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Abstract. Enhancing the reliability and economic efficiency of marine vessels 

requires the development of failure prediction tools capable of accounting for real 

operating conditions and equipment degradation processes. This paper presents an 

integrated approach to the quantitative assessment of the reliability of key 

components of a ship’s power plant  (SPP) over a 25,000-hour operational interval. 

The methodology combines probabilistic, degradation-based, and simulation 

models while incorporating operational parameters such as temperature, relative 

load, and maintenance intervals. Four classes of failure models are developed and 

compared: an exponential model, a variable-intensity model (non-stationary 

Weibull process), a four-state Markov scheme, and an event-driven Monte Carlo 

simulation model. The calculations are performed for the main engine, generator, 

cooling system, and shipboard power station. The root mean square error (RMSE) 

of failure prediction was 0.05 for the simulation model, 0.08 for the Markov model, 

and 0.12 for the exponential model. An integrated model quality criterion 

incorporating RMSE, AIC, BIC, and χ² confirmed the advantage of the hybrid 

simulation-Markov approach. A comparative economic analysis showed that 

regular maintenance at 5,000-hour intervals reduces total costs by more than 4.5 

times compared to reactive repair strategies. The practical value of the method lies 

in its applicability within digital twins and intelligent decision support systems. 

Future developments include expanding the component base of the model, 

integrating with real-time data streams from ship monitoring systems, and applying 

machine learning techniques for automatic parameter adjustment. 

Keywords: predictive diagnostics; digital twin; remaining useful life; interval-

based maintenance; Markov model; simulation forecasting; economic failure 

assessment 

1 Introduction 

Modern ship’s power plants operate under elevated operational loads, thermal and 

vibrational stresses, which necessitate reliable prediction of their technical condition 

and maintenance requirements [1, 2, 3]. As the duration of autonomous voyages 
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increases and onboard power systems become more complex, the demands for fault 

tolerance and cost-effective maintenance continue to grow. Under these conditions, 

an integrated approach to long-term reliability assessment of SPP components  

accounting for degradation, probabilistic failure characteristics, and operational 

influences  becomes especially relevant [4]. 

In recent years, there has been a growing interest in the digitalization of 

technical diagnostics in the maritime industry [5]. One of the key directions in 

modern monitoring is the use of digital twins, which enable near-real-time modeling 

of marine systems and prediction of potential failures. While this study does not 

focus on the development of a digital twin as a software platform, it does establish a 

mathematical foundation for its prognostic module. The developed models 

incorporate physically interpretable dependencies of failure intensity on operational 

factors. In particular, the model integrates temperature effects (e.g., via the 

Arrhenius exponential function for generators), load-related parameters (coefficients 

reflecting nominal value exceedance), and environmental conditions (e.g., salinity 

and coolant temperature for the cooling system). These dependencies are 

implemented as parameterized functions calibrated against field data and reflect key 

degradation mechanisms such as thermal aging, fatigue damage accumulation, and 

aggressive environmental exposure. Zocco et al. [6] emphasize that digital twins 

allow integration of monitoring data with predictive algorithms; however, the 

practical implementation of such solutions remains limited, in part due to the 

absence of a unified methodology. Stadtmann et al. [7] demonstrate the application 

of digital twins for offshore wind turbines, highlighting the potential of the 

technology, though the focus is primarily on renewable energy rather than marine 

systems. Special attention in the literature is given to the use of machine learning in 

diagnostics and prediction of equipment condition. Polverino et al. [8], in a 

systematic review, show that machine learning methods are successfully applied for 

estimating remaining useful life (RUL) and anomaly detection. However, these 

approaches are often detached from real risk evaluation and cost considerations. 

Studies focusing on the integration of digital solutions in the maritime sector, such 

as Kaklis et al. [9]  underscore the need for comprehensive analysis encompassing 

not only failure modeling but also lifecycle management. Some research highlights 

the resilience of ship systems under intensive operation. Nezhad et al. [10] stress the 

importance of predictive maintenance based on big data analysis, while also noting 

the lack of quantitative models that consider both degradation dynamics and the 

economic consequences of technical decisions. Similarly, Mavrakos et al. [11] 

propose digital tools to support energy-saving strategies, pointing to the need for 

adaptive models capable of considering operational constraints. Additional recent 

studies support the relevance of a systemic approach to the prediction of technical 

condition in marine components. Liang et al. [12], in a review from a classification 

society perspective, emphasize that implementing prognostics and health 

management (PHM) methods requires integration of degradation models with 

regulatory frameworks. Han et al. [13]  demonstrate how a variational autoencoder 

based on LSTM can detect marine component failures; however, their model is 
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mostly oriented toward anomaly detection rather than quantitative reliability 

prediction. Xiao et al. [14], in their PHM research for industrial assets, propose a 

digital twin architecture that combines remaining life prediction with risk-based 

maintenance planning - a concept applicable to marine systems as well. Finally, Cui 

et al. [15]  develop a digital twin for a marine diesel engine and demonstrate its 

capability to enhance maintenance efficiency and reduce downtime, though their 

focus lies in platform-level integration rather than formal reliability modeling. 

