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po3pobku. Hamomicme JMeter demoncmpye 6uwyy npooyKmueHicms y CyeHapiax
BUCOKO20 MA NiKOBO20 HABAHMAICEHHA, NIOKpecaoouy 1020  30amuicmo
Modentogamu napanenvhi Oii Kopucmyseauie i 30iliCHIO8amMU CMpec-mecmy6anHs
3acmocyHkie y macuimabi. Kpim moeo, piznuys y nOKA3HUKAX HPOOYKMUSHOCHMI,
susAeleHa nio uac excnepumenmis, ceiouumo, wo JMeter nadae Oinvui MouHy
MOOenb  3ACMOCYHKIE Yy GUNAOKAX, KOAU 63AEMOOIs KOPUCMYBAUIE CNPUYUHAE
3ampumMKy, o poodums 1020 0coOIUBO KOPUCHUM Ol NOOIE60-0PIEHMOBANUX DO
cecitinux  cucmem. Ompumani — pe3yrbmamu  niOKpeciolOmy, W0  HCOOeH
IHCmpyMenm He € YHIBepcanbHO ONMUMAnbHUM, a4 6ubip mac 3anexcamu 8io
KOHKpemHux yineti mecmy@anHs ma onepayilino2o koumekcmy. Haodarwouu
eMNIpuyHi 00KA3U CUNbHUX | CLAOKUX CIOPIH 000X THCMPYMeHmis, ye 00CiOHCEeHH s
NPONOHYE NPAKMuUyHi pekomeHoayii 0na po3pooruxie i QA-iHocernepis y 6ubopi He
Juute 8i0N0BIOHO20 THCMPYMEHmA, ae U Y NPOEKMYBAHHI eqheKmugHux cmpamezitl
mecmyganHs 01 3a0e3neveHHs. HAOIIHOCMI ma MACUmabo8arHoCmi cucmemu.

Knwuoei  cnosa: mecmysannss  npooykmugnocmi, mecmyeanns — API,
HABAHMAICYBANbHE Mecmy8anHs, cmabinonicms cucmemu, Postman, JMeter, ananiz
uacy 6i02yKy, nepyenmunbHi Mempuku, OYiHKA NPOOYKMUGHOCMI, NPULHAMMSL
pilens, mecmy8ants npozpamHo2o 3abesneyenis
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Abstract. This paper focuses on the systematic analysis of performance testing
metrics, with particular attention to comparing the behavior of two widely used
tools, Postman and JMeter, in the context of public application programming
interfaces (APIs). API performance testing plays a critical role in evaluating the
responsiveness and reliability of modern software systems; however, one persistent
challenge lies in relying solely on average response times. Mean values can be
easily skewed by anomalous outliers, which often mask significant response delays
and lead to an incomplete picture of system performance. To overcome this
limitation, the present study emphasizes the use of percentile-based analysis, which
provides a more accurate and user-centered indicator of performance for the
majority of requests. The methodology involved comparing average response time
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values with percentile distributions, with a primary focus on the 90th, 95th, and
99th percentiles. Additionally, the percentage deviation of percentile values from
the average was calculated, serving as a measure of stability for the testing tools.
This approach enabled a more reliable evaluation of the tool's behavior under
different workloads. The experimental findings revealed distinct advantages for
each tool. Postman demonstrated favorable results under medium load conditions
for Create and Delete requests. At the same time, JMeter proved more effective for
Read (GET) and Update operations, where stability and predictability are critical
in complex systems. To support practical application, the study also proposes a
decision-making diagram that guides the allocation of test scenarios between the
two tools, ultimately improving testing efficiency and ensuring more reliable API
performance assessments.

Keywords: Performance testing, API testing, load testing, system stability,
Postman, JMeter, response time analysis, percentile metrics, performance
evaluation, decision-making, software testing

1 Introduction

One of the challenges in analyzing performance test results is that the average
response time (ART) represents the typical response time a user will experience
while using a software application. On the other hand, the ART performance testing
metric does not take into consideration outliers and large deviations in response
times [1], which can be caused by issues such as memory leaks, thread contention,
Input/Output (1/0) bottlenecks, and long-running SQL queries. A system may have
an acceptable ART, but some users may still face significant delays, especially
during load spikes or stress conditions [2].

Percentile response time, as a performance testing metric, provides a more
reliable representation of system behavior for most users, capturing significant
delays that the average response time would miss. A percentile is the value below
which a percentage of the response times are completed successfully [3].

