applications in electronic data 

interchange, including web applications and server interactions. 

For example, JSON (JavaScript Object Notation), the most popular text 

serialization process, converts data structures or objects from program memory into 

a JSON-formatted string [10]. 

This string represents a human-readable and lightweight text-based format in 

two primary structures: 

 

1. Objects (key-value pairs): unordered sets of key/value pairs. 

Keys are strings, and values can be a string, a number, a boolean (true/false), 

null, an array, or another JSON object. 

In programming languages, this typically maps to dictionaries, hash maps, or 

objects. An example of a JSON object: 

 

         {"name": "Sensor − X9","temperature": 36.5} 

2. Arrays (ordered lists): ordered sequences of values. 

Values can be any valid JSON data type. In programming languages, this maps 

to lists or arrays. 

An example of a JSON array: 

 

     ["env", "critical", "zone−1"] 

When you serialize a data structure (e.g., a Python dictionary, a Java object, a 

JavaScript object) into JSON, the following conceptual steps occur: 

1. Data types mapping: the serializer maps the native data types of the 

programming language to their corresponding JSON types: 

a. Numbers (integers, floats) -> JSON numbers; 

b. Strings -> JSON strings (often requiring proper escaping of special 

characters like quotes, backslashes, etc.); 
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c. Boolean (true/false) -> JSON true/false; 

d. Null/None -> JSON null; 

e. Lists/Array -> JSON arrays; 

f. Dictionaries/Objects -> JSON objects. 

2. Conversion to string: the data structure is traversed, and each piece of 

data is converted into its JSON string representation. Keys and string values are 

enclosed in double quotes. Objects are enclosed in curly braces {}, and arrays in 

square brackets []. 

3. Concatenation: the individual string representations are concatenated to 

form a single, continuous JSON string. 

To perform serialization of the simple data contract defined before, let’s 

initialize its properties with sample data to understand the destination object. 

Figure 1 contains the outcome of the contract definition using the C# 

programming language. 

 
Figure 1. Initialized contract definition with different data types using the C# 

programming language 

 

The random values were used during the object initialization in the C# 

programming language, and we achieved the following initialized object. 

The outcome of the JSON serialization process would be a JSON object 

containing a text representation of the C# class definition presented in Figure 2. 

While transferring through the network, each character is represented by an 

array of bytes in UTF-8 notation. A C# command to serialize an object into JSON 

format is provided in Figure 3. Invoking the JSON serialization by the following 

command in C# language, we would receive its representation in the JSON format. 

To analyze the JSON string from a byte array perspective, we should convert each 

character into its respective byte. And that will be the actual size of the serialized 

message transferred over the network. For example, the curly bracket (`{`) 

represents a 7B UTF-8 hex string. 22 code is used for the quotation (“) mark, and 49 

code is used for the “I” character.  
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Figure 2. String representation of DeviceTelemetry object serialized in JSON 

format 

 
Figure 3. JSON serialization logic 

Keeping each character as a representation of an array of bytes, we will 

ultimately arrive at the output displayed in Figure 4. 

If we calculate the total number of bytes for the resulting message, we will 

achieve a total of 230 bytes. This is our initial point for analyzing binary 

serialization formats compared to text-based ones. 
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Figure 4. Binary representation of a serialized JSON object 

1.2 MessagePack serialization process 

MessagePack serialization format is a computer data interchange format. It is a 

binary format for representing simple data structures, such as arrays and associative 

arrays. MessagePack aims to be as compact and straightforward as possible [3]. 

MessagePack supports a variety of data types, like JSON, but encodes them 

directly into binary: 

 Numbers: Integers and floating-point numbers are encoded efficiently using 

fixed-size integer types (uint8, int64) or floating-point types (float32, float64). 