A review of current publications shows that despite the active development of 

digital diagnostics technologies, the issue of long-term reliability of SPP 

components under real-world wear and overload conditions remains insufficiently 

addressed. Moreover, there is a noticeable lack of studies that integrate failure 

prediction with economic evaluation of maintenance strategies. Unlike most 

existing research focusing on localized degradation scenarios or isolated diagnostic 

aspects, this article centers on the holistic integration of reliability and economic 

analysis, providing a foundation for informed decision-making under real marine 

operating conditions. 

This study aims to fill this gap by offering a comprehensive analysis of the 

reliability of core SPP components over a 25,000-hour operating horizon. The 

approach is based on simulation modeling, Markov processes, and degradation 

models that account for wear dynamics. Special attention is given to the influence of 

operational factors (load, temperature, maintenance intervals) on failure probability, 

as well as the comparative economic efficiency of various maintenance strategies. 

The results obtained can be used in the development of predictive maintenance 

programs, resource planning, and life cycle optimization of equipment in marine 

engineering. 

The objective of this study is to develop and justify an integrated approach to 

the long-term reliability analysis of SMPP components, taking into account 

degradation dynamics, the influence of operational factors, and the economic 

efficiency of maintenance strategies. 

To achieve this objective, the following tasks are addressed: 

1.  Develop mathematical models for reliability prediction of SPP components, 

including exponential, degradation-based, Markov, and simulation-based 

approaches applicable to extended operational intervals. 

2.  Describe and implement component-specific failure rate dependencies on 

operational factors such as mechanical load, temperature, and maintenance 

parameters. 

3.  Construct a hybrid Markov–degradation model accounting for transitions 

between technical states (operational, degrading, pre-failure, and failed), with 

parameters that depend on accumulated wear. 

4.  Implement simulation modeling of operational scenarios using the Monte 

Carlo method to estimate the distribution of failure times and the variability of 

technical life. 
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5.  Formulate a model selection criterion that combines prediction accuracy 

(RMSE), information-theoretic metrics (AIC, BIC), and agreement with empirical 

data (χ²). 

6.  Evaluate the economic efficiency of different maintenance strategies by 

comparing total costs under regular and reactive servicing regimes for key 

components. 

7.  Develop recommendations for model application based on operating 

conditions and data availability, and assess their applicability as part of prognostic 

modules in digital decision support systems. 

 
2 Materials and Methods 

The objects of this study are the key components of the SPP, including the main 

engine, generator, cooling system, and shipboard power station. These elements are 

subject to long-term wear, vibrational, and thermal loads, which makes the analysis 

of their reliability over an operational interval of up to 25,000 hours particularly 

relevant. This duration is typical for resource planning and scheduled maintenance. 

The initial data for the analysis are generalized statistical records of failure 

frequencies documented in maritime practice and technical literature, including the 

OREDA failure databases. Additionally, typical operational modes, maintenance 

intervals, and expert assessments reflecting the influence of load and temperature 

conditions on equipment degradation were taken into account. 

Four different approaches were used to model reliability. The exponential model 

served as a baseline and assumed a constant failure rate, without accounting for 

wear accumulation. More realistic scenarios were described using analytical 

degradation models, in which the failure intensity increases over time following a 

power-law relationship. The third method involved a Markov model that represents 

probabilistic transitions between technical states from operational to degrading, then 

to pre-failure and failure states. Finally, simulation modeling was applied to 

reproduce complex operational conditions and to construct failure scenarios under 

the stochastic nature of external influences. Within this approach, modeling was 

implemented using the Monte Carlo method with variation of operational 

parameters. 

The comparative accuracy of the listed models was assessed using the root mean 

square error (RMSE), which allows for a quantitative comparison of forecasts 

against reference scenarios. The analysis results showed that simulation modeling 

demonstrated the lowest error, whereas the exponential model exhibited the greatest 

deviations over extended operational periods. 

Special attention in the study was given to analyzing the influence of 

operational factors on the reliability of SPP components. Three key factors were 

considered: load regimes (nominal, elevated, emergency), thermal impacts (coolant 

temperature, oil temperature, cylinder gas temperature), and maintenance frequency. 

Graphs were constructed showing the dependence of reliability on each of these 

factors, and components were ranked according to their sensitivity to various 

operational conditions. 
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Finally, an evaluation of the economic efficiency of different maintenance 

strategies was conducted. Two scenarios were compared: absence of preventive 

measures and regular maintenance at 5,000-hour intervals. The calculation included 

both direct costs of failure remediation and indirect losses associated with forced 

downtime. The results showed that a systematic maintenance approach reduces total 

costs by a factor of 4 to 5 compared to a reactive maintenance model. 

The proposed methodological approach enables not only the assessment of MPP 

component reliability over a long time horizon, but also the justification of 

economically efficient maintenance decisions based on modeling, statistical data, 

and simulation scenarios. 

 

3 Results 

To assess the long-term reliability of SPP components, the following reliability 

prediction models are used: exponential reliability model, applied to components 

with a constant failure rate, where the probability of failure depends only on 

operating time; degradation models - account for the accumulation of damage and 

changes in failure intensity over time; Markov failure model - tracks transitions of 

components between different operable states, considering probabilistic changes; 

simulation-based reliability models  used for analyzing long-term operational 

scenarios, simulating the impact of various operational factors. 