The concept of considering slow requests that exceed the threshold is crucial in
performance testing, as it helps identify potential performance issues in applications
[4]. It often indicates that the system may begin to degrade under high loads,
especially in microservice environments and cloud-native applications [5-7].

Furthermore, performance analysts can investigate the internal behavior of
various slow and fast web requests in greater detail, and by clustering and
comparing their execution patterns, identify the factors that cause specific requests
to perform slowly or exhibit unexpected behavior [8]. Additionally, service level
agreements (SLAS), as contracts between a service provider and a customer, are
often written with a specification of the maximum response time for the majority of
users, rather than the average response time of the system [9].

Despite the emergence of modern performance tools and technologies in the
performance testing process, a challenge remains in successfully applying testing
tools to test microservices and cloud-native application APIs [10, 11]. The
distributed nature of these systems creates complex testing scenarios where services
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interact across network boundaries with varying degrees of reliability and latency
[10].

The interconnected nature of microservices creates numerous dependencies,
which increase the testing surface area. This leads to the problem of prolonged
testing times in cloud environments, where costs directly correlate with resource
allocation. Thus, there is a challenge of resource limitations [11] that is important
for organizations with limited budgets or restricted access to resources.

Additionally, in the field of microservices API testing, it’s essential to find an
approach that can effectively validate complex service interactions while
maintaining test stability. Effective APl management in microservice architectures
demands both the application of general strategic methods and the integration of
reliable engineering practices that maintain system stability and reliability [12, 13].

Selecting the appropriate performance tools can be a challenging task, but they
should be aligned with the project's requirements and the development team's
expertise [11, 14].

In relation to the decision-making process regarding the most suitable
performance test tool, it is essential to consider its stability, which is related to its
reliability and robustness in consistently performing functions over time, as outlined
in the ISO/IEC 25010 standard [15].

Postman and JMeter are popular tools for performance testing. However, they
have architectural differences and offer different options for load generation, work
collaboration and reporting. These differences raise questions about the efficient
allocation of test scenarios between two performance testing tools, which can be
aligned with the project's specific requirements. The results will provide IT
professionals with objective insights for creating a successful performance test
strategy.

The purpose of this work is to study the approach to the distribution of test
scenarios between two testing tools, Postman and JMeter, based on performance
metrics such as ART and percentile. The results will provide IT professionals with
objective insights for developing an effective performance testing strategy and
enhancing the flexibility and adaptability of the testing process.

The chapter is organized to emphasize the role of percentile metrics in
evaluating system responsiveness and reliability. It begins with an introduction that
explains the limitations of traditional average-based analysis and the need for
percentile-oriented approaches in API testing. The literature review section
examines prior research and current practices in the use of percentiles across
performance engineering. The methodology outlines the selected APIs, test
scenarios, and statistical models applied. The results section presents percentile
distributions under varying loads, while the discussion interprets their significance.
The chapter concludes with recommendations for engineers and future research
directions.
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2 Literature review

API testing is essential for software development teams to ensure the performance,
scalability, and security of large-scale systems that handle millions of transactions
daily. API testing is mandatory in the Continuous Integration and Continuous
Delivery (CI/CD) phases [16]. In modern continuous development, the back and
front-end interaction typically happens via methods and functions that the back end
offers directly via API. Testing both the front-end and back-end allows for fast
application quality feedback and enables the CI/CD pipeline to start automatically
and promptly.

Performance testing is a subset of automatic tests and is designed to evaluate an
application’s behavior under particular load conditions. Effective load testing
incorporates diverse scenarios, including peak traffic simulations, sustained
operation periods, and irregular usage spikes, to comprehensively assess API
resilience across operational conditions that distributed systems commonly
encounter [17].

Apache JMeter is a performance testing tool that allows users to perform load
tests on various protocols and technologies. It is one of the most widely used open-
source tools for performance testing, particularly in the domains of API testing and
web applications. The ability to create and execute complex testing scenarios is one
of JMeter's most essential features. JMeter tool is multithreaded and can simulate a
large number of VUs, enabling the simulation of a heavy load by distributing tests
across multiple machines.

JMeter supports integration with external services and tools such as CI/CD
pipelines, monitoring systems, and third-party performance analysis platforms.
Despite its many advantages, JMeter also has certain limitations, as noted by
authors [18, 19]. One of the main disadvantages is its relatively high memory
consumption, especially when running large-scale tests or simulating a large number
of users.

Additionally, JMeter lacks advanced features, such as real-time monitoring and
has a high learning curve for setting up and configuring distributed tests.