Smaller numbers use fewer bytes; 

 Strings encoded with a length prefix followed by the UTF-8 encoded bytes of 

the string; 

 Booleans encoded as single bytes (0xc3 for true, 0xc2 for false); 

 Null encoded as a single byte (0xc0); 

 Arrays encoded with a type of marker indicating the array size, followed by 

the serialized elements of the array; 

 Maps (Objects) encoded with a type of marker indicating the map size, 

followed by interleaved serialized key-value pairs. Keys and values can be any 

MessagePack type. 

Where a data structure is serialized using the MessagePack binary format, the 

following conceptual steps occur during the serialization process [3]: 

1. Type identification and header/marker: the serializer identifies the data 

type (e.g., integer, string, array, map). Based on the type and often its size, it writes 

a small type of marker byte (or bytes) that signals the type of data that follows and 

sometimes its length. For instance, there are markers for "positive fixint" (a single 

byte for small integers), "fixstr" (a byte indicating the string length, up to 31 bytes), 

or "map 16" (indicating a 16-bit length for a map); 

2. Data encoding: the actual data is then encoded directly into binary following 

the marker; 

3. Numbers: integers are stored as raw binary bytes (e.g., a uint32 would take 4 

bytes); 

4. Strings: the length is written, followed by the UTF-8 bytes of the string; 

5. Arrays/maps: the size is written, then the serializer recursively processes 

each element (for arrays) or key-value pair (for maps) until the entire structure is 

converted; 

6. Byte stream generation: all the encoded bytes are appended to form a 

contiguous binary stream. 



 

 
INFORMATION CONTROL SYSTEMS AND INTELLIGENT 

TECHNOLOGIES.                                                                                       

ADVANCES AND APPLICATIONS 

 

185 

 

MessagePack format converts data into a sequence of bytes, reducing the total 

sequence size. An efficient encoding scheme assigns data types and their respective 

values to bytes in a very compact manner. 

MessagePack is a schema-less binary serialization format by default, meaning it 

does not require or embed an explicit schema like Protobuf or Avro. 

As a result, the byte representation of the serialized DeviceTelemetry message 

can be found in Figure 5. 

 
Figure 5. Binary representation of serialized DeviceTelemetry object in 

MessagePack format 

As mentioned, serializing the provided object in the MessagePack format 

significantly reduces the resulting message size. The MessagePack format converts 

data into a sequence of bytes, thereby reducing the total sequence size. 

An efficient encoding scheme assigns data types and their respective values to 

bytes in a very compact manner. We can think of it as an array with the sequence 

number, where each byte is held in a special position [2]. 

Table 4 explains each byte and how the compression works. 

Table 4  

Explanation of each message pack serialized byte 

Byte representation Property Explanation 

98 Declare a fixed array of 

8 elements 

MessagePack format represents 

the data as an array of fixed size 
65 Id: int 101 65 → 101 

A9 53 65 6E 73 6F 72 2D 58 

39 

Name: "Sensor-X9" str(9) 

A9 53 65 6E 73 6F 72 2D 58 39 = 
"Sensor-X9" 

C3 IsActive: true C3 → true 

CA 42 0E 00 00 Temperature: 36.5f 
(float32) 

CA 42 0E 00 00 = 36.5 

CB 40 8F 4A 00 00 00 00 00 Pressure: 1013.25 
(float64) 

CB 40 8F 4A 00 00 00 00 00 = 
1013.25 

D6 FF 00 00 01 91 4B D8 10 Timestamp: ext 8 

(DateTime) 

D6 FF (ext type -1) + 8-byte 

epoch timestamp 
93 A3 65 6E 76 A8 63 72 69 

74 69 63 61 6C A7 7A 6F 6E 

65 2D 31 

Tags: ["env", "critical", 

"zone-1"] 

array of 3 strings (Tags) 

82 A8 68 75 6D 69 64 69 74 

79 2D 34 35 A9 76 69 62 72 

61 74 69 6F 6E 07 

"SensorData": { 

"humidity": 45, 

"vibration": 7 
} 

map of 2 entries (SensorData) 