Exponential model with a constant failure rate. For components operating under 

stable conditions without pronounced degradation or aging, the simplest failure 

model based on the exponential law is applicable. This model describes non-

repairable processes with a constant failure rate λ, which corresponds to the steady-

state operational phase where the failure intensity is assumed to remain constant 

[16]: 

tetR )( , t≥0, 

where R(t) is the probability of failure-free operation at time t; 

          λ  is the failure rate (h⁻¹), assumed to be constant over time  

The parameter λ is estimated based on the total operating time  TΣ  and the 

number of observed failures k during this period. A biased maximum likelihood 

estimator is used [13]: 
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Based on the estimated failure rate, the mean time to failure (MTTF) is 

calculated using the formula: 

̂

1
exp MTTF      

Despite its simplicity, the exponential model serves as a useful baseline for 

comparison with more advanced approaches. It is applied, in particular, to 

components with high reliability operating under stable conditions. However, this 

model does not account for degradation processes, recovery after failure, or 
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variations in operating loads, which limits its applicability for long-term prediction 

under real marine operating conditions. 

Degradation models for SPP equipment 

The long-term reliability assessment of SPP components requires the inclusion 

of damage accumulation processes. In this study, component-specific degradation 

models are applied, reflecting the dependence of failure rate on time and operational 

factors. 

General approaches to degradation modeling 

The failure rate of a component at time t, denoted λ(t), is modeled using various 

functional forms: 

 ,)( 0

 tt   

where 
0  - initial failure rate at t = 0, reflecting baseline component quality [1/h]; 

          α - degradation growth coefficient (h⁻¹·h–β); 

          β - power-law exponent (β>1 - indicates accelerated degradation, β<1 - 

indicates deceleration); 

         α, β - parameters obtained by regression on failure data 

 

Weibull-Based Degradation Model (NHPP):  
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Parameter estimates are obtained using the maximum likelihood method: 
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Combined load and temperature model: 
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where  L -  relative load (0…1); 

          T -  current operating temperature of the working medium (°C); 

          Lnom, Tref - nominal values of load and temperature; 

          m,kL,η  - calibration parameters obtained from experimental data 

The degradation of SPP equipment depends simultaneously on load and 

temperature. The rate of damage accumulation or increase in failure intensity is not 

constant but is a function of operational impacts. In the main engine, degradation 

affects the piston group, crankshaft, and cylinder liners. The load is characterized by 

propeller resistance torque, overload, and rotation frequency. Temperature-related 

factors include oil, combustion gases in the cylinders, and cooling water. Elevated 

oil temperature reduces viscosity, accelerates wear of journal bearings and 
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crankshaft surfaces, increases clearances, and leads to higher vibration levels - all of 

which contribute to engine failure. 

In the cooling system, degradation affects heat exchangers, pumps, and pipe 

joints. The load is defined by pressure differentials and start-stop frequency. The 

critical external parameters are seawater temperature and overheating of the 

circulating water. These factors promote scale formation, corrosion, cavitation, and 

loss of tightness. Thus, the degradation model for the cooling system depends on 

both temperature and environmental aggressiveness. 

In the generator, degradation primarily occurs in the stator/rotor windings, 

insulation, and bearings. The winding temperature governs insulation aging. Load is 

defined by overcurrent conditions and frequent on/off cycles, which accelerate 

thermal aging and thermal cycling, leading to insulation breakdown. 

For each subsystem of the SPP, a dedicated degradation model is applied that 

accounts for the corresponding operational impacts (mechanical, thermal, electrical, 

etc.) using a generalized functional form of the failure intensity λᵢ(t, Xᵢ), where Xᵢ is 

the vector of external influences on the i-th component. 

 

Main engine (ME) [16]: 

                          ,)(exp1)( 0 refoil
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where    - coefficient of failure rate growth with runtime (h⁻²); 

          Toil - oil temperature (°C); 

           
0   - baseline failure rate 

An integral wear accumulation model is also used: 
            ,)(exp)()( 21 normoil

m TTbtLtz        ))(1()( 0 tzt    

Cooling system (CS) [17]: 

                                  ,11 00 NaClNaClCWTCS CkTTk 


  

where  TCW - temperature of the circulating water (°C); 

           T0 - reference temperature; 

           CNaCl- salt concentration (ppm); 

           kT, kNaCl,  - empirical parameters  

 

Generator (GEN): 
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 where  Tw - winding temperature (K); 

           Ea - activation energy of insulation aging; 

            - Boltzmann constant; 

           I - load current; 

            - overload coefficient;  
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         Tw, Tref - winding temperature and reference (baseline) temperature (in Kelvin) 

 

       Ship Power Station ((ISO 12110-2:2013 Metallic materials) [18]: 

),(1)( 2

0 tft fvSPS    
where  (t)  - vibration amplitude; 

          f(t)  - switching frequency (on/off cycles); 

         
fv  ,  - empirical parameters reflecting the impact of vibration and 

switching loads 

The proposed models allow: accounting for the influence of operational factors 

on component reliability; flexible adaptation to different subsystems and operating 

conditions; easy integration into simulation and Markov-based prognostic 

frameworks; suitability for implementation in predictive modules of digital twins. 