Postman is a platform for API development and testing that has emerged as a
leading tool for API development, boasting a very user-friendly interface [20].
Postman is not an open-source tool, and it has a paid version. Postman tests can be
executed manually using the GUI or run automatically using the Collection Runner
or the Newman command-line tool. Additionally, Postman enables collaboration
with teammates by organizing, sharing, and communicating work with APIs.
According to authors [20, 21], Postman can be used for API performance testing
with a desktop application.

Performance tests can be executed using one of four load profiles: Fixed (the
maximum number of virtual users is used throughout the test), Ramp-up (VUs
gradually increase from initial load to the maximum), Spike (VUs increase from
base load to maximum, then drop back to base load), and Peak (VVUs increase from
base load to maximum, stabilize, and then return to base load).
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It is essential to highlight that during performance test execution in Postman,
each virtual user runs the requests in the specified order within a repeating loop.
Performance test execution can be monitored in real-time through the Postman
Summary tab, which provides a summary of performance metrics available in both
tabular and graphical forms.

Thus, analyzing the research results in the reviewed author’s works [22, 23], it
is worth noting that there are some limitations to running performance tests in
Postman. Firstly, a limited number of performance runs can be used each month at
no additional cost. Secondly, the number of VUs in a performance test depends on
available system resources and the collection used for the test.

3 Methodology
Using performance test tools should help improve the chances of achieving
performance testing goals (e.g., validating that the system can function under high
load, ensuring the reliability and performance of a system, and checking the
system’s performance under everyday operational situations using the upper bound
of performance).

The use of performance test tools and their integration into test automation
frameworks can enhance testing performance by increasing test speed and
efficiency, improving test accuracy, reducing test maintenance costs, and mitigating
risks [24]. However, performance load testing often requires a significant amount of
time, running from hours to even days [25].

Performance testing tools, CI/CD instruments and reporting tools can be parts of
a test automation framework. They provide developers and QA engineers with
feedback on system performance metrics, including response times and resource
utilization. Furthermore, there is a growing trend of adopting a shift-left testing
approach, combined with CI/CD practices, which implies that testing is done early
and frequently throughout the project life cycle [26-29]. Additionally, automated
API tests should be simple, fast, and stable [16]. Thus, the speed of performance test
tools becomes an essential factor.

In the context of performance testing, response time is closely related to the
perceived speed of the system. The lower the response time, the higher the
perceived performance. Thus, there is a strong correlation between these
characteristics in performance testing tasks. This allows for using response time as
one of the leading performance indicators.

The ART is a metric that provides an overview of the general user experience,
and it is also important as the ideal baseline response time, such that any lags that
should be investigated or considered critical can be identified [30]. However,
percentiles provide a more accurate representation of user experience by accounting
for the distribution of response times.

This is crucial for identifying performance bottlenecks and ensuring that even
the slowest responses are within acceptable limits. Percentiles should be used when
focusing on responsiveness for the majority of users, identifying outliers, and
ensuring consistent performance across all users. [31].
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Percentiles are essential reliability metrics, capturing the threshold below which
a given percentage of observations fall [32]. Performance test tools use percentile
values, such as the 90th, 95th, and 99th percentiles (P90, P95, and P99,
respectively).

SLAs in performance testing specify target metrics, such as response times or
error rates [33, 34], typically using percentiles to represent acceptable performance
levels. P99 helps identify performance bottlenecks; its high values indicate severe
slowdowns affecting a small percentage of users. P95 and P90 values are commonly
used in performance teams instead of ART when defining acceptable response times
in SLA [35].

When comparing Postman and JMeter test tools, it is helpful to calculate the
difference between the percentiles and the ART. If the ART and percentiles values
are closer, then response times show little deviation, and there is confidence in the
performance of your system.

It may also mean that the tool is more predictable in its performance [36], which
is essential for high-load or response-critical applications [37 - 39]. On the other
hand, if the ART is better for a tool, it means that, overall, this tool processes
requests more quickly. This could be a result of more efficient request processing.

However, it is essential to consider that ART can be affected by extreme values
(e.g., very slow requests). Considering factors such as the stability of a test tool, a
larger difference between percentile and ART values may indicate that the tool is
prone to performance fluctuations.

This may be especially important for testing real-time applications (e.g.,
gaming, streaming, and mobile applications, or high-traffic web applications as
marketplaces) where minor delays can lead to false positive results (the application
appears to be more productive than it actually is) and missed issues.