 

If we calculate the total number of bytes for the resulting message, we will 

obtain a total of 84 bytes. Therefore, the MessagePack serialization format reduces 

the message size compared to the test JSON format by approximately 3 times. 
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1.3 Protocol Buffers serialization process 

Protocol Buffers (Protobuf) serialization is a language-agnostic, platform-

neutral, and extensible mechanism for serializing structured data. Unlike JSON or 

XML, Protobuf serializes data into a compact binary format, making it highly 

efficient in terms of size and speed. Its "schema-first" approach is central to its 

mechanism [11]. 

Before you can serialize or deserialize data with Protobuf, you must define the 

structure of your data using a simple Interface Definition Language (IDL) in the 

“.proto” file. This scheme specifies: 

1. Message types: the structure of your data, analogous to classes or structures; 

2. Fields: each field within a message has: 

a. Type: int32, string, bool, bytes, or another message type; 

b. Name: product_id, name; 

c. Unique tag number is crucial for identifying fields in the binary format and 

enabling; 

d. schema evolution (e.g., 1, 2, 3); 

e. Rule: optional, required - though required is generally discouraged in modern 

Protobuf for schema evolution reasons, and repeated for lists; 

3. Field iteration: the serializer iterates through each field in the message object 

that has a value (default values are not serialized to save space); 

4. Key-Value pairs (Wire Format): for each field, Protobuf encodes a "key-

value" pair in the binary stream. The "key" is a combination of the field's unique tag 

number and its wire type; 

a. Tag Number: directly from the “.proto” file (e.g., 1, 2, 3); 

b. Wire Type: indicates the data type of the field on the wire, telling the parser 

how to interpret the value that follows. Common wire types: Varint, Fixed64, 

Length-delimited, Fixed32; 

5. Value encoding: the field's actual value is then encoded according to its wire 

type. 

a. Varints: integers are encoded using a variable-length encoding, where smaller 

numbers occupy fewer bytes. This is efficient for typical integer values; 

b. Length-delimited: for strings, Protobuf first writes the length of the string as a 

varint, then writes the UTF-8 bytes of the string itself. Similarly, for byte fields or 

nested messages; 

c. Fixed-size: fixed-size integers and floating-point numbers are written directly 

as a fixed number of bytes (e.g., 4 bytes for float, 8 bytes for double); 

6. Concatenation: all encoded field key-value pairs are concatenated into a 

single binary byte stream. The order of fields in the proto file doesn't strictly dictate 

the order in the binary stream and fields can be serialized in any order. 

Protocol Buffers (Protobuf) uses a “.proto” file as a schema definition file. It's 

used to define the structure of your data in a language-neutral, platform-neutral, and 

backward-compatible format [2]. 

This file describes the messages (data types) that your app will send and receive, 

including the fields they contain, such as types, names, and field numbers. 
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The proto equivalent of the DeviceTelemetry contract (Protobuf schema) is 

displayed below in Figure 6.  

 

 
Figure 6. Protobuf file representing the schema for the DeviceTelemetry object 

 

By invoking serialization using the Protobuf format, we would receive the 

sequence of bytes shown in Figure 7. 

 
Figure 7. Binary representation of the serialized DeviceTelemetry object in 

Protobuf format 

As mentioned, serializing the provided object in the Protobuf format reduces the 

resulting message size, as does the MessagePack format. Canonically, messages are 

serialized into a compact binary wire format that is forward- and backward-

compatible, but not self-describing. Unfortunately, there is no way to tell the names, 

meaning, or full datatypes of fields without an external specification [2]. 

Table 5 explains each byte and how the compression works. If we calculate the 

total number of bytes for the resulting message, we will achieve a total of 98 bytes. 