Model parameters are identified based on field data (failure logs, OREDA, onboard 

recorders), and accuracy is validated using RMSE, χ², and information criteria such 

as AIC/BIC. 

 Markov model 

The Markov model describes transitions between states:operational → 

degrading → pre-failure → failure.The transition probability matrix Pᵢⱼ is 

constructed based on historical data. A SPS component is modeled as a Continuous-

Time Markov Chain (CTMC) with four states: 

S = {0 – operational, 1 – degrading, 2 – pre-failure, 3 – failure}. 

The infinitesimal intensity matrix Q (Hoyland & Rausand, 2004) [19]: 

Q= ,  

where μ0,μ1  - gradual degradation transitions: 0 → 1 and 1 → 2; 

        γ0,γ1,γ2 -  abrupt failures from states 0, 1, and 2, respectively 

 

Mean Time to Failure (MTTF) [19]. For stationary Q, MTTF is computed using 

the fundamental matrix N: 

  ,11

3300

 x

T

MC QeeMTTF  

where  Q3x3 - upper left 3×3 submatrix of Q; 

           1T=[111]. - vector of ones; 

            1000 Te      -  initial state vector (component starts in operational state) 

Non-stationary (degradation-based) CTMC. In this case, transition intensities 

depend on accumulated wear z(t): 

),0()),(),(()( ztTtLqtz   

   ,)(1)(,)(1)( 0000 tzttzt     
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where  )(q    - function linking current load L(t) and temperature T(t) with wear 

accumulation;  

          

00 ,  - nominal failure intensities under base conditions; 

           α,β  - degradation acceleration coefficients 

General CTMC definition. A Continuous-Time Markov Chain is defined by: a 

state space S = {0, 1, 2, ..., n}; a transition intensity matrix Q = [qᵢⱼ], where:  qᵢⱼ ≥ 0 

if i ≠ j, representing the transition intensity from state i to state j;  qᵢᵢ = −∑ⱼ≠ᵢ qᵢⱼ, i.e., 

the diagonal elements are negative and equal to the negative sum of outgoing 

intensities 

Interpretation of β: 

β<1 - decelerated increase in failure intensity (e.g., under passive degradation); 

β=1 - linear increase: failure rate grows proportionally with time; 

β>1 - accelerated increase: typical for fatigue, aging, fouling, and wear 

The parameters α and β reflect the physics of degradation and are either 

assigned empirically (based on operational data) or calibrated via regression. 

When Q = Q(t), the state probabilities are determined by a time-ordered matrix 

exponential: 

   ,1)(),)(exp()( 4

0

0 tPtRdttQTetP

t

T  
 

where Т -  time-ordering operator; 

         nxn

t

RdttQT   ))(exp(
0

 - transition probability matrix; 

            4tP    - probability of being in the absorbing “failure” state 

Numerical computation is performed using piecewise constant interval 

approximation or the uniformization algorithm. A stationary CTMC is 

recommended for stable conditions, while a non-stationary model is better suited for 

variable loads and temperatures. 

Simulation-Based Model 

The simulation model is implemented using the Monte Carlo method [20] with 

N = 10,000 runs. In each simulation run, the following variables are randomly 

sampled: L - relative load (as a fraction of nominal); T - operating medium 

temperature; ΔTO - preventive maintenance interval. 

The simulation aims to compute: estimated reliability function )(ˆ tRsim
; 

Expected failure rate  )(ˆ tzsim
; аccuracy metrics (e.g., RMSE) by comparing 

predictions to observed data. 

For the j-th run (j = 1, ..., N), the condition vector is formed: 

 ,0,, )()()()( jjjj TTLX   

where  )()()( 0,, jjj TTL   are drawn from empirical distributions based on 

operational logs 
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The failure intensity function is selected accordingly: 

 ,,)( )()( tXftX jj   

A composite model selection criterion Ψ is used, minimizing a weighted sum of 

RMSE, AIC, BIC, and χ². This ensures a balanced evaluation of prediction 

accuracy, model complexity, and statistical fit over long-term reliability forecasts. 

Random sequences of load and temperature are modeled as Rainflow 

histograms: 

Cyclegrams of the form (Ljk, τjk) (k=1…Kj ) are generated. Then: 

1.  Cumulative fatigue damage (Miner’s rule) is calculated: 

m

jf

tK

k kjf
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1 ,

,)(  ;  

2. A failure is recorded if 1)( tD , or if the simulation reaches an absorbing 

failure state in the CTMC. 

3. N = 10⁴ Monte Carlo runs are executed to estimate   tRsim
ˆ  and confidence 

bounds. 

Model selection criterion. For each subsystem, the following were computed: 

RMSE, AIC, BIC, and χ² [21], reflecting the model’s agreement with observed 

failure statistics. 