To understand the degree of stability in a test tool’s performance, percentage
deviation (D) from ART can be calculated using Formula 1. D value reflects the
stability of a test tool, where a deviation below 20% indicates better stability:

Pﬁi]u:azf{-rj.'-r:""'-rﬂj' @

where B is the percentile value (e.g., F50 s the value of the 90th percentile).

A positive deviation indicates that the percentile value is significantly higher
than the ART. This may indicate that some slow queries are contributing to the
system's increased load.

A deviation of zero or close to zero indicates that the percentile value is close to
the ART, meaning that the responses are relatively stable and slow queries do not
significantly impact the system.

The following scale can be used for D values evaluation:

o low percentage deviation (less than 20%) that indicates stable performance
of a system;
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e moderate percentage deviation (20% - 50%), which suggests that the system
has a noticeable number of slow queries that affect performance;

e high percentage deviation (more than 50%), which demonstrates significant
performance degradation that impacts overall stability;

e critical deviation (more than 100%) that indicates there are non-optimal
queries or unpredictable latencies, which have a significant impact on stability.

Thus, a test tool with a minor deviation between percentile and ART can be
selected for performance testing as a more stable option, which is essential for
highly loaded systems where predictability needs to be maintained. In contrast, if
the testing goal is to reduce overall testing time, then a tool with a lower ART may
be more suitable.

To evaluate deviation values (D) for Postman and JMeter test tools,
performance testing of Hypertext Transfer Protocol (HTTP) requests was conducted
on five public APIs. For each of the five public APIs, four types of HTTP requests
were sent: GET, POST, PUT, and DELETE. Additionally, eight different test cases
(TCs) were executed for each type of request in both test tools.

The TCs used different types of loads: Ramp Up, Spike, Peak, and Fixed in
Postman and corresponding Thread Groups in JMeter, along with the number of
virtual users (VU), think time or delay, and test duration.

The following types of loads were used in Postman:

e “Ramp Up” is used for gradual increase and scalability test;

e “Spike” is used for sudden surge and resilience test;

e “Peak” is used for sustained high load and endurance test;

e “Fixed” is used for stable load and baseline test.

“Ramp Up” load type in Postman simulates a gradual increase in traffic over
time:

e Example: starting with 10 virtual users (VUs) and adding more users every
few seconds until reaching 1,000 VUs;

e Purpose: tests how the system handles progressive load growth and whether
it scales smoothly without errors or degradation;

e Use case: mimicking real-world traffic growth during product launches or
normal adoption curves.

“Spike” load type in Postman introduces a sudden, extreme surge in traffic
within a very short period:

e Example: jumping from 50 users to 5,000 users almost instantly;

e Purpose: evaluates stability and resilience when the system experiences an
unexpected traffic spike;

e Use case: Black Friday sales, ticket bookings, flash sales, or viral traffic
events.

“Peak” load type in Postman simulates sustained high traffic after a ramp-up
period:

e Example: traffic ramps up to 2,000 users and then maintains that level for a
long duration;
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e Purpose: tests how the system performs under continuous heavy load
without downtime or performance decline;

e Use case: streaming platforms during a popular live event, social media
surges, or sustained API demand in production.

“Fixed” load type in Postman maintains a constant, steady number of users
throughout the test:

e Example: running 500 users continuously for 30 minutes;

e Purpose: establishes a baseline performance benchmark for latency, error
rates, and throughput under normal conditions;

e Use case: routine performance validation, regression testing, or comparing
infrastructure changes.

ART values and values of the 90th, 95th, and 99th percentiles (P90, P95, and
P99, respectively) were collected for each test case (TC) and type of request from
performance test reports in both test tools.

Since percentile values were obtained for each test run, P90, P95, and P99
values were collected per test iteration to assess the stability and typical behavior of
performance percentiles. To obtain an aggregate representation, we calculated the
respective percentiles (e.g., 90th percentile of all P90 values) using
numpy.percentile() function in Python.

This approach leverages the empirical distribution of performance metrics to
identify representative or worst-case scenarios while mitigating the influence of
outliers.

Calculation of percentage deviation D values for Postman and JMeter test tools
was performed as the next step in evaluating the performance of a test tool's
stability.

After that, mean values [40] of ART, P90, P95, P99, and D were calculated for
each type of HTTP request, using Formula 2:

Li=y M 2)

n

Mean_metric =

where ™ is the value of the performance metric for 1”’:k;
n is the number of test cases.

In the final phase, the aggregated performance data of ART and corresponding
D values were analyzed for each type of HTTP request to assess the degree of
deviation and draw conclusions about the stability of the testing tool.