Table 5 

Explanation of each Protobuf serialized byte 

Byte representation Property Explanation 

08 65 Id = 101 Field 1 (varint): 8 → id, 101 = 0x65 

12 09 "Sensor-X9" Name Field 2 (length-prefixed): 9 bytes 

18 01 IsActive Field 3 (bool): 1 = true 

25 00 00 12 42 Temperature Field 4 (float): 36.5 in IEEE 754 

31 00 00 8F 40 1C DD 40 40 Pressure Field 5 (double): 1013.25 in IEEE 754 

38 00 AC 86 66 Timestamp Field 6 (varint): 1756990200 = Unix time 

3A 03 65 6E 76 Tags[0] Field 7: length-delimited string "env" 

3A 08 63 72 69 74 69 63 61 6C Tags[1] Field 7: "critical" 

3A 07 7A 6F 6E 65 2D 31 Tags[2] Field 7: "zone-1" 

Therefore, we can see that the Protobuf serialization format reduces the message 

size compared to the test JSON format by approximately 3 times, like MessagePack. 
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1.4 Apache Avro serialization process 

Apache Avro uses a compact binary format for data serialization, accompanied 

by a separate (or embedded) JSON-based schema [3]. 

Apache Avro requires a JSON schema to define the data structure [3]. This 

schema is either embedded in the file or is provided separately during 

serialization/deserialization (common in RPC or Kafka contexts). Avro uses a binary 

encoding that provides compact size, fast processing, and cross-language support 

[2]. 

This scheme describes the structure of the DeviceTelemetry class (Figure 8). 

Avro format supports a variety of data types for efficient encoding and decoding 

[13]: 

 Int - Variable-length encoded signed integer (uses fewer bytes for small 

numbers); 

 Long - encoded 64-bit integer; 

 Float - 4 bytes (IEEE 754); 

 Double - 8 bytes (IEEE 754); 

 Boolean - 1 byte: 0x00 = false, 0x01 = true; 

 String - UTF-8 encoded with variable-length prefix for byte count; 

 Array - Block-encoded: [block-count][item...][0]; 

 Map - Block-encoded like array: [count][key][value]...[0]; 

 Record - Fields encoded in schema-defined order. 

 
Figure 8. Avro JSON schema for the structure definition 

Invoking the serialization using an Avro format, we would receive the 

sequence of bytes provided in Figure 9. 

 
Figure 9. Binary representation of the serialized DeviceTelemetry object in Avro 

format 
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Table 5 explains each byte and how the compression works. 

Table 5  

Explanation of each Apache Avro serialized byte 

Byte representation Property Explanation 

ca 01 Id = 101 ZigZag + Varint (101 × 2 = 
202) 

12 53 65 6E 73 6F 72 2D 58 39 Name "Sensor-X9" 

Length=9, then UTF-8 bytes 
01 IsActive Field 3 (bool): 1 = true 

00 00 12 42 Temperature Field 4 (float): 36.5 in IEEE 

754 
00 00 00 00 00 44 8f 40 Pressure Field 5 (double): 1013.25 in 

IEEE 754 

80 f7 d5 e2 fb 2c Timestamp Varint encoded 64-bit long 
06 06 65 6e 76 10 63 72 69 74 69 63 61 6c 0e 

7a 6f 6e 65 2d 31 00 

Tags Block count + strings + end 

04 10 68 75 6d 69 64 69 74 79 5a 0e 76 69 
62 72 61 74 69 6f 6e 0e 00 

SensorData Map block: key1 + val1, key2 
+ val2 

ca 01 Id = 101 ZigZag + Varint (101 × 2 = 

202) 

If we calculate the total number of bytes for the resulting message, we will 

obtain a total of 79 bytes. 

Therefore, we can see that Apache Avro serialization format reduces the 

message size compared to the test JSON format by approximately 3 times, like 

MessagePack. Furthermore, Apache Avro is more efficient than Message Pack and 

Protobuf serializers [12]. 