The composite criterion: 

,1,
4

1

2

4321  
i

iBICAICRMSE   

where   - weights are set by experts, provides a balanced selection of the optimal 

model based on: 

         RMSE  - accuracy of failure prediction on test data; 

        AIC  - tradeoff between goodness of fit and model complexity; 

        BIC  - Bayesian Information Criterion; 

        χ2 - goodness-of-fit test comparing model predictions to actual failure 

observations 

The combined criterion Ψ enables the justified comparison of models with 

different structures, allowing for a balanced evaluation of accuracy, complexity, and 

realism. It supports a transparent selection of the most suitable failure prediction 

model for SPPs. In this study, the generalized criterion Ψ, which integrates 

prediction accuracy, information criteria (AIC/BIC), and agreement with field data, 

was used for optimal model selection. 

Economic validation. For the main engine, as the most critical unit, a life-cycle 

cost model was constructed: 

   ,)(1 tRCCCC downrepTO   

where   TOC  -  scheduled maintenance costs with interval Δ; 

           
repC -  capital repair costs; 

           
downC -  downtime losses associated with unrealized reliability levels 
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The optimal value of Δ was found numerically. Regular maintenance every 

5,000 hours reduces total costs by 4–5 times compared to a reactive repair scenario. 

The integral criterion Ψ confirms the superiority of the simulation-based scheme 

across all SPP components. This method accounts for the nonlinear effects of load 

and temperature, allows for the construction of reliability confidence intervals, and 

enables economic optimization of the maintenance schedule. 

The application of four different reliability modeling approaches is not 

redundant but rather a necessary strategy, driven by the diversity of technical 

conditions, operating regimes, and required prediction accuracy. First, each model 

targets its specific domain of applicability. 

The exponential reliability model is effective for components in the stable 

operation phase, with constant failure intensity. It is easy to implement and 

applicable when data availability is limited. 

Degradation models allow for the consideration of damage accumulation and 

changing failure intensity, which is critical for components exposed to variable 

loads and temperatures, fatigue, or aging. 

Markov models are useful when there is a need to describe discrete health states 

from operable to failed accounting for intermediate transitions with different 

probabilities. Simulation models provide the capability to analyze complex 

operational scenarios involving multiple random factors, such as load cyclegrams, 

maintenance intervals, temperature variability, and environmental aggressiveness. 

Second, model choice directly impacts prediction accuracy. The comparative 

analysis showed that RMSE values can vary by more than a factor of two between 

methods, and a model yielding the best accuracy for one component may be 

unsuitable for another. The composite criterion Ψ, combining RMSE, AIC, BIC, and 

χ², confirmed that there is no universally superior model. Third, maintaining 

multiple models allows for flexible adaptation to the available data, the criticality of 

the equipment, and the required prediction horizon. In a practical maintenance 

system based on a digital twin, the use of a model bank enables automatic selection 

of the most appropriate model type for each component and current operational 

condition. In summary, the proposed approach is based on the integration of four 

predictive models: exponential, degradation-based, Markovian, and simulation-

based. Their comparative analysis made it possible to evaluate the advantages and 

limitations of each method. As a result, the simulation model was chosen as the core 

computational scheme, providing the best balance between accuracy, adaptability, 

and realism. This makes the proposed reliability forecasting system not only 

scientifically grounded but also practically applicable under real-world SPP 

operating conditions. 

The comparative analysis of the reliability models presented above allows us to 

move from theoretical justification to their practical evaluation. At this stage, we 

consider the specific results of applying each model to the key components of the 

SPPs under various configurations of input parameters and operating scenarios. To 

this end, calculations were carried out using a unified set of metrics (RMSE, AIC, 

BIC, χ²), and a quantitative assessment of the probability of failure-free operation 
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over 25 000 hours was performed. For each piece of SPP equipment-the generator, 

the main engine, the cooling system, and the electrical power unit—reliability 

forecasts were generated and compared with the actual failure statistics. 

Table 1 

Comparison of different reliability prediction models 

Prediction model RMSE 
Forecast accuracy 

(%) 

Exponential distribution 0.12 85 

Degradation models 0.07 91 

Markov processes 0.08 90  

Simulation (Monte Carlo) 0.05 95  

 

Table 1 provides comparative data for four reliability prediction models applied 

to SPP components: exponential, degradation, Markov, and simulation 

(Monte Carlo). The evaluation criteria are the RMSE and the forecast accuracy on a 

hold-out sample (as a percentage of actual observed failures). Exponential Model 

(constant failure intensity) yielded the poorest performance: RMSE = 0.12 and 

forecast accuracy 85 %. This confirms its limitation when failures result from 

accumulated wear or thermal degradation. It is best suited as a baseline model for 

rough estimates of simple, low-wear components.Degradation Model (e.g. 

Weibull-type with time-varying intensity λ(t)=λ₀+αt^β) showed improved results: 

RMSE = 0.07 and accuracy 91 %. Its strength lies in capturing non-stationary aging 

processes and the effect of loads on component wear. It is especially effective for 

parts undergoing monotonic degradation—such as generators, heat exchangers, and 

bearings.  