4 Results
Research shows that techniques such as performance and regression testing
frequently co-occur, combining enhancements to the application’s performance with
the absence of regression issues that appear during continuous deployment [41].

The inconsistency of the interaction chain, the independence of services,
dynamic and frequent deployments, and the specific challenges of cloud-native
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environments can influence the testing of microservices. Effective API testing
should aim to strike a balance between thoroughness and resource efficiency,
maximizing coverage while minimizing redundancy.

Additionally, Continuous Integration (CI) requires efficient regression testing to
ensure software quality without significantly delaying its CI builds. This warrants
the need for techniques to reduce regression testing time, such as Test Case
Prioritization (TCP) techniques that prioritize the execution of test cases to detect
faults as early as possible [42].

Thus, the approach of prioritizing test cases by test tools can be applied in the
context of performance testing. To optimize resource utilization, minimize total test
execution time, and use tool-specific strengths, a structured decision-making
diagram is required.

The development of a decision-making diagram that supports the distribution of
test cases between two performance testing tools must consider various factors. For
Postman and JMeter test tools, important factors may include the number of VUs,
think time, and the type of load planned for the test (e.g., high, medium, low), based
on their differences in application during a planned test.

Additionally, statistical data on the performance of test tools need to be
analyzed to identify other factors that can influence the decision on how to
distribute tests among test tools. Percentile and D values for Postman and JMeter
were calculated for each HTTP request method for 8 TCs and then averaged across
all 5 APls, as shown in Tables 1, 2, and 3. Percentile values exceeded ART for both
tools, indicating the presence of performance degradation. The most significant
values are highlighted in bold. Postman has a better ART and processes requests
faster than JMeter.

Table 1

Aggregated mean values of ART for different requests in Postman and JMeter

Method Tool ART, sec

GET Postman 166,175

GET JMeter 181,65

POST Postman  |148,100

POST JMeter 147,175

PUT Postman 144,925

PUT JMeter 152,075

DELETE |Postman |166,225

DELETE  |JMeter 163,325
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Table 2
Aggregated mean values of percentiles for different requests in Postman and
JMeter
Method Tool P90, sec P95, sec  |P99, sec
GET Postman  |298,480 392,650 |521,656
GET JMeter 306,320 326,500 496,108
POST Postman |188,820 219,400 [328,572
POST JMeter 194,040 207,600 [385,248
PUT Postman 193,460 224,800 643,546
PUT JMeter 234,980 286,100 |364,792
DELETE |Postman  [200,040 210,690 [434,812
DELETE |JMeter 212,300 232,660 |581,036

The Postman shows minimal differences in P90 and P95 D for POST (6.855%
and 0.112%) and DELETE requests (11.364% and 17.611%), indicating good
stability. Moderate and high differences in P90 D and P95 D for GET (26.45% and
68.236%) requests suggest stability issues and performance fluctuations, which
impact the user experience. Additionally, JMeter demonstrates better performance
in P99 for PUT requests and in all scenarios for GET requests.

Table 3
Aggregated mean values of percentage deviation for different requests in

Postman and JMeter

Method Tool POD,% |P95D,% (P99 D, %
GET Postman 101,240 158,613 311,005
GET JMeter 74,790 90,376 267,864
POST Postman |20,233 36,872 106,621
POST JMeter 27,088 36,760 161,460
PUT Postman 25,320 43,121 399,459
PUT JMeter 53,631 82,779 146,312
DELETE Postman |16,309 22,629 160,728
DELETE |JMeter 27,673 40,240 229,010

The calculated difference in average response time between Postman and
JMeter (deltas) in each of the 8 TCs shows that Postman has higher performance in
low to moderate load conditions. On the other hand, JMeter illustrates higher
performance under the conditions of high load and request intensity (sharp increase
in load to peak, followed by a gradual decrease with a short think time).

Thus, Postman with a lower ART improves response time and efficiency under
average loads, but does not ensure stability in the presence of significant outliers.
JMeter, with more minor deviations for GET and PUT requests, is more stable and
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predictable, which is crucial for testing complex systems under fluctuating load
conditions.

Moreover, applying a successful API performance testing strategy should also
focus on the longevity and sustainability of the software's organizational structure.
To improve such testing, it is critical to optimize developers' collaboration to ensure
the proper allocation of responsibility and reduce ineffective communication [43].
As a result, collaboration becomes a crucial factor in performance testing.

n the context of performance testing tools, collaboration can be done in a built-
in way, when the test tool itself has an option of sharing test cases, results and
collections for API requests through Ul and workspaces, or in an external way
(using Git, version control or even manual sharing of test cases and test plans). For
instance, Postman has a built-in collaboration option, and the external collaboration
approach is mainly used in JMeter.