 

Automation pipeline for the performance metrics 

4.1. System architecture 

The system architecture for the performance pipeline of binary serializers is 

constructed using a combination of modern technologies and frameworks to ensure 

high performance, scalability, and ease of deployment [13]. 

The architecture is built on the .NET Core framework using the C# 

programming language and the BenchmarkDotNet package. BenchmarkDotNet is 

the de facto benchmarking library for .NET. It enables you to accurately and reliably 

measure and compare the performance (speed, memory usage, etc.) of your C# code 

using micro-benchmarking techniques. It is ideally suited for open-source projects, 

allowing the development of optimized algorithms for serialization, speed, and 

memory comparison. It provides the following features for precise measurements: 

high precision (utilizing multiple runs, warm-up, GC, and statistics), multiple 

exporters (Markdown, CSV, HTML, and JSON), and memory diagnostics. 

4.2 Automation pipeline 

Using a GitHub Actions pipeline with BenchmarkDotNet for benchmarking 

provides several practical benefits, particularly in CI/CD, regression detection, and 

performance tracking. The following benefits are provided by the GitActions 
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pipeline for performance measurements: performance regression detection, 

consistent and repeatable benchmarks, automation, tracking performance over time, 

and no local dependencies. The workflow runs on every push to the main branch 

and, optionally, on pull requests, using Ubuntu-Latest as the execution environment. 

During the run, it executes the BenchmarkDotNet project via dotnet run -c 

Release, targeting the specific .csproj that contains serializer performance tests. 

Artifacts are saved to BenchmarkDotNet.Artifacts/results/ in formats such as 

Markdown (.md), JSON, CSV, and HTML. Running benchmarks in CI avoids 

variability across developer machines. Storing artifacts allows tracking performance 

over time or comparing past runs. Figure 10 provides an implementation of the 

GitActions pipeline. 

The workflow runs on every push to the main branch and optionally on pull 

requests and uses ubuntu-latest as the execution environment. During the run, it 

executes the BenchmarkDotNet project via dotnet run -c Release, targeting the 

specific .csproj that contains serializer performance tests. Artifacts are saved to 

BenchmarkDotNet.Artifacts/results/ in formats like Markdown (.md), JSON, CSV, 

and HTML. Running benchmarks in CI avoids variability across developer 

machines. Storing artifacts allows tracking performance over time or comparing 

past runs. 

 
Figure 10. GitActions pipeline implementation for the performance metrics 
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The benchmarking cases are implemented in the best-practice way, following 

Microsoft recommendations, which can be found in Figure 11. 

 
Figure 11. Benchmark case initialization with test data provided 

This C# snippet defines a benchmarking class using BenchmarkDotNet to 

measure memory and performance characteristics of serialization operations. 

[MemoryDiagnoser] attribute from BenchmarkDotNet enables memory usage 

diagnostics during benchmarks (e.g., allocated bytes, GC collections). Essential for 

measuring serialization performance in memory-sensitive applications. 

The setup method runs once before all benchmarks and prepares similar test 

data at different scales. Pipeline benchmarking different serializers (e.g., JSON, 

Protobuf, MessagePack), analyzes how performance scales with object count and 

compares GC (memory) pressure across serializers. 

The benchmark snippet, located in Figure 12, demonstrates how the test 

performs serialization and deserialization, and measures performance metrics. 

 
Figure 12. Simple benchmark for message serialization using Avro format 

In addition, it provides performance metrics (serialization speed and obtained 

compression size) required for the comparison report. 

Performance efficiency metrics and impact of binary serialization protocols 

The tables below illustrate the results obtained during pipeline execution and 

summarize the metrics obtained during execution. We can see the different objects 

used for serialization: flat and nested objects. 

The difference relies on the results, message size and object complexity for the 

serialization. “Flat contract” means the simple objects without any nested objects 
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inside, with a couple of properties of different data types. While the “Nested objects 

in contract” means the usage of multiple “Flat contracts” inside a single object. 