Markov Model (discrete state transitions) achieved comparable accuracy: 

RMSE = 0.08 and accuracy 90 %. Its advantage is formalizing the phase structure of 

degradation and accounting for both gradual and sudden transitions (e.g., 

“operational → degrading → pre-failure → failure”). It is well suited for diagnosing 

and forecasting complex assemblies undergoing typical wear stages. Simulation 

(Monte Carlo) provided the best performance: RMSE = 0.05 and accuracy 95 %. By 

modeling many probabilistic scenarios-including variations in load, temperature, 

and maintenance intervals-it captures the combined effects of multiple factors. This 

method is ideal for components sensitive to operating regimes and systems where 

failures arise from factor combinations. It also enables analysis of confidence 

intervals and cost-consequences of failures. In summary, each model has its own 

domain of applicability: exponential: for simple, stable components without evident 

degradation; degradation: for parts with monotonic wear and damage accumulation; 

Markov: for components featuring distinct degradation phases; simulation: for 

complex systems under variable load and environmental conditions. 

 Figure 3.1 presents a graph that illustrates the results of comparing various 

failure prediction methods based on the RMSE in reliability estimation of SPP 

components. 
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The simulation model demonstrates the highest accuracy. The degradation 

model outperforms both the Markov and exponential approaches, confirming the 

importance of accounting for cumulative wear when analyzing SPP components. To 

systematically compare reliability prediction methods, it is reasonable to consider 

three key criteria: whether the model incorporates a degradation mechanism; 

whether it can represent discrete transitions between component states (e.g., 

"operational → degraded → pre-failure → failure"); forecast accuracy, expressed 

through RMSE. Table 2 provides a comparative summary of these characteristics 

and includes practical recommendations for the application of each model 

depending on operating conditions and the required prediction horizon. 

 

 
Figure 1. Comparison of reliability prediction models by root-mean-square error 

Table 2  

Comparative accuracy of reliability prediction models (by RMSE) 
Prediction 

model 

Accounts for 

degradation 

Describes state 

transitions 
RMSE 

Recommended 

applications 

Exponential No No 0.12 Basic estimates, 
preliminary 

assessments 

Markov Yes Yes 0.08 Mid-term forecasting, 

transient state analysis 

Simulation 

modeling 

Yes Yes 0.05 Accurate long-term 

assessments, complex 

operational scenarios 

Degradation 
models 

(analytical) 

Yes No 0.09 Condition monitoring 
with known wear 

functions 
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The comparison clearly shows that simulation modeling offers the highest 

accuracy (RMSE = 0.05). This is due to its ability to capture variability in operating 

conditions, stochastic events, and cumulative degradation effects. As a result, this 

method is especially effective for long-term reliability forecasting and residual life 

assessment under complex operational scenarios. Markov models, while slightly 

less accurate (RMSE = 0.08), offer a key advantage in structural clarity. They enable 

formal representation of state transitions (“operational → degraded → pre-failure → 

failure”) and are well-suited for rapid risk assessment. These models can be readily 

integrated into onboard predictive diagnostics systems and are applicable when 

moderate volumes of input data are available. Analytical degradation models 

provide acceptable accuracy (RMSE in the range of 0.07–0.09) and are most 

effective when there is a priori knowledge of wear mechanisms. Their use is 

particularly appropriate when combined with environmental monitoring (e.g., 

temperature, vibration, chemical aggressiveness), allowing for modeling the 

nonlinear increase in failure intensity. Despite its simplicity, the exponential model 

poorly reflects the behavior of most SPP components over intervals exceeding 

10 000 hours, as it does not account for degradation processes. Its use is justified 

only for preliminary assessments or when no reliable data is available on the 

component's condition. Therefore, the selection of a prediction model should be 

based on a balance between: the availability of input data; acceptable model 

complexity;  the required forecasting horizon. In practical operational environments, 

the most rational approach is a hybrid strategy, combining simulation modeling with 

Markov processes. This allows for simultaneously capturing probabilistic dynamics 

and concrete failure scenarios. 

General reliability equation and parameter estimation 

For all models considered, the reliability function R(t) is derived from the 

following general equation: 

,)( 0

)(




t

dtt

etR


 

where R(t) is the probability of failure-free operation at time t; 

          λ(τ) is the time-dependent failure rate function 

This integral expression accounts for the cumulative impact of component 

degradation over time. 

With a constant failure rate λ(τ)=λ₀ , the model corresponds to the classical 

exponential distribution. For components experiencing increasing wear, a power-

law dependency is used λ(τ)=λ₀(1+ατⁿ). In the Markov scheme, λ(t) is equivalent to 

the sum of outgoing transition rates from non-absorbing states. In the simulation 

model, λ(t)is calculated step-by-step for each operational scenario X{(j)}. The 

parameters λ₀, α, n, as well as the transition rates μ, γ, are calibrated using: the 

OREDA field failure database; identification of CTMC parameters from operational 

logs; prior dependencies (Bayesian networks) in the case of limited data. The 

resulting reliability functions R(t) are used for: estimating the remaining useful life; 

optimizing maintenance intervals; calculating economic losses due to downtime. 
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Analysis of component reliability dynamics 
Reliability assessment of SPP requires not only the estimation of overall failure 

probability, but also an understanding of how reliability evolves over time under 

operational stresses. 