A critical difference between JMeter and Postman is their ability to be
integrated into CI/CD pipelines, such as those built with Jenkins. The
implementation of CI/CD in performance testing enables integrated, automated, and
periodic execution of test processes [44].

It can also quickly respond to changes in parameter values. JMeter offers direct
support for such integrations, making it well-suited for automated and continuous
performance testing. Currently, Postman’s support for such automation workflows
is comparatively limited, particularly in terms of its performance load profiles.

Thus, to address the challenge of efficiently allocating test scenarios across
Postman and JMeter test tools, we propose a decision-making diagram based on a
rule-based classification of test scenarios, as shown in Figure 1. The diagram
incorporates both qualitative and quantitative criteria, serving as a practical guide
for QA engineers and developers during the planning phase of performance test
execution. Quantitative factors, such as the type of test load (number of VUs and
request intensity), and the need to prioritize specific HTTP requests, provide
objective benchmarks for selecting the right tool.

In contrast, qualitative aspects such as collaboration features, think-time
flexibility, and CI/CD integration capabilities reflect practical considerations that
influence QA or developer productivity and tool suitability. By combining these
criteria, the diagram provides a balanced framework for allocating performance test
scenarios.

The proposed decision-making diagram consists of four levels of decision logic.
The diagram is designed to guide the allocation of performance test scenarios
between two tools, JMeter and Postman, based on scenario attributes and tool
capabilities.

At the first level, the diagram begins with a quantitative parameter that
characterizes the test scenario, specifically the type of test load (required number of
VUs and the expected request intensity). This parameter determines the initial
classification of the scenario based on its load intensity.
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START
Define goal of
performance test

Yes Is high test load planned?

No

Built-in
tool feature

How to simulate think
time (delay) between user
actions?

Timeout in Post-response script
OR
GET request

Do you need to
prioritize testing of GET

and/or PUT requests?

No
Built-in features
(UI, sharing,
workspaces,
What collaboration approach suits cloud)
your team? Postman
END
External

{Git, version control,
manual sharing)

Verify if integration

with CI/CD required
(e.g. Jenkins)

Figure 1. Decision-making diagram of the distribution of tests between test tools
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The second level introduces qualitative criteria related to the flexibility of
simulating think time. This includes factors such as the ease of implementing delays
between user actions, either through built-in, low-overhead mechanisms (e.g.,
configurable timers) or using manual workarounds, such as post-response timeouts
or additional GET requests intended to emulate pauses. This decision branch helps
refine tool selection by assessing the functional (e.g., the need for realistic user
behavior simulation) and operational requirements (e.g., efficiency, script
simplicity, resource consumption (memory and CPU load)) of the test scenario.

At the third level, tool-specific technical considerations are evaluated, including
the need for prioritizing specific HTTP requests (e.g., GET and PUT requests). This
criterion serves to validate or adjust the preliminary tool assignment by comparing
fine-grained compatibility between the scenario and the tool features.

The fourth level shows qualitative criteria related to the execution environment.
This includes factors such as the presence of a collaboration feature that refines the
tool selection by evaluating the functional requirements of the test scenario.

Each decision node represents a binary or categorical condition (e.g., high load,
built-in think time needed, focus is needed for GET and/or PUT requests,
collaboration using Ul and shared workspaces required), which directs the flow to
the following relevant decision node, leading to two terminal outcomes: assignment
to JMeter or Postman test tool. This means that during the process of planning and
executing performance tests, test cases can be split between two tools, each of
which will be used for different types of tests, workloads or tasks, based on their
strengths and weaknesses.

The diagram is constructed to be both extendable and interpretable, allowing
new criteria to be incorporated without altering the core logic, and ensuring
consistency in decision-making during the planning phase of performance testing.

For instance, in a scenario involving a complex API with high concurrency
(over 500 simultaneous VVUs), the need for realistic think time, and integration with
Jenkins, the decision diagram leads to selecting JMeter due to its robust load-
handling capabilities and native support for CI/CD pipelines. In contrast, for
performance testing a lightweight API involving fewer than 50 users and simple
GET/POST requests, with the ability to share results using a Ul and cloud, the
diagram suggests Postman as the more efficient choice.

The proposed decision-making diagram provides a structured approach for
distributing performance test scenarios between two tools, Postman and JMeter,
based on defined scenario parameters and tool capabilities. This contributes to
reducing subjectivity in tool selection by replacing ad hoc decisions with
transparent, criteria-driven logic.