Meaning the serialization was done on the top level and all the lower levels. 

From Table 6, we can see the metrics on how many binary serializers (Message 

Pack, Protobuf, and Apache Avro) work faster and have a smaller compression size 

than a simple text formatter (JSON). Figure 13 shows the diagram illustrating the 

difference in serialization speed between formats. 

 
Figure 13. Difference in the serialization speed between different formats 

Table 6  

Serialization comparison speed and size of binary serializers compared to Text 

(JSON) 

Number of 

objects 
MessagePack Protobuf Apache Avro 

Flat contract 

 Speed Size Speed Size Speed Size 

1 5.3x 2.7x 5.6x 2.3x 1.7x 3x 

10 5.3x 2.7x 7.1x 2.3x 1.6x 2.9x 

100 5.1x 2.7x 6.6x 2.3x 1.4x 2.9x 

1000 5.5x 2.7x 6.9x 2.3x 1.4x 2.9x 

10000 5.8x 2.7x 8.3x 2.3x 1.2x 2.9x 

100000 5.0x 2.7x 8.9x 2.3x 1.3x 2.9x 

1000000 4.6x 2.7x 9.6x 2.3x 1.4x 2.9x 

Nested objects in a contract 

 Speed Size Speed Size Speed Size 

1 3.3x 2.5x 9.3x 2.2x 1x 2.5x 

10 3.4x 2.4x 12.6x 2.2x 1x 2.5x 

100 3.5x 2.5x 13.7x 2.2x 0.9x 2.5x 

1000 3.5x 2.5x 13.5x 2.2x 0.9x 2.5x 

10000 3.2x 2.5x 14.2x 2.2x 0.7x 2.5x 

100000 3.2x 2.5x 14.6x 2.2x 0.8x 2.5x 

1000000 2.5x 2.5x 15.7x 2.2x 0.7x 2.5x 
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Conclusions 

These protocols generate significantly smaller message payloads, resulting in 

reduced network bandwidth usage and lower operational costs. Furthermore, they 

require fewer CPU cycles for processing, resulting in much faster data handling and 

lower latency [3]. Despite their clear performance superiority, the adoption of binary 

protocols introduces certain complexities, including development overhead, 

debugging challenges, and schema management.  

Ultimately, the decision to adopt a binary serialization protocol should be 

guided by a clear understanding of the system's specific requirements. Developers 

and architects are encouraged to utilize a decision matrix or a set of guiding 

questions, considering factors such as latency requirements (ms, µs, ns), expected 

message volume/throughput, acceptable developer overhead, learning curve, and 

existing tooling/ecosystem considerations. 

By carefully weighing these factors, organizations can effectively harness the 

power of binary serialization to build highly efficient, scalable, and performant 

distributed systems. 

Choosing the proper serialization protocol is crucial for balancing performance, 

development speed, and maintainability in distributed systems [15]. This framework 

helps you weigh the key factors: 

 Performance requirements (latency & throughput): binary protocols 

minimize the message size and maximize serialization/deserialization speed; text 

protocols are likely sufficient. 

 Schema evolution & compatibility: Protobuf and Avro are designed with 

robust schema evolution mechanisms. They ensure that older and newer versions of 

services can communicate seamlessly as your data structures evolve. MessagePack's 

ability to ignore unknown fields provides forward compatibility. JSON's schema-

less nature means schema evolution is managed at the application level. 

 Tooling & ecosystem integration: Protobuf is the native choice for gRPC, 

offering highly optimized inter-service communication. Acro is a de facto standard 

in the Apache ecosystem, with excellent integration with Kafka. Both MessagePack 

and JSON have broad language support. MessagePack is great for compact 

messages in constrained environments (IoT). JSON is universal for web APIs. 

 

In essence, if your system's performance (latency and throughput) is a critical 

bottleneck, invest in binary serialization. If development speed, human readability, 

and simpler tooling are paramount, and performance needs are moderate, text-based 

formats might be perfectly adequate. 