This subsection presents a comparative analysis of the behavior of key SPP 

components over an extended operational period (up to 25,000 hours). Particular 

attention is paid to the dynamics of the reliability function, failure frequency, and 

the influence of load, temperature, and maintenance intervals on remaining useful 

life. 

Figure 2 shows the reliability dynamics of the main SPP components over 

25,000 hours of operation. Figure 2 shows the evolution of reliability (function R(t)) 

for four key components of the SPP over a 0–25,000 hour interval, calculated using 

Monte Carlo simulation (10,000 iterations) with variations in operational factors: 

relative load, cooling medium temperature, and maintenance frequency. The graph 

presents the probability of failure-free operation over time, obtained from the event-

driven simulation model. For each component, degradation scenarios were modeled 

based on empirical distributions of operating parameters and failure intensity 

functions calibrated from historical data. 

 
Figure 2. Reliability dynamics of key SPP components 

The main engine (ME) demonstrates the steepest reliability decline: from 1.0 to 

approximately 0.3 by 25,000 hours, indicating the need for overhaul after 20,000 

hours. The generator degrades more slowly, reaching approximately 0.45 at 25,000 

hours, and its operational life can be extended with regular maintenance. The 

cooling system is sensitive to thermal impacts: reliability drops to about 0.55 by 

15,000 hours and to ≈ 0.35 by 25,000 hours, requiring preventive actions every 

10,000–12,000 hours. The ship power station shows moderate degradation: by 

25,000 hours, its reliability is around 0.42 sufficient for scheduled diagnostics 

without urgent intervention. Thus, the primary candidates for accelerated 

maintenance are the main engine and cooling system. The generator and ship power 
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station require monitoring after 20,000 hours, when their reliability falls below 0.5. 

The optimal interval for preventive repair for most components is between 10,000 

and 15,000 hours of operation. 

To quantitatively support the graphical trends presented in Figure 2, Table 3 

provides the values of the reliability function R(t) for key SPP components at 

critical stages of the operating cycle. These data are used for estimating remaining 

useful life and for scheduling maintenance interventions. 
Table 3 presents discrete values of the probability of failure-free operation R(t) 

for the four main SPP components, calculated using Monte Carlo simulation with 

10,000 runs. The model incorporated empirically determined distributions of load, 

temperature, and maintenance frequency, along with failure intensity functions 

calibrated against degradation data and state transition behavior. 

These values complement the graphical interpretation in Figure 3.21 and enable 

precise identification of critical intervals of reliability loss. The main engine and 

cooling system reach R(t) < 0.5 between 15,000 – 20,000 hours, while the generator 

and ship power station remain reliable until approximately 23,000 – 24,000 hours, 

after which they also require major intervention. 

       Table 3  

Long-term reliability (failure probability) of SPP components 

Time (h) Main engine Generator 
Cooling 

system 

Shipboard 

power station 

0 1.00 1.00 1.00 1.00 

5,000 0.93 0.96 0.92 0.95 

10,000 0.85 0.90 0.82 0.87 

15,000 0.70 0.78 0.68 0.75 

20,000 0.50 0.60 0.52 0.58 

25,000 0.30 0.45 0.35 0.42 

 

The derived data can be directly applied for residual life estimation and 

planning of maintenance schedules. The subsequent sections explore failure 

frequencies under various operating modes and the impact of maintenance intervals 

on component reliability. 

Although the reliability function R(t) reflects the probability of failure-free 

operation of components over time, an important complementary metric is the 

normalized failure rate the expected number of failures per 1,000 operating hours 

depending on operating conditions. This indicator provides insight into how rapidly 

the risk of failure increases under varying external loads, thermal conditions, and 

maintenance frequencies. It is important to note that the presented values are not 

based on direct observations but represent average failure intensities obtained 

through Monte Carlo simulation, accounting for usage scenarios under three modes: 

nominal, high load, and emergency conditions. 

Table 4 summarizes the simulated failure rates of SPP components under three 

operational regimes: nominal, elevated load, and emergency conditions. These 
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results, derived from simulation modeling, complement the previously presented 

R(t) values, offering a more detailed perspective on component sensitivity to 

operational factors. The resulting dependencies are used for comparative assessment 

of component vulnerability and to justify the need for predictive maintenance 

strategies when shifting toward harsher operation profiles. 

Table 4  

Failure frequency of components under different operating modes 

Component 
Nominal mode 

(failures/1000 h) 

Increased load 

(failures/1000 h) 

Emergency 

conditions 

(failures/1000 

h) 

Main engine 0.8 1.5 3.2 

Generator 0.5 1.1 2.8 

Cooling system 1.0 2.3 4.1 

Ship power 

station 
0.6 1.4 3.0 

Based on the data presented in Table 4, the following conclusions can be drawn. 

The main engine shows a low failure rate under nominal conditions (0.8 failures per 

1,000 operating hours), but this rate rises sharply to 3.2 failures per 1,000 hours 

under emergency conditions, indicating high sensitivity to increased operational 

loads. The generator demonstrates strong reliability in stable conditions (0.5 failures 

per 1,000 hours), yet under emergency scenarios the failure rate increases fivefold 

(2.8 failures per 1,000 hours), which emphasizes the need for enhanced monitoring. 