In practical terms, the diagram enables efficient use of both tools: lightweight or
low-load scenarios can be quickly executed using Postman. In contrast, more
complex or high-load scenarios are directed to JMeter. This selective allocation
helps reduce test execution time and unnecessary overhead, improves overall testing
efficiency, especially in projects with limited time or resources.
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5 Discussions

The proposed decision-making diagram addresses the lack of formal criteria for
selecting performance testing tools in practical settings. By providing a structured
approach based on scenario characteristics (load, think time requirements,
collaboration needs, etc.), the diagram helps reduce subjectivity and improve the
efficiency and consistency of test planning.

The developed approach can be helpful in development teams with mixed tool
stacks (JMeter and Postman) where decisions on tool usage are often ad hoc. It can
be embedded into test management workflows as a decision-support mechanism.

Unlike existing tool comparison matrices or benchmark studies, the proposed
diagram integrates context-sensitive decision logic, allowing assessment based on
test scenario attributes rather than static tool capabilities.

While the proposed decision-making approach provides a structured and
repeatable approach for allocating performance test scenarios between different
tools, several limitations should be acknowledged, such as limited tool scope (the
approach currently considers only Postman and JMeter tools), the decision logic
does not dynamically adjust the weight or priority of individual criteria based on
project-specific needs or context, and the diagram does not incorporate empirical
performance data (e.g., response time, error rate, CPU/memory usage of test
execution) that could further inform the selection process.

6 Conclusions

The developed decision-making approach offers practical value by providing a
structured and transparent framework for assigning performance test scenarios to
the most suitable tools based on objective criteria. In practice, the selection of
performance testing tools is often driven by subjective preferences, prior
experience, or ad hoc judgments, which can lead to inconsistent tool usage,
suboptimal test configurations, or even inaccurate test results.

The developed approach supports simple standardization of tool selection across
teams and projects. This is especially beneficial in collaborative environments,
where multiple stakeholders (e.g., QA engineers, DevOps specialists, project
managers) participate in test planning and execution. The approach can serve as a
reference, reducing ambiguity and supporting decisions aligned with scenario-
specific requirements, thereby increasing both the transparency and reproducibility
of the test process. Furthermore, the approach enables decision-making at an early
stage during test planning, allowing better resource allocation and minimizing the
risk of rework caused by choosing inappropriate performance test tools. The
decision-making diagram facilitates the distribution of performance test scenarios
between Postman and JMeter, enabling the rapid execution of simple tests using
lightweight tools and delegating complex or high-load scenarios to more robust
solutions, thereby improving overall testing speed and resource utilization.
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Anomauin. Y cmammi 30cepeddiceno yeazy HA CUCMEMHOMY AHAI3i Mempuk
mecmysants npoOYKMUGHOCMI 3 0COONUBUM AKYEHMOM HA NOPIGHAHHs NOBEOIHKU
080X WUPOKO 3acmocogysanux iHcmpymenmie — Postman ma JMeter — y
Konmexkcmi nyoniunux npukiaouux npocpamnux inmepgeticie (API). Tecmysanmus
npodykmusnocmi APl gidicpac  KpumuuHo 6adCIUBY POAb 8  OYIHIOGAHHI
8i02YKY8aHOCMi ma HAOIUHOCMI CYYACHUX NPOSPAMHUX CUCMEM; 0OHAK OOHIEI0 3
NOCMIUHUX NpobAeM 3aTUUAEMbCA ONOPA BUKTIOYHO HA CepeoHill 4ac 6i02yKy.
Cepeoni 3nHauenns 1e2ko CnomeopIolOmMbCsl AHOMALLHUMU BUKUOAMU, SIKI YaCmo
MACKYIOMb CYMMESL 3ampumKy. 8i0N06I0i ma npu3go0sims 00 HENOSHOI KapmuHu
npodykmusnocmi  cucmemu. [lJo6 nooonamu ye obMedceHHs, Yy  OAHOMY
00CIONCEHHT HA2ONOULYEMBCSL HA GUKOPUCMAHHI AHANIZY HA OCHOGI NepPYeHmuie,
wo 3abesneuye mouHiwull | OpIEHMOBAHUL HA  KOPUCMYBAYA NOKAZHUK
npodykmugHocmi 0 Oinbuwiocmi 3anumis. Memooonozis nepedbauana nopieHsHHs
CepeOHixX 3HAYEeHb YACy 8I02YKY 3 PO3NOOLIAMU NEPYEHMUTNIB, 3 OCHOBHOIO Y8A2010 00
90-20, 95-20 ma 99-20 nepyemmunie. /fooamxogo 0Oy10 06uUUCIEHO 8i0COMKOGe
BIOXUNIEHHA 3HAYEHb NePYEeHMUNi8 6I0 CepeoHb020, WO CLYeYy8an0 Mipoi
cmabinvhocmi iHcmpymenmie mecmysanus. Taxui nioxio 003601ue Oiibl HAOTIHO
OYiHUMU NOBEOIHKY THCIMPYMEHMIE 3a PI3HUX HAeanmadicenv. Excnepumenmanvhi
pe3yibmamu  GUABULU  GUPA3HI  nepesazu  KOJCHO20 IHcmpymenma. Postman
NnpoOOeMOHCMPY8A8 Kpawji pe3yibmamu 3a cepeoHbo20 PIi6Hs HABAHMAICEHHs OISl
sanumig Create ma Delete. Boonouac JMeter eusiguecs Oinbui egpexmunum Oist
onepayiii Read (GET) ma Update, de cmabinvuicme i nepedbauyséauicmv €
KPUMUYHUMU Y CKAAOHUX cucmemax. st niOmpumku npaKmu4Ho20 3acmocy8anisl
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y pobomi maxodic 3anponoHoano 0iazpamy NPUlHAMMmMs piuieHs, wo o0onomazae
PpO3nOOinAmMY  mecmosi  cyeHapii  Mixc 080Ma  IHCMpYyMeHmamu, 3peumoro
niosUWYIOYU eeKmUHICbG Mecmy8anHs ma 3abesneuyrouu Oilbil HAOIIHY OYIHKY
npooykmuenocmi API.