The optimal choice often involves a trade-off between raw performance and 

development/operational complexity. Future work should explore the integration of 

binary communication protocols with containerized microservices orchestrated in 

cloud-native environments, such as Kubernetes-based astronomical pipelines for 

knowledge discovery in databases [16, 17] and data mining [18]. 

Specifically, the compatibility of high-efficiency protocols like Protocol Buffers 

or FlatBuffers with real-time processing frameworks (e.g., Apache Flink or Dask) in 
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astronomical data streams [19] needs further evaluation. Additional attention should 

be given to fault tolerance and protocol resiliency in high-throughput settings, 

mainly when operating across intermittent or high-latency network links, such as 

those connecting remote observatories and telescopes with centralized data centers 

[20]. 

Another promising research direction lies in adapting these protocols for the 

control systems of robotic telescopes and autonomous observatories, where event-

driven communication enables coordinated scheduling, dynamic resource allocation, 

and the triggering of specialized hardware such as adaptive optics systems [21] or 

spectroscopic instruments. 

Furthermore, binary protocols could enhance distributed machine learning [22] 

frameworks used for astronomical image classification [23, 24] and anomaly 

detection [25, 26], by reducing communication bottlenecks during distributed 

training or model inference. The application of this research to edge AI models 

deployed near the data source opens new pathways for intelligent in-sensor 

processing [27], supporting decision-making processes [28], and rapid, autonomous 

scientific discovery [29] in the next generation of sky surveys [30]. 
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Анотація. Розділ присвячено підвищенню ефективності продуктивності 

шляхом інтеграції бінарних комунікаційних протоколів у подієво-орієнтовані 

розподілені системи. У ньому стверджується, що хоча традиційні текстові 

протоколи, такі як JSON, забезпечують зручність читання людиною, вони 

створюють значні накладні витрати за обсягом даних, швидкістю 

серіалізації/десеріалізації та використанням мережевої пропускної 
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здатності, що перешкоджає ефективній роботі у високонавантажених 

середовищах. У розділі наведено порівняльний аналіз бінарних протоколів 

серіалізації, зокрема Protocol Buffers (Protobuf), MessagePack і Apache Avro, у 

порівнянні з текстовими форматами, такими як JSON. Аналіз базується як 

на кількісних показниках - швидкості серіалізації, розмірі стисненого 

повідомлення, так і на якісних - підтримці схем, зворотній сумісності та 

можливостях потокової чи пакетної обробки даних. Розроблений конвеєр 

демонструє, що бінарні протоколи забезпечують суттєві переваги у 

продуктивності, включаючи зниження затримки, збільшення пропускної 

здатності та значну економію мережевих ресурсів. Наприклад, MessagePack і 

Protobuf показують набагато вищу швидкість серіалізації/десеріалізації 

порівняно з JSON, а також формують значно менші за розміром 

повідомлення. У розділі зроблено висновок, що для високопродуктивних, 

низьколатентних і високопропускних подієво-орієнтованих систем бінарні 

протоколи є часто не просто оптимізацією, а фундаментальною 

необхідністю. Крім того, запропоновано рамкову модель прийняття рішень, 

яка допомагає розробникам і архітекторам обирати відповідний протокол 

залежно від конкретних вимог системи, з особливим акцентом на 

забезпеченні цілісності інтелектуальної власності та захисті від 

несанкціонованого копіювання. 

Ключові слова: серіалізація даних, текстові та бінарні формати, JSON, 

автоматизований конвеєр, продуктивність, швидкість серіалізації даних, 

розмір серіалізованого повідомлення, мережна затримка, підтримка схем 

даних і зворотна сумісність, потокова передача подій, подієво-орієнтована 

архітектура, .NET Core, MessagePack, Protobuf, Apache Avro, 

BenchmarkDotNet. 
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