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Abstract. Enhancing the reliability and economic efficiency of marine vessels
requires the development of failure prediction tools capable of accounting for real
operating conditions and equipment degradation processes. This paper presents an
integrated approach to the quantitative assessment of the reliability of key
components of a ship’s power plant (SPP) over a 25,000-hour operational interval.
The methodology combines probabilistic, degradation-based, and simulation
models while incorporating operational parameters such as temperature, relative
load, and maintenance intervals. Four classes of failure models are developed and
compared: an exponential model, a variable-intensity model (non-stationary
Weibull process), a four-state Markov scheme, and an event-driven Monte Carlo
simulation model. The calculations are performed for the main engine, generator,
cooling system, and shipboard power station. The root mean square error (RMSE)
of failure prediction was 0.05 for the simulation model, 0.08 for the Markov model,
and 0.12 for the exponential model. An integrated model quality criterion
incorporating RMSE, AIC, BIC, and x2 confirmed the advantage of the hybrid
simulation-Markov approach. A comparative economic analysis showed that
regular maintenance at 5,000-hour intervals reduces total costs by more than 4.5
times compared to reactive repair strategies. The practical value of the method lies
in its applicability within digital twins and intelligent decision support systems.
Future developments include expanding the component base of the model,
integrating with real-time data streams from ship monitoring systems, and applying
machine learning techniques for automatic parameter adjustment.

Keywords: predictive diagnostics; digital twin; remaining useful life; interval-
based maintenance; Markov model; simulation forecasting; economic failure
assessment

1 Introduction

Modern ship’s power plants operate under elevated operational loads, thermal and
vibrational stresses, which necessitate reliable prediction of their technical condition
and maintenance requirements [1, 2, 3]. As the duration of autonomous voyages
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increases and onboard power systems become more complex, the demands for fault
tolerance and cost-effective maintenance continue to grow. Under these conditions,
an integrated approach to long-term reliability assessment of SPP components
accounting for degradation, probabilistic failure characteristics, and operational
influences becomes especially relevant [4].

In recent years, there has been a growing interest in the digitalization of
technical diagnostics in the maritime industry [5]. One of the key directions in
modern monitoring is the use of digital twins, which enable near-real-time modeling
of marine systems and prediction of potential failures. While this study does not
focus on the development of a digital twin as a software platform, it does establish a
mathematical foundation for its prognostic module. The developed models
incorporate physically interpretable dependencies of failure intensity on operational
factors. In particular, the model integrates temperature effects (e.g., via the
Avrrhenius exponential function for generators), load-related parameters (coefficients
reflecting nominal value exceedance), and environmental conditions (e.g., salinity
and coolant temperature for the cooling system). These dependencies are
implemented as parameterized functions calibrated against field data and reflect key
degradation mechanisms such as thermal aging, fatigue damage accumulation, and
aggressive environmental exposure. Zocco et al. [6] emphasize that digital twins
allow integration of monitoring data with predictive algorithms; however, the
practical implementation of such solutions remains limited, in part due to the
absence of a unified methodology. Stadtmann et al. [7] demonstrate the application
of digital twins for offshore wind turbines, highlighting the potential of the
technology, though the focus is primarily on renewable energy rather than marine
systems. Special attention in the literature is given to the use of machine learning in
diagnostics and prediction of equipment condition. Polverino et al. [8], in a
systematic review, show that machine learning methods are successfully applied for
estimating remaining useful life (RUL) and anomaly detection. However, these
approaches are often detached from real risk evaluation and cost considerations.
Studies focusing on the integration of digital solutions in the maritime sector, such
as Kaklis et al. [9] underscore the need for comprehensive analysis encompassing
not only failure modeling but also lifecycle management. Some research highlights
the resilience of ship systems under intensive operation. Nezhad et al. [10] stress the
importance of predictive maintenance based on big data analysis, while also noting
the lack of quantitative models that consider both degradation dynamics and the
economic consequences of technical decisions. Similarly, Mavrakos et al. [11]
propose digital tools to support energy-saving strategies, pointing to the need for
adaptive models capable of considering operational constraints. Additional recent
studies support the relevance of a systemic approach to the prediction of technical
condition in marine components. Liang et al. [12], in a review from a classification
society perspective, emphasize that implementing prognostics and health
management (PHM) methods requires integration of degradation models with
regulatory frameworks. Han et al. [13] demonstrate how a variational autoencoder
based on LSTM can detect marine component failures; however, their model is
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mostly oriented toward anomaly detection rather than quantitative reliability
prediction. Xiao et al. [14], in their PHM research for industrial assets, propose a
digital twin architecture that combines remaining life prediction with risk-based
maintenance planning - a concept applicable to marine systems as well. Finally, Cui
et al. [15] develop a digital twin for a marine diesel engine and demonstrate its
capability to enhance maintenance efficiency and reduce downtime, though their
focus lies in platform-level integration rather than formal reliability modeling.

A review of current publications shows that despite the active development of
digital diagnostics technologies, the issue of long-term reliability of SPP
components under real-world wear and overload conditions remains insufficiently
addressed. Moreover, there is a noticeable lack of studies that integrate failure
prediction with economic evaluation of maintenance strategies. Unlike most
existing research focusing on localized degradation scenarios or isolated diagnostic
aspects, this article centers on the holistic integration of reliability and economic
analysis, providing a foundation for informed decision-making under real marine
operating conditions.

This study aims to fill this gap by offering a comprehensive analysis of the
reliability of core SPP components over a 25,000-hour operating horizon. The
approach is based on simulation modeling, Markov processes, and degradation
models that account for wear dynamics. Special attention is given to the influence of
operational factors (load, temperature, maintenance intervals) on failure probability,
as well as the comparative economic efficiency of various maintenance strategies.
The results obtained can be used in the development of predictive maintenance
programs, resource planning, and life cycle optimization of equipment in marine
engineering.

The objective of this study is to develop and justify an integrated approach to
the long-term reliability analysis of SMPP components, taking into account
degradation dynamics, the influence of operational factors, and the economic
efficiency of maintenance strategies.

To achieve this objective, the following tasks are addressed:

1. Develop mathematical models for reliability prediction of SPP components,
including exponential, degradation-based, Markov, and simulation-based
approaches applicable to extended operational intervals.

2. Describe and implement component-specific failure rate dependencies on
operational factors such as mechanical load, temperature, and maintenance
parameters.

3. Construct a hybrid Markov—degradation model accounting for transitions
between technical states (operational, degrading, pre-failure, and failed), with
parameters that depend on accumulated wear.

4. Implement simulation modeling of operational scenarios using the Monte
Carlo method to estimate the distribution of failure times and the variability of
technical life.
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5. Formulate a model selection criterion that combines prediction accuracy
(RMSE), information-theoretic metrics (AIC, BIC), and agreement with empirical
data (y?).

6. Evaluate the economic efficiency of different maintenance strategies by
comparing total costs under regular and reactive servicing regimes for key
components.

7. Develop recommendations for model application based on operating
conditions and data availability, and assess their applicability as part of prognostic
modules in digital decision support systems.

2 Materials and Methods

The objects of this study are the key components of the SPP, including the main
engine, generator, cooling system, and shipboard power station. These elements are
subject to long-term wear, vibrational, and thermal loads, which makes the analysis
of their reliability over an operational interval of up to 25,000 hours particularly
relevant. This duration is typical for resource planning and scheduled maintenance.