Knwwuosi  cnosa: mecmysanusi  npodykmugnocmi, — mecmyeanus — API,
HABAHMADICYBATIbHE MeCMY6anHs, cmabinbnicms cucmemu, Postman, JMeter, ananiz
uacy 6i02yKy, nepyeHmuibHi MEmpuK, OYiHIOBAHH NPOOYKMUGHOCHI, NPULIHAMMA
piwens, mecmy8anus npozpamHo2o 3abesneyenis
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Anomauia. I[a poboma poszensdae nomeuyian nio8uwWeHHs epeKmusHocmi
ineenmapuzayii ma ymunizayii 6i0xo0ig 6i0 Oyoienuymea ma demonmadcy (BB/I)
Ol CMBOPEeHHsT ma 3ACMOCY8AHHA K 6MOPUHHUX pecypcie nid uac 6i06y0osu
NOWKOONCEHOT TH@pacmpykmypu, 30kpema 00 ’exmis, 3pyuHoanux eiliHow. Lle
00CA2AEMbCSL UTSAXOM PO3POOKU THmeaeKkmyanvHoi ingpopmayitnoi mexnonoeii (IIT).
Axmyanenicme — @upiuienHs — Ybo20 ~ NUMAHMA — NIOKPECNIOEMbCA — MUM, U0
BEUKOMACUMAOHA 8i00Y008a NOUIKOONHCEHOT IHGPACMPYKIMYPU BUMALAE 3HAYHUX
sumpam GIMYUBHAHUX Ma [HEeCMUYIIHUX NePBUHHUX pecypcie. 3 0210y Ha
HeMuHyyuli Oegpiyum yux pecypcie, po36UmoK PUHKY GMOPUHHOI CUPOBUHU Md
MOJICIUBICMb  GUIYVYEHHA YIHHUX Mmamepianié 3 NOMOKi@ 6i0x00ie 0asa  ix
eeKmuHo20 NOGMOPHO20 GUKOPUCMAHHA CMAIOMb HAO3BUHANIHO  6AXCTUBUMU.
Ananiz 0ocgidy esponericokux Koiez w000 epexmusnozo 6nposaddicents Oisnec-
MOOeni YUpKyIApHOT eKOHOMIKU Ol NOOONAHHA OOMeXHCeHb Y SUKOPUCIAHHI
NepeuHHUX pecypcie niokpecnioc HeoOXioHicms pospooku IIT ons ineenmapusayii
ma ymunizayii BE/[. IlonepeoHiii 00csio po3podrnuxkis exazye Ha me, wo IIT modce
oymu  peanizogana sk  eeoingopmayitina cucmema (I'IC), wo 0o38onie
i0enmupixysamu 06 'ekmu ingpacmpyxmypu uepes 06azy oauux. Pospobnena 6asza
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