The cooling system exhibits the highest sensitivity to operating conditions. Its 

failure rate escalates from 1.0 to 4.1 failures per 1,000 hours under critical thermal 

loads and hydraulic stress, highlighting the importance of timely maintenance. The 

shipboard power station also experiences a decline in reliability under high loads, 

although its resilience remains higher compared to the main engine, making it 

relatively less vulnerable. 

Following the assessment of overall component reliability and failure rates 

across different modes of operation, it becomes essential to analyze the influence of 

individual operational factors such as load, temperature, and maintenance intervals 

on the time-dependent degradation of reliability. The modeling framework includes 

the following variables: relative load (e.g., propeller shaft torque for the main 

engine, current load for the generator); temperature conditions (e.g., oil temperature 

for the main engine, coolant temperature for the cooling system, and winding 

temperature for the generator); and the maintenance schedule, which determines the 

accumulation of residual risk. The simulation scenarios span from nominal 

operational parameters to overloads and emergency conditions. Based on these 

inputs, reliability functions R(t) were computed using Monte Carlo simulation to 

represent the system's aggregated response to variable environmental and 

operational influences. 

Figure 3.50 visualizes these dependencies, providing a clear picture of how the 

reliability of shipboard power systems changes in response to variations in 
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operational conditions. This analysis helps identify components that are more 

vulnerable under elevated loads or thermal stress and supports decisions regarding 

adaptive maintenance planning. 

The simulation results presented in Figure 3 clearly demonstrate that the 

reliability of SPP components varies significantly depending on operating 

conditions. In nominal mode, with standard loading and normal thermal conditions, 

the reliability function of the components remains above 0.80 during the first 15,000 

hours, which corresponds to the planned operational phase without signs of 

accelerated degradation. Under increased (intensive) load such as a ~20% rise in 

propeller resistance or generator current the rate of failure intensifies: by 15,000 

hours, the probability of failure-free operation drops to 0.55–0.60, which is 30–35% 

lower than the baseline level. In emergency conditions a combination of overloads, 

cooling water overheating (above 85 °C), and infrequent maintenance leads to rapid 

deterioration R(t) falls below 0.40 as early as 12,000 –15,000 hours, and by 25,000 

hours, reliability decreases to 0.20 – 0.25. This indicates critical wear and the urgent 

need for major overhaul. Based on the results of the simulation model, the following 

practical recommendations are proposed: adaptive load control: For the main engine 

and cooling system, it is advisable to reduce operating loads by 10 – 15% when oil 

or coolant temperatures increase. 

 

 
 

Figure 3. Influence of operational factors on the reliability of the SPP 

 
This measure can extend the service life by 2,000 – 3,000 hours; justification of 

optimal maintenance intervals: Simulation of various scenarios shows that reducing 

the interval from 10,000 to 5,000 – 7,000 hours between scheduled maintenance 

procedures decreases the total failure probability by 18–22% and lowers expected 
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maintenance costs by more than four times; predictive replacement of critical 

components - for components whose residual reliability drops to R = 0.50, a 

condition-based replacement strategy is economically justified before actual failure 

occurs. This particularly applies to the main engine bearings and cooling system 

heat exchangers. 

Thus, the chart in Figure 3 not only confirms the quantitative influence of 

operational factors on system reliability but also provides a foundation for justifying 

adaptive maintenance strategies. These strategies make it possible to maintain the 

reliability of the system at a safe level while minimizing total costs. For a 

quantitative analysis of the long-term impact of operational conditions on the 

reliability of SPP components, simulation scenarios were used to vary key technical 

environment parameters. Table 5 presents generalized calculated data for three main 

operational factors: vibration level (average vibration, in g); operating temperature 

(characteristic for each component, such as oil, windings, coolant, etc.); and relative 

load (percentage of rated capacity). For each component, the probability of failure-

free operation R(t) after 20,000 hours of service is also provided, based on a 

degradation-simulation model. 

These results enable a comparative analysis of the sensitivity of different SPP 

subsystems to operational stressors. A visual representation of how maintenance 

frequency affects reliability is additionally shown in Figure 3, which illustrates the 

role of the maintenance interval as a distinct risk factor. 

 

Table 5 

Impact of operational factors on the reliability of SPP components 

 

Component Vibration 

(average 

level), g 

Temperature 

(°C) 

Load (% of 

nominal) 

Reliability 

after 20,0 

Main engine 4.5 85 95 0.52 

Generator 2.8 75 90 0.60 

Cooling 

system 

3.2 90 80 0.48 

Ship power 

station 

2.5 70 85 0.58 

 
The analysis of the data presented in Table 5 shows that the reliability of SPP 

equipment after 20,000 hours of operation is determined by the combined effect of 

three key operational factors: vibration, temperature, and load. All values were 

obtained using simulation modeling based on standard operating scenarios. 

Vibration has a significant influence on the service life of equipment.  

The main engine (ME) exhibits the highest vibration level