The initial data for the analysis are generalized statistical records of failure
frequencies documented in maritime practice and technical literature, including the
OREDA failure databases. Additionally, typical operational modes, maintenance
intervals, and expert assessments reflecting the influence of load and temperature
conditions on equipment degradation were taken into account.

Four different approaches were used to model reliability. The exponential model
served as a baseline and assumed a constant failure rate, without accounting for
wear accumulation. More realistic scenarios were described using analytical
degradation models, in which the failure intensity increases over time following a
power-law relationship. The third method involved a Markov model that represents
probabilistic transitions between technical states from operational to degrading, then
to pre-failure and failure states. Finally, simulation modeling was applied to
reproduce complex operational conditions and to construct failure scenarios under
the stochastic nature of external influences. Within this approach, modeling was
implemented using the Monte Carlo method with variation of operational
parameters.

The comparative accuracy of the listed models was assessed using the root mean
square error (RMSE), which allows for a quantitative comparison of forecasts
against reference scenarios. The analysis results showed that simulation modeling
demonstrated the lowest error, whereas the exponential model exhibited the greatest
deviations over extended operational periods.

Special attention in the study was given to analyzing the influence of
operational factors on the reliability of SPP components. Three key factors were
considered: load regimes (nominal, elevated, emergency), thermal impacts (coolant
temperature, oil temperature, cylinder gas temperature), and maintenance frequency.
Graphs were constructed showing the dependence of reliability on each of these
factors, and components were ranked according to their sensitivity to various
operational conditions.
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Finally, an evaluation of the economic efficiency of different maintenance
strategies was conducted. Two scenarios were compared: absence of preventive
measures and regular maintenance at 5,000-hour intervals. The calculation included
both direct costs of failure remediation and indirect losses associated with forced
downtime. The results showed that a systematic maintenance approach reduces total
costs by a factor of 4 to 5 compared to a reactive maintenance model.

The proposed methodological approach enables not only the assessment of MPP
component reliability over a long time horizon, but also the justification of
economically efficient maintenance decisions based on modeling, statistical data,
and simulation scenarios.

3 Results

To assess the long-term reliability of SPP components, the following reliability
prediction models are used: exponential reliability model, applied to components
with a constant failure rate, where the probability of failure depends only on
operating time; degradation models - account for the accumulation of damage and
changes in failure intensity over time; Markov failure model - tracks transitions of
components between different operable states, considering probabilistic changes;
simulation-based reliability models used for analyzing long-term operational
scenarios, simulating the impact of various operational factors.

Exponential model with a constant failure rate. For components operating under
stable conditions without pronounced degradation or aging, the simplest failure
model based on the exponential law is applicable. This model describes non-
repairable processes with a constant failure rate A, which corresponds to the steady-
state operational phase where the failure intensity is assumed to remain constant
[16]:

R(t) = e_/1t ] tzoa
where R(t) is the probability of failure-free operation at time t;
A is the failure rate (h™!), assumed to be constant over time

The parameter 1is estimated based on the total operating time Tr and the
number of observed failures k during this period. A biased maximum likelihood
estimator is used [13]:

~ k . Kk
/1:1_71 Var[l]=_|_—2

z D)

Based on the estimated failure rate, the mean time to failure (MTTF) is
calculated using the formula:
MTTF,, :i
A
Despite its simplicity, the exponential model serves as a useful baseline for
comparison with more advanced approaches. It is applied, in particular, to
components with high reliability operating under stable conditions. However, this
model does not account for degradation processes, recovery after failure, or
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L]
variations in operating loads, which limits its applicability for long-term prediction
under real marine operating conditions.

Degradation models for SPP equipment

The long-term reliability assessment of SPP components requires the inclusion
of damage accumulation processes. In this study, component-specific degradation
models are applied, reflecting the dependence of failure rate on time and operational
factors.

General approaches to degradation modeling

The failure rate of a component at time t, denoted A(t), is modeled using various
functional forms:

Alt) = A, + at”,
where A, - initial failure rate att = 0, reflecting baseline component quality [1/h];

a - degradation growth coefficient (h'-hP);

S - power-law exponent (f>1 - indicates accelerated degradation, p<1 -
indicates deceleration);

a, B - parameters obtained by regression on failure data

Weibull-Based Degradation Model (NHPP):
BlLY"
;i’deg (t) = 6(6j ’ ﬂ >1

Parameter estimates are obtained using the maximum likelihood method:

n n -1
R ZIg t s A 13,
p=| 12 | ®=[niz_l:ti

St/
i=1

Combined load and temperature model:

AL, LT) = 20[1+ kL(%mmjm}exp{T T}

where L - relative load (0...1);

T - current operating temperature of the working medium (°C);

Lnom, Tref - Nominal values of load and temperature;

m,kL,;7 - calibration parameters obtained from experimental data

The degradation of SPP equipment depends simultaneously on load and

temperature. The rate of damage accumulation or increase in failure intensity is not
constant but is a function of operational impacts. In the main engine, degradation
affects the piston group, crankshaft, and cylinder liners. The load is characterized by
propeller resistance torque, overload, and rotation frequency. Temperature-related
factors include oil, combustion gases in the cylinders, and cooling water. Elevated
oil temperature reduces viscosity, accelerates wear of journal bearings and

)%f
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L]
crankshaft surfaces, increases clearances, and leads to higher vibration levels - all of
which contribute to engine failure.

In the cooling system, degradation affects heat exchangers, pumps, and pipe
joints. The load is defined by pressure differentials and start-stop frequency. The
critical external parameters are seawater temperature and overheating of the
circulating water. These factors promote scale formation, corrosion, cavitation, and
loss of tightness. Thus, the degradation model for the cooling system depends on
both temperature and environmental aggressiveness.

In the generator, degradation primarily occurs in the stator/rotor windings,
insulation, and bearings. The winding temperature governs insulation aging. Load is
defined by overcurrent conditions and frequent on/off cycles, which accelerate
thermal aging and thermal cycling, leading to insulation breakdown.

For each subsystem of the SPP, a dedicated degradation model is applied that
accounts for the corresponding operational impacts (mechanical, thermal, electrical,
etc.) using a generalized functional form of the failure intensity 4z, X;), where X; is
the vector of external influences on the i-th component.

Main engine (ME) [16]:
Aue = o +pt)[1+ (S ) }exp 07Tt~ Te)}

where p - coefficient of failure rate growth with runtime (h™2);
Toil - il temperature (°C);
A, - baseline failure rate
An integral wear accumulation model is also used:
z(t) = LO" +a,-explb- (T —Tom)] A1) = 4, +2(1))
Cooling system (CS) [17]:
ﬂcs = ﬂo . [1"' kT (TCW _To )a Il"' kNaCICNaCI ]1
where Tcw - temperature of the circulating water (°C);
To - reference temperature;

Cnaci- salt concentration (ppm);
kr, knact, ¢ - empirical parameters

Generator (GEN):

Acen =%9XD{E'°‘ (.IEL_T:L }:l(l"‘f'%nom)‘

pL\'w

where Tw- winding temperature (K);
Ea - activation energy of insulation aging;
kg - Boltzmann constant;
I - load current;
& - overload coefficient;
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Tw, Trer- winding temperature and reference (baseline) temperature (in Kelvin)

Ship Power Station ((1ISO 12110-2:2013 Metallic materials) [18]:
Asps = Ao 1, -v(t)21+af - (),
where w(t) - vibration amplitude;
f(t) - switching frequency (on/off cycles);
a,,a, - empirical parameters reflecting the impact of vibration and

switching loads

The proposed models allow: accounting for the influence of operational factors
on component reliability; flexible adaptation to different subsystems and operating
conditions; easy integration into simulation and Markov-based prognostic
frameworks; suitability for implementation in predictive modules of digital twins.
Model parameters are identified based on field data (failure logs, OREDA, onboard
recorders), and accuracy is validated using RMSE, y?, and information criteria such
as AIC/BIC.

Markov model

The Markov model describes transitions between states:operational —
degrading — pre-failure — failure.The transition probability matrix Pj; is
constructed based on historical data. A SPS component is modeled as a Continuous-
Time Markov Chain (CTMC) with four states:

S = {0 — operational, 1 — degrading, 2 — pre-failure, 3 — failure}.

The infinitesimal intensity matrix Q (Hoyland & Rausand, 2004) [19]:

(o +70)  m 0 Yo
4X4
Qo —(,+v)  n R
0 0 —¥z ¥z
0 0 0 0

where po,u1 - gradual degradation transitions: 0 — 1 and 1 — 2;
yo,y1,y2 - abrupt failures from states 0, 1, and 2, respectively

Mean Time to Failure (MTTF) [19]. For stationary Q, MTTF is computed using
the fundamental matrix N:
MTTFc = e;)r € (_ 3_><13 )]-v
where Qsxs - upper left 3x3 submatrix of Q;
17=[111]. - vector of ones;
e = [100] - initial state vector (component starts in operational state)

Non-stationary (degradation-based) CTMC. In this case, transition intensities
depend on accumulated wear z(t):

z(t) = q(L(1), T (1)), z(0),
o) = p5l+a- 2] 7o () =y 1+ B-z(1)]
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where ((-) - function linking current load L(t) and temperature T(t) with wear
accumulation;
Uy, 7, - nominal failure intensities under base conditions;

o, - degradation acceleration coefficients

General CTMC definition. A Continuous-Time Markov Chain is defined by: a
state space S = {0, 1, 2, ..., n}; a transition intensity matrix Q = [q;], where: g; >0
if i #, representing the transition intensity from state i to state j; g; =—># qy, i.e.,
the diagonal elements are negative and equal to the negative sum of outgoing
intensities

Interpretation of f:

B<1 - decelerated increase in failure intensity (e.g., under passive degradation);

B=1 - linear increase: failure rate grows proportionally with time;

B>1 - accelerated increase: typical for fatigue, aging, fouling, and wear

The parameters a and S reflect the physics of degradation and are either
assigned empirically (based on operational data) or calibrated via regression.

When Q = Q(t), the state probabilities are determined by a time-ordered matrix
exponential:

t
P(t)=e] -T-exp([Qt)dt), R(t) =1—[P(1)],,
0]
where T - time-ordering operator;

t iti HH oS
T -exp(_[Q(t)dt) cR™ " transition probability matrix;
o

[P(t)], -probability of being in the absorbing “failure” state

Numerical computation is performed using piecewise constant interval
approximation or the uniformization algorithm. A stationary CTMC is
recommended for stable conditions, while a non-stationary model is better suited for
variable loads and temperatures.

Simulation-Based Model

The simulation model is implemented using the Monte Carlo method [20] with
N = 10,000 runs. In each simulation run, the following variables are randomly
sampled: L - relative load (as a fraction of nominal); T - operating medium
temperature; ATO - preventive maintenance interval.

The simulation aims to compute: estimated reliability function ﬁsim(t);

Expected failure rate 2, (t); accuracy metrics (e.g., RMSE) by comparing

predictions to observed data.
For the j-th run (j =1, ..., N), the condition vector is formed:
X (D :(L(j),T(j)'ATO(j))’
where (|_(J'> T, ATO(”) are drawn from empirical distributions based on
operational logs
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The failure intensity function is selected accordingly:
XD (t) = f (X(”,t),

A composite model selection criterion ¥ is used, minimizing a weighted sum of
RMSE, AIC, BIC, and 2 This ensures a balanced evaluation of prediction
accuracy, model complexity, and statistical fit over long-term reliability forecasts.

Random sequences of load and temperature are modeled as Rainflow
histograms:

Cyclegrams of the form (Ljk, zj) (k=1...Kj) are generated. Then:

1. Cumulative fatigue damage (Miner’s rule) is calculated:
K (1)
. itVt .
DD (t) = J/ N (L)=K-L™>
® kZ:;, NG (L) ¢ (L)
2. A failure is recorded if D(t) =1, or if the simulation reaches an absorbing
failure state in the CTMC.
3. N = 10* Monte Carlo runs are executed to estimate ésim(t) and confidence

bounds.

Model selection criterion. For each subsystem, the following were computed:
RMSE, AIC, BIC, and yx? [21], reflecting the model’s agreement with observed
failure statistics.

The composite criterion:

4
v = 0,RMSE + 0, AIC + »,BIC + wA;(Z,Za)i =1
i=1
where c; - weights are set by experts, provides a balanced selection of the optimal
model based on:
RMSE - accuracy of failure prediction on test data;
AIC - tradeoff between goodness of fit and model complexity;
BIC - Bayesian Information Criterion;

x2 - goodness-of-fit test comparing model predictions to actual failure
observations

The combined criterion ¥ enables the justified comparison of models with
different structures, allowing for a balanced evaluation of accuracy, complexity, and
realism. It supports a transparent selection of the most suitable failure prediction
model for SPPs. In this study, the generalized criterion ¥, which integrates
prediction accuracy, information criteria (AIC/BIC), and agreement with field data,
was used for optimal model selection.

Economic validation. For the main engine, as the most critical unit, a life-cycle
cost model was constructed:

C= CTO (A)+ Crep + Cdown [1_ R(t)],
where Cro (A) - scheduled maintenance costs with interval A;
Crep” capital repair costs;

Cyoun - downtime losses associated with unrealized reliability levels
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The optimal value of A was found numerically. Regular maintenance every
5,000 hours reduces total costs by 4-5 times compared to a reactive repair scenario.
The integral criterion ¥ confirms the superiority of the simulation-based scheme
across all SPP components. This method accounts for the nonlinear effects of load
and temperature, allows for the construction of reliability confidence intervals, and
enables economic optimization of the maintenance schedule.

The application of four different reliability modeling approaches is not
redundant but rather a necessary strategy, driven by the diversity of technical
conditions, operating regimes, and required prediction accuracy. First, each model
targets its specific domain of applicability.

The exponential reliability model is effective for components in the stable
operation phase, with constant failure intensity. It is easy to implement and
applicable when data availability is limited.

Degradation models allow for the consideration of damage accumulation and
changing failure intensity, which is critical for components exposed to variable
loads and temperatures, fatigue, or aging.

Markov models are useful when there is a need to describe discrete health states
from operable to failed accounting for intermediate transitions with different
probabilities. Simulation models provide the capability to analyze complex
operational scenarios involving multiple random factors, such as load cyclegrams,
maintenance intervals, temperature variability, and environmental aggressiveness.
Second, model choice directly impacts prediction accuracy. The comparative
analysis showed that RMSE values can vary by more than a factor of two between
methods, and a model yielding the best accuracy for one component may be
unsuitable for another. The composite criterion ¥, combining RMSE, AIC, BIC, and
y2, confirmed that there is no universally superior model. Third, maintaining
multiple models allows for flexible adaptation to the available data, the criticality of
the equipment, and the required prediction horizon. In a practical maintenance
system based on a digital twin, the use of a model bank enables automatic selection
of the most appropriate model type for each component and current operational
condition. In summary, the proposed approach is based on the integration of four
predictive models: exponential, degradation-based, Markovian, and simulation-
based. Their comparative analysis made it possible to evaluate the advantages and
limitations of each method. As a result, the simulation model was chosen as the core
computational scheme, providing the best balance between accuracy, adaptability,
and realism. This makes the proposed reliability forecasting system not only
scientifically grounded but also practically applicable under real-world SPP
operating conditions.

The comparative analysis of the reliability models presented above allows us to
move from theoretical justification to their practical evaluation. At this stage, we
consider the specific results of applying each model to the key components of the
SPPs under various configurations of input parameters and operating scenarios. To
this end, calculations were carried out using a unified set of metrics (RMSE, AIC,
BIC, y?), and a quantitative assessment of the probability of failure-free operation
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over 25 000 hours was performed. For each piece of SPP equipment-the generator,
the main engine, the cooling system, and the electrical power unit—reliability
forecasts were generated and compared with the actual failure statistics.
Table 1
Comparison of different reliability prediction models

Prediction model RMSE Forecast accuracy
(%)
Exponential distribution 0.12 85
Degradation models 0.07 91
Markov processes 0.08 90
Simulation (Monte Carlo) 0.05 95

Table 1 provides comparative data for four reliability prediction models applied
to SPP components: exponential, degradation, Markov, and simulation
(Monte Carlo). The evaluation criteria are the RMSE and the forecast accuracy on a
hold-out sample (as a percentage of actual observed failures). Exponential Model
(constant failure intensity) yielded the poorest performance: RMSE=0.12 and
forecast accuracy 85 %. This confirms its limitation when failures result from
accumulated wear or thermal degradation. It is best suited as a baseline model for
rough estimates of simple, low-wear components.Degradation Model (e.g.
Weibull-type with time-varying intensity A(t)=Aot+at™B) showed improved results:
RMSE =0.07 and accuracy 91 %. Its strength lies in capturing non-stationary aging
processes and the effect of loads on component wear. It is especially effective for
parts undergoing monotonic degradation—such as generators, heat exchangers, and
bearings.

Markov Model (discrete state transitions) achieved comparable accuracy:
RMSE =0.08 and accuracy 90 %. Its advantage is formalizing the phase structure of
degradation and accounting for both gradual and sudden transitions (e.g.,
“operational — degrading — pre-failure — failure”). It is well suited for diagnosing
and forecasting complex assemblies undergoing typical wear stages. Simulation
(Monte Carlo) provided the best performance: RMSE = 0.05 and accuracy 95 %. By
modeling many probabilistic scenarios-including variations in load, temperature,
and maintenance intervals-it captures the combined effects of multiple factors. This
method is ideal for components sensitive to operating regimes and systems where
failures arise from factor combinations. It also enables analysis of confidence
intervals and cost-consequences of failures. In summary, each model has its own
domain of applicability: exponential: for simple, stable components without evident
degradation; degradation: for parts with monotonic wear and damage accumulation;
Markov: for components featuring distinct degradation phases; simulation: for
complex systems under variable load and environmental conditions.

Figure 3.1 presents a graph that illustrates the results of comparing various
failure prediction methods based on the RMSE in reliability estimation of SPP
components.
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The simulation model demonstrates the highest accuracy. The degradation
model outperforms both the Markov and exponential approaches, confirming the
importance of accounting for cumulative wear when analyzing SPP components. To
systematically compare reliability prediction methods, it is reasonable to consider
three key criteria: whether the model incorporates a degradation mechanism;
whether it can represent discrete transitions between component states (e.g.,
"operational — degraded — pre-failure — failure"); forecast accuracy, expressed
through RMSE. Table 2 provides a comparative summary of these characteristics
and includes practical recommendations for the application of each model
depending on operating conditions and the required prediction horizon.

0.12

(RMSE)
o
=
o

0.08

0.06

0.04

0.02

0.00

0.12

Exponential Degradative Markovskaya Imitation

Figure 1. Comparison of reliability prediction models by root-mean-square error

Table 2
Comparative accuracy of reliability prediction models (by RMSE)
Prediction Accounts for Describes state Recommended
. L RMSE L
model degradation transitions applications
Exponential No No 0.12 Basic estimates,
preliminary
assessments
Markov Yes Yes 0.08 Mid-term forecasting,
transient state analysis
Simulation Yes Yes 0.05 Accurate long-term
modeling assessments, complex
operational scenarios
Degradation Yes No 0.09 Condition monitoring
models with known wear
(analytical) functions
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The comparison clearly shows that simulation modeling offers the highest
accuracy (RMSE =0.05). This is due to its ability to capture variability in operating
conditions, stochastic events, and cumulative degradation effects. As a result, this
method is especially effective for long-term reliability forecasting and residual life
assessment under complex operational scenarios. Markov models, while slightly
less accurate (RMSE = 0.08), offer a key advantage in structural clarity. They enable
formal representation of state transitions (“operational — degraded — pre-failure —
failure”) and are well-suited for rapid risk assessment. These models can be readily
integrated into onboard predictive diagnostics systems and are applicable when
moderate volumes of input data are available. Analytical degradation models
provide acceptable accuracy (RMSE in the range of 0.07-0.09) and are most
effective when there is a priori knowledge of wear mechanisms. Their use is
particularly appropriate when combined with environmental monitoring (e.g.,
temperature, vibration, chemical aggressiveness), allowing for modeling the
nonlinear increase in failure intensity. Despite its simplicity, the exponential model
poorly reflects the behavior of most SPP components over intervals exceeding
10 000 hours, as it does not account for degradation processes. Its use is justified
only for preliminary assessments or when no reliable data is available on the
component's condition. Therefore, the selection of a prediction model should be
based on a balance between: the availability of input data; acceptable model
complexity; the required forecasting horizon. In practical operational environments,
the most rational approach is a hybrid strategy, combining simulation modeling with
Markov processes. This allows for simultaneously capturing probabilistic dynamics
and concrete failure scenarios.

General reliability equation and parameter estimation

For all models considered, the reliability function R(t) is derived from the
following general equation:

—j’z(t)dt
R()=e ° ,
where R(t) is the probability of failure-free operation at time t;
A7) is the time-dependent failure rate function

This integral expression accounts for the cumulative impact of component
degradation over time.

With a constant failure rate A(zr)=4o , the model corresponds to the classical
exponential distribution. For components experiencing increasing wear, a power-
law dependency is used A(r)=4o(1+az”). In the Markov scheme, A(t) is equivalent to
the sum of outgoing transition rates from non-absorbing states. In the simulation
model, A(t)is calculated step-by-step for each operational scenario X0} The
parameters o, @, n, as well as the transition rates u, y, are calibrated using: the
OREDA field failure database; identification of CTMC parameters from operational
logs; prior dependencies (Bayesian networks) in the case of limited data. The
resulting reliability functions R(t) are used for: estimating the remaining useful life;
optimizing maintenance intervals; calculating economic losses due to downtime.
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Analysis of component reliability dynamics

Reliability assessment of SPP requires not only the estimation of overall failure
probability, but also an understanding of how reliability evolves over time under
operational stresses.

This subsection presents a comparative analysis of the behavior of key SPP
components over an extended operational period (up to 25,000 hours). Particular
attention is paid to the dynamics of the reliability function, failure frequency, and
the influence of load, temperature, and maintenance intervals on remaining useful
life.

Figure 2 shows the reliability dynamics of the main SPP components over
25,000 hours of operation. Figure 2 shows the evolution of reliability (function R(t))
for four key components of the SPP over a 0-25,000 hour interval, calculated using
Monte Carlo simulation (10,000 iterations) with variations in operational factors:
relative load, cooling medium temperature, and maintenance frequency. The graph
presents the probability of failure-free operation over time, obtained from the event-
driven simulation model. For each component, degradation scenarios were modeled
based on empirical distributions of operating parameters and failure intensity
functions calibrated from historical data.

1.0 1 1- Main engine
2 - Generator
3 - Cooling system
4- Ship power plant
0.8 4 PP P!

0.6

0.4

0.2 1

Reliability (probability of failure-free operation)

0.0
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(o] 5000 10000 15000 20000 25000
Operating time (hours)

Figure 2. Reliability dynamics of key SPP components

The main engine (ME) demonstrates the steepest reliability decline: from 1.0 to
approximately 0.3 by 25,000 hours, indicating the need for overhaul after 20,000
hours. The generator degrades more slowly, reaching approximately 0.45 at 25,000
hours, and its operational life can be extended with regular maintenance. The
cooling system is sensitive to thermal impacts: reliability drops to about 0.55 by
15,000 hours and to =0.35 by 25,000 hours, requiring preventive actions every
10,000-12,000 hours. The ship power station shows moderate degradation: by
25,000 hours, its reliability is around 0.42 sufficient for scheduled diagnostics
without urgent intervention. Thus, the primary candidates for accelerated
maintenance are the main engine and cooling system. The generator and ship power
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station require monitoring after 20,000 hours, when their reliability falls below 0.5.
The optimal interval for preventive repair for most components is between 10,000
and 15,000 hours of operation.

To quantitatively support the graphical trends presented in Figure 2, Table 3
provides the values of the reliability function R(t) for key SPP components at
critical stages of the operating cycle. These data are used for estimating remaining

useful life and for scheduling maintenance interventions.

Table 3 presents discrete values of the probability of failure-free operation R(t)
for the four main SPP components, calculated using Monte Carlo simulation with
10,000 runs. The model incorporated empirically determined distributions of load,
temperature, and maintenance frequency, along with failure intensity functions
calibrated against degradation data and state transition behavior.

These values complement the graphical interpretation in Figure 3.21 and enable
precise identification of critical intervals of reliability loss. The main engine and
cooling system reach R(t) <0.5 between 15,000 — 20,000 hours, while the generator
and ship power station remain reliable until approximately 23,000 — 24,000 hours,
after which they also require major intervention.

Table 3
Long-term reliability (failure probability) of SPP components
Time (h) Main engine Generator Cooling Shlpboar_d
system power station
0 1.00 1.00 1.00 1.00
5,000 0.93 0.96 0.92 0.95
10,000 0.85 0.90 0.82 0.87
15,000 0.70 0.78 0.68 0.75
20,000 0.50 0.60 0.52 0.58
25,000 0.30 0.45 0.35 0.42

The derived data can be directly applied for residual life estimation and
planning of maintenance schedules. The subsequent sections explore failure
frequencies under various operating modes and the impact of maintenance intervals
on component reliability.

Although the reliability function R(t) reflects the probability of failure-free
operation of components over time, an important complementary metric is the
normalized failure rate the expected number of failures per 1,000 operating hours
depending on operating conditions. This indicator provides insight into how rapidly
the risk of failure increases under varying external loads, thermal conditions, and
maintenance frequencies. It is important to note that the presented values are not
based on direct observations but represent average failure intensities obtained
through Monte Carlo simulation, accounting for usage scenarios under three modes:
nominal, high load, and emergency conditions.

Table 4 summarizes the simulated failure rates of SPP components under three
operational regimes: nominal, elevated load, and emergency conditions. These
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results, derived from simulation modeling, complement the previously presented
R(t) values, offering a more detailed perspective on component sensitivity to
operational factors. The resulting dependencies are used for comparative assessment
of component vulnerability and to justify the need for predictive maintenance
strategies when shifting toward harsher operation profiles.

Table 4
Failure frequency of components under different operating modes
Emergency
Component Nominal mode Increased load conditions
P (failures/1000 h) (failures/1000 h) (failures/1000
h)
Main engine 0.8 15 3.2
Generator 0.5 1.1 2.8
Cooling system 1.0 2.3 4.1
Ship power 0.6 14 30
station

Based on the data presented in Table 4, the following conclusions can be drawn.
The main engine shows a low failure rate under nominal conditions (0.8 failures per
1,000 operating hours), but this rate rises sharply to 3.2 failures per 1,000 hours
under emergency conditions, indicating high sensitivity to increased operational
loads. The generator demonstrates strong reliability in stable conditions (0.5 failures
per 1,000 hours), yet under emergency scenarios the failure rate increases fivefold
(2.8 failures per 1,000 hours), which emphasizes the need for enhanced monitoring.
The cooling system exhibits the highest sensitivity to operating conditions. Its
failure rate escalates from 1.0 to 4.1 failures per 1,000 hours under critical thermal
loads and hydraulic stress, highlighting the importance of timely maintenance. The
shipboard power station also experiences a decline in reliability under high loads,
although its resilience remains higher compared to the main engine, making it
relatively less vulnerable.

Following the assessment of overall component reliability and failure rates
across different modes of operation, it becomes essential to analyze the influence of
individual operational factors such as load, temperature, and maintenance intervals
on the time-dependent degradation of reliability. The modeling framework includes
the following variables: relative load (e.g., propeller shaft torque for the main
engine, current load for the generator); temperature conditions (e.g., oil temperature
for the main engine, coolant temperature for the cooling system, and winding
temperature for the generator); and the maintenance schedule, which determines the
accumulation of residual risk. The simulation scenarios span from nominal
operational parameters to overloads and emergency conditions. Based on these
inputs, reliability functions R(t) were computed using Monte Carlo simulation to
represent the system's aggregated response to variable environmental and
operational influences.

Figure 3.50 visualizes these dependencies, providing a clear picture of how the
reliability of shipboard power systems changes in response to variations in
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operational conditions. This analysis helps identify components that are more
vulnerable under elevated loads or thermal stress and supports decisions regarding
adaptive maintenance planning.

The simulation results presented in Figure 3 clearly demonstrate that the
reliability of SPP components varies significantly depending on operating
conditions. In nominal mode, with standard loading and normal thermal conditions,
the reliability function of the components remains above 0.80 during the first 15,000
hours, which corresponds to the planned operational phase without signs of
accelerated degradation. Under increased (intensive) load such as a ~20% rise in
propeller resistance or generator current the rate of failure intensifies: by 15,000
hours, the probability of failure-free operation drops to 0.55-0.60, which is 30-35%
lower than the baseline level. In emergency conditions a combination of overloads,
cooling water overheating (above 85 °C), and infrequent maintenance leads to rapid
deterioration R(t) falls below 0.40 as early as 12,000 —15,000 hours, and by 25,000
hours, reliability decreases to 0.20 — 0.25. This indicates critical wear and the urgent
need for major overhaul. Based on the results of the simulation model, the following
practical recommendations are proposed: adaptive load control: For the main engine
and cooling system, it is advisable to reduce operating loads by 10 — 15% when oil
or coolant temperatures increase.

1.0 4 1- Nominal conditions
A 2- Increased loads
N\ 3 - Emergency conditions

0.8 1

o
o

Reliability

0.4

0.2 4

0 2500 5000 7500 10000 12500 15000 17500 20000
Operating time (hours)

Figure 3. Influence of operational factors on the reliability of the SPP

This measure can extend the service life by 2,000 — 3,000 hours; justification of
optimal maintenance intervals: Simulation of various scenarios shows that reducing
the interval from 10,000 to 5,000 — 7,000 hours between scheduled maintenance
procedures decreases the total failure probability by 18-22% and lowers expected
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maintenance costs by more than four times; predictive replacement of critical
components - for components whose residual reliability drops to R = 0.50, a
condition-based replacement strategy is economically justified before actual failure
occurs. This particularly applies to the main engine bearings and cooling system
heat exchangers.

Thus, the chart in Figure3 not only confirms the quantitative influence of
operational factors on system reliability but also provides a foundation for justifying
adaptive maintenance strategies. These strategies make it possible to maintain the
reliability of the system at a safe level while minimizing total costs. For a
quantitative analysis of the long-term impact of operational conditions on the
reliability of SPP components, simulation scenarios were used to vary key technical
environment parameters. Table 5 presents generalized calculated data for three main
operational factors: vibration level (average vibration, in g); operating temperature
(characteristic for each component, such as oil, windings, coolant, etc.); and relative
load (percentage of rated capacity). For each component, the probability of failure-
free operation R(t) after 20,000 hours of service is also provided, based on a
degradation-simulation model.

These results enable a comparative analysis of the sensitivity of different SPP
subsystems to operational stressors. A visual representation of how maintenance
frequency affects reliability is additionally shown in Figure 3, which illustrates the
role of the maintenance interval as a distinct risk factor.

Table 5
Impact of operational factors on the reliability of SPP components
Component Vibration Temperature Load (% of | Reliability
(average (°C) nominal) after 20,0
level), g
Main engine 45 85 95 0.52
Generator 2.8 75 90 0.60
Cooling 3.2 90 80 0.48
system
Ship power 2.5 70 85 0.58
station

The analysis of the data presented in Table 5 shows that the reliability of SPP
equipment after 20,000 hours of operation is determined by the combined effect of
three key operational factors: vibration, temperature, and load. All values were
obtained using simulation modeling based on standard operating scenarios.
Vibration has a significant influence on the service life of equipment.

The main engine (ME) exhibits the highest vibration level of 4.5 g, reflecting
high mechanical loading and corresponding with a relatively low reliability value
(R=0.52). The cooling system, exposed to 3.2 g vibration, shows an even lower
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reliability (R=0.48), which can be attributed to its structural susceptibility to
cavitation and resonant effects. The generator (2.8 g) and ship power station (2.5 g)
experience the lowest vibration levels and demonstrate the best resource
preservation (R =0.60 and R =0.58, respectively). Temperature is the second most
critical factor. The cooling system operates at 90 °C, and the main engine at 85 °C
both indicating thermally stressed conditions that accelerate material degradation
and aging of working media. More moderate temperatures are observed in the
generator (75 °C) and power station (70 °C), correlating with their higher reliability.
In this context, temperature refers to oil, coolant, cylinder gas, winding, and ambient
temperatures. Their roles are further detailed in the explanation of the thermal factor
below.

Load, expressed as a percentage of nominal power, also has a statistically
significant impact. At 95 % load on the main engine and 90 % on the generator,
reliability is notably lower than in the power station operating at 85 %. Interestingly,
the cooling system despite operating at a relatively low load (80 %) exhibits the
worst reliability metric. This confirms that thermal and vibrational loads are the
dominant degradation drivers in its case. In summary, two component groups can be
distinguished: critically vulnerable: main engine and cooling system subject to
cumulative influence from all three factors, requiring early intervention and
shortened maintenance intervals; relatively stable: generator and ship power station-
operating under near-nominal conditions with extended resource longevity. It
should be emphasized that in the development of reliability models and maintenance
strategies, not only individual factors but their cumulative effects over time must be
taken into account. Even if one parameter (e.g., load) remains moderate, elevated
temperature or vibration alone can significantly reduce service life. This
underscores the importance of multi-parameter modeling tailored to the operational
specifics of each component. Temperature is among the most critical degradation
factors for SPP systems, with its impact depending not only on absolute values but
also on the specific application point: oil, coolant, cylinders, or windings. Table 6
summarizes the critical temperature thresholds for various media and components,
indicating the levels at which accelerated reliability decline begins and the
predominant types of failures observed under these conditions.

Based on Table 6, it can be concluded that each SPP component has a specific
critical temperature threshold, beyond which a qualitative change occurs in failure
mechanisms. For the main engine, oil overheating above 110 °C leads to reduced
viscosity, impaired lubrication, and consequently, accelerated wear of friction pairs,
specifically journal bearings, liners, and plain bearings. The cooling system loses
reliability at temperatures exceeding 95 °C, disrupting the thermal balance of the
entire installation. This promotes thermal aging and increases the likelihood of
cavitation.
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Table 6
Influence of temperature regimes on the reliability of SPP components
Component Critical temperature, °C Impact on reliability
Main engine (oil) >110°C Accelerated wear of
friction parts
Coolant >95°C Overheating, reduced
cooling efficiency
Gaseous medium in >500 °C Increased wear of the
cylinders piston group
Generator (windings) >120°C Insulation degradation,
risk of breakdown

When temperatures in the engine cylinders exceed 500 °C, carbon deposit
formation, thermal expansion, gas blow-by, and abrasive wear of the piston group
intensify. For the generator, winding overheating above 120 °C is critical due to
insulation aging, increased electrical resistance, thermal cycling, and ultimately,
dielectric breakdown. These findings provide a crucial foundation for constructing
temperature-dependent degradation models. Such models not only guide the
development of maintenance algorithms but also define maximum permissible
values in monitoring systems and help configure warning thresholds within digital
twin frameworks. Based on the data from Tables 5 and.6, it is evident that
vibrational stress and elevated temperature have the greatest impact on component
reliability. The cooling system is particularly vulnerable to degradation at
temperatures exceeding 85°C. In contrast, the generator and ship power station
demonstrate lower sensitivity to vibration.

To quantitatively assess the effect of maintenance frequency on equipment
reliability, a reliability function was derived as a function of the interval between
maintenance events. Modeling was carried out using an event-driven simulation
approach, with intervals ranging from 2,000 to 20,000 hours. The resulting
dependency is visualized in Figure 4, which illustrates the decline in failure-free
probability as the interval between scheduled maintenance increases.

The graph in Figure4 is based on the results of event-driven Monte Carlo
simulation (N=10,000) under averaged operational conditions derived from
Table 3.51. It illustrates the exponential decline of failure-free probability R(t) as
the maintenance interval increases: under baseline conditions of 1,000 hours,
reliability remains high (R = 0.95); under the economically optimal interval of 5,000
hours, it decreases slightly (R~ 0.90); but at 20,000 hours, reliability drops below
0.40 (RMSE of the forecast = 0.05). This trend is consistent with the results of Han
et al. [9]; however, our study further incorporates the economic impact: total
lifecycle costs increase from USD 5,300 (for 5,000-hour maintenance) to USD
26,200 (for 20,000-hour maintenance). Therefore, regular maintenance at intervals
no longer than 5,000 hours offers a rational compromise between maintaining high
system reliability and minimizing lifecycle costs.

355



INFORMATION CONTROL SYSTEMS AND INTELLIGENT
TECHNOLOGIES.
ADVANCES AND APPLICATIONS

2500 5000 7500 10000 12500 15000 17500 20000

Service interval (hours)

Figure 4. Impact of maintenance frequency on the reliability of SPP

Considering that vibration and thermal loads significantly accelerate
degradation (as demonstrated in Table 5), the main engine and cooling system are
particularly critical. For these components, it is advisable to adopt a shortened
maintenance cycle after 10,000 hours of operation.

Economic assessment of maintenance strategies

Given the identified relationships between reliability and operational factors, the
next step is to evaluate how preventive actions impact not only technical
performance but also the overall lifecycle costs of SPP equipment. To assess the
economic efficiency of different maintenance strategies, a comparative cost analysis
was conducted for two operational scenarios: reactive maintenance (repair after
failure only); scheduled preventive maintenance (every 5,000 hours). The main
engine was selected as the case study component, being the most cost-critical in
terms of failure consequences and downtime losses. The economic evaluation model
is structured as follows:

C = CPM (A) + Crep + Cdown [R(t)]’
where Coy (A) - denotes the cost of preventive maintenance at interval A;

Crp - direct costs of failure recovery;
Coun - 10sses associated with equipment downtime, which depend on the

re|

failure probability R(t) and the duration of recovery operations

In the reactive maintenance scenario, the number of failures over 25,000 hours
of operation averaged 12, with total costs (repair + downtime) reaching 26.2
thousand USD. In contrast, with regular maintenance performed at 5,000-hour
intervals, the number of failures was reduced to 4, and the total expenses amounted
to 5.3 thousand USD. Table 7 presents a summary of the economic comparison
between the two approaches. To formally compare these scenarios using key
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economic metrics, Table 7 below provides a comparison of failure frequency, repair
costs, downtime-related losses, and total expenditures.
Table 7
Comparative assessment of main engine maintenance costs under different
strategies (25,000-hour cycle)

Operation Number of | Repair costs Downtime Total costs
scenario failures Crep, losses Cdown, C, thousand
over 25,000 thousand thousand USD usbD
h USD
Without 12 5.8 204 (=12 h 26.2
regular downtime)
maintenance
With regular 4 1.9 34(R=2h 5.3
maintenance maintenance
(every 5,000 h) downtime)

As shown in the table, the scheduled maintenance strategy reduces the total
number of failures by a factor of three and the overall costs by more than 4.5 times.
At the same time, the equipment reliability at the end of the evaluated operational
interval remains above 90%, which is confirmed by the results of simulation
modeling using the reliability function R(t). The graph (Fig. 4) also demonstrates
that extending the maintenance interval to 20,000 hours leads to a decrease in the
probability of failure-free operation to 40%.

Thus, the economic evaluation confirms the practical effectiveness of
implementing preventive maintenance. The recommended interval of 5,000 hours
ensures an optimal balance between operational expenditures and the reduction of
failure risks. The proposed approach is scalable to other subsystems of the SPPs and
can be integrated into digital twins for dynamic optimization of maintenance
strategies in real time.

4 Discussion of results
The conducted study demonstrates the effectiveness of an integrative approach to
reliability assessment and the development of maintenance strategies for SPP
equipment. Unlike classical methods based on stationary assumptions (e.g., the
exponential model with constant failure rates), the proposed methodology combines
analytical degradation models, non-stationary Markov processes, and discrete-event
simulation modeling. This combination enables accounting for both damage
accumulation and the influence of variable operational conditions, including
vibration, temperature, and load regime.

Comparison with contemporary research confirms the relevance and scientific
soundness of the proposed approach. For instance, several studies (Mauro & Kana
[22]; Lv & Lv [23]) consider digital twins as a promising architecture for predictive
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control of maritime equipment. However, the authors emphasize the need for model
unification and the integration of physically interpretable parameters. The present
study meets these requirements: the reliability models are formalized, and the
degradation parameters are directly dependent on operational impacts. In the works
of Minchev et al. [24], digital twins are used for diagnostics and condition
monitoring of marine diesel units, but the aspect of economic feasibility of
maintenance is not addressed. In contrast, this study presents an evaluation of total
costs under different maintenance strategies, thereby enhancing the practical
significance of the results. The economic analysis conducted showed that switching
from a reactive to a scheduled strategy (with a 5,000-hour interval) reduces total
expenses by more than 4.5 times while increasing equipment reliability by 18-22%.
The reliability optimization methods proposed by Zhou et al. [25] are based on
particle swarm algorithms and are aimed at individual technological processes (e.g.,
cylinder block machining), without considering degradation dynamics during
operation. In this study, the parametric degradation model with four technical
condition states allows adaptation to changing conditions, reflecting the actual
behavior of equipment over a long operational interval. The review by Liang et al.
[26] highlights the lack of quantitative models capable of accounting for operational
impacts such as overheating and vibration. This limitation is overcome in the
present work: the developed reliability models incorporate temperature, load, and
vibration parameters as arguments of the failure rate function. The introduced
threshold values (e.g., 110°C for oil, 120 °C for windings) are consistent with
simulation results and may serve as the basis for automatically generating warning
signals in digital twins. The work by D’Agostino et al. (2020) [27] is devoted to
multiphysical modeling of ship microgrids in real time, but it lacks a reliability
analysis component. The present study can be integrated into such systems,
complementing them with residual life assessment and maintenance schedule
optimization modules.

One of the key results of the study is the quantitative comparison of four
reliability forecasting models. The simulation model demonstrated the highest
accuracy (RMSE =0.05), which is 33% better than that of the Markov model (0.08),
and 58% better compared to the exponential model (0.12). The integrated metric ¥,
combining RMSE, AIC, BIC, and 2 with expert weights, confirmed the superiority
of the hybrid model, demonstrating that accounting for the temporal dynamics of
operational factors and degradation processes significantly improves the accuracy of
long-term forecasting. Moreover, the study revealed differentiated sensitivity of
various SPP components to operational loads. The most vulnerable components
were the main engine and cooling system, for which increases in vibration and
temperature lead to a sharp decline in reliability. In particular, by 20,000 hours,
reliability decreases to 0.52 for the main engine and 0.48 for the cooling system.
The generator and ship power station exhibit more stable behavior (R~0.60 and
0.58, respectively), confirming the rationale for a differentiated approach to
maintenance scheduling.
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The practical value of the presented models lies in their ability to support
informed managerial decisions regarding equipment maintenance and lifecycle
management. Mathematical interpretability, integration capability within digital
twins, and consistency with operational parameters make the proposed methodology
promising for implementation in ship technical monitoring and decision support
systems.

At the same time, the study has certain limitations. First, the input data used are
averaged operational profiles that do not include streaming telemetry. Second, the
model parameters were identified based on historical data and are not updated in
real time. These limitations define directions for future research, including the
incorporation of sensor streams, implementation of online calibration, expansion of
the component base, and the use of machine learning methods for adaptive model
tuning and adjustment of the integrated criterion ¥.

Thus, the proposed integrative approach to modeling the reliability and
maintenance of SPP equipment represents a balanced solution that combines
mathematical rigor, engineering applicability, and economic efficiency. It may serve
as a foundation for the development of intelligent prognostic systems within the
framework of digitalization of marine vessel technical operations.

5 Conclusions

This study has achieved its stated objective: an integrated approach to long-term
reliability analysis of SPP components has been proposed and substantiated. The
approach combines physically interpretable failure rate dependencies, a non-
stationary Markov framework, and simulation modeling of operational scenarios,
while also linking the results to the economic efficiency of maintenance strategies.

The developed models enabled a quantitative assessment of the reliability of
four key SPP subsystems over a 25,000-hour horizon. According to the simulation
results, the probability of failure-free operation by the end of the cycle was
approximately 30% for the main engine, 45% for the generator, 35% for the cooling
system, and 42% for the ship power station. These figures highlight the need for
overhaul or replacement of the most vulnerable components after 20,000 hours of
operation. The root mean square error (RMSE) of failure prediction, when
compared with field statistics, was 0.05 for the simulation model, 0.08 for the
Markov model, and 0.12 for the exponential model—demonstrating a 33%
improvement in accuracy over the nearest alternative and a 58% improvement over
the baseline constant failure rate model. The integrated criterion ¥, combining
RMSE, AIC, BIC, and y? with weights of 0.4:0.3:0.2:0.1, confirmed the superiority
of the hybrid simulation—Markov scheme across all components.

The analysis of operational factors revealed that a 20% increase in relative load
accelerates the growth of failure intensity by up to 1.7 times, and cooling water
temperatures above 85 °C reduce the remaining life of the cooling system by 30%.
The optimal preventive maintenance interval, determined using the residual risk
function and economic criterion, was found to be 5,000 hours. With this periodicity,
the total costs (maintenance + repairs + downtime) over a 25,000-hour cycle do not
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exceed 5.3 thousand USD, whereas foregoing scheduled maintenance increases
costs to 26.2 thousand USD more than 4.5 times higher.

The practical value of this work lies in the ability to integrate the developed
mathematical module into prognostic systems of SPP digital twins, enabling
shipowners to recalculate, in real time, the failure probability, remaining life, and
financial consequences of a chosen maintenance strategy. Future research prospects
include online calibration of model parameters based on streaming data from ship
technical monitoring and control systems, expansion of the component base of the
digital twin, and the use of machine learning methods for automatic tuning of
weights in the ¥ criterion.
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THTETPOBAHE MOJIEJTIOBAHHSI HAIIMHOCTI TA
TEXHIYHOI'O OBCJIYT'OBYBAHHSA OBJIAJIHAHHSA
CYJITHOBOI EHEPTETUYHOI YCTAHOBKH 3 YPAXYBAHHAM
SHOHEHHS TA EKCIIVIYATA
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Anomauia. [liosuwennss HaoditiHocmi mMa  eKOHOMIYHOT — epeKmusHoCmi
MOPCbKUX CYOeH 6umMazae po3poOKu IHCMPYMEHMI8 NpPOSHO3Y6AHH Gi0OMO8,
30AMHUX BPAX0BYEAMU pealbHi YMOBU eKchiyamayii ma npoyecu oe2paoayii
obnaoHauuA. Y cmammi npedcmaesieno inmezposanuil nioxio 0o KinbKiCHOI OYiHKU
HAOIUHOCMI KIIOYOBUX KOMNOHeHnmig enepeemuunoi yemanosku cyona (EVC) na
inmepsani excnayamayii 25 000 ecooun. Memodonoeis noconye UMOSIPHICHI,
dezpadayiiini ma iMimayitiHi MoOeNi 3 yPaxy8anHsIM eKCHIYamayiliHux napamempis,
Makux sIK memnepamypa, 6iOHOCHe HABAHMAIICEHH MdA IHMep8anu MexHiuHO20
obcnyeosysanns. Pospobreno ma nopiensano uwomupu Kiacu mooeneil 8i0MOg:
EKCNOHEHYIATbHY MOoOelb, MOOeb 3i 3MIHHOW ITHMEHCUBHICMIO (HecmamioHapHul
npoyec Betlbyina), Homupucmanogy Mapko8CbKy cXemy ma iMimayiiny Mooeib Ha
ocHo8I nodiiinozo Monme-Kapno. Po3paxyHku 6UKOHAHO 015 20106HO20 OBUSYHA,
2eHepamopa,  cucmemu  OXONOOJNCEHHA  Md  CYOHOBOI  eneKmpOCMAaHyii.
Cepeonvoksadpamuuna noxudka (RMSE) npocnoszy eiomos cmanosuia 0,05 ons
imimayitinoi mooerni, 0,08 ons mapkoecvroi modeni ma 0,12 ons excnowenyianbHol
mooeni. Inmeeposanuil kpumepiti sxocmi modeni, wjo epaxosye RMSE, AIC, BIC ma
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x> niomeepous nepeeazy 2iOpUOHO20  IMIMAYIIHO-MAPKOBCLKO20 — NiOX0OY.
THopienanvnuii  ekoOHOMIYHULI  AHANI3  NOKA3A8, WO  pecyiapHe  mexHiuHe
obcnyeogysanns 3 inmepsanom 5000 200un 3HUNCYE 3a2aNbHT BUMPaAmMu Oinbul HIdHC Y
4,5 pasa nopisuano 3 peakmugnumu cmpameziamu pemonmy. IIpakmuyna yinnicme
Memooy RONA2AE 8 MOICTUBOCMI 11020 3ACMOCYBAHHA Y YUPPOosUX OBIIHUKAX MA
IHMENeKMYaNbHUX CUCTEMAX NIOMPUMKYU NpUtiHamms piwens. Tlooanvui po3pooxu
nepeodauams po3uupeHHss KOMROHEHMHOT 6a3u MoOei, IHme2payir 3 NOMOKAMU
OaHUX Y PeanrbHOMy 4aci i3 CYOHOBUX CUCHEM MOHIMOPUHZY MA 3ACMOCYBAHH
Memooie MAUWUHHO20 HAGUAHHS 0N AGMOMAMUYHO20 HANAWMYEAHHS NAPAMEmpIg.

Kniouogi cnosa: npeduxmuena 0iacHocmuka, yu@posuil 0GitIHUK, 3aNIUKOBULL
pecype,  IHmMepeanbHO-oOpieHmosane  00CIY206Y6aHHA,  MAPKOBCLKA — MOOEb;
imimayiline NPO2HO3YB8AHHSA, eKOHOMIUHA OYIHKA 8i0MO8.
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Anomauia. Lle docnioscennss npucesuene nPOEKMYSaAHHIO Ma ENPOBAOICEHHIO
inmenexmyanvnoi  ingpopmayitinoi  mexnonocii  (IT),  cnpsmosanoi  na
b6azamogaxmopne oyinosanns necmitikocmi asmosanpaenux cmanyiv (A3C) oo
munogux nebesneunux noodii. Ilpononoeana inmenekmyansua IT cmpykmyposana y
10 Ouckpemnux nocnioosnux emanis. Iloyamkosi emanu npoyecy po3pooOKu
BKIIOYANU MOYHE GU3HAYEHHSA OOMIHGHMHUX Munie 3azpo3, penesanmuux onsa A3C,
ma rpynmognuil ananiz necmitikocmi A3C, posensamnymuii Kpize npusmy nOmeHyitiHux
He2amusHux HActioKie. 3 yielo memoio excnepmamu 8 npeomemuii obracmi Oyno
pemenvHo 6cmarnoeieHo 41 mempuxy (kpumepiil). [{na ymouHeHHs ybo2o HAGOpy
OaHUX 3ACMOCOBYEMbCSA MEMOO AHANI3Y iEPapXill ONsl AHANIZY eKCNEePMHUX OYMOK,
wo 0036015€ GuUeecmuU PeOYKOGAHUL KpUMepianbHull npocmip Hecmitikocmi 3
BUKTIOUEHHAM MEmpUK, Noe s3anux i3 lemanvHumu eunaoxkamu. Ha ocnosi yvozo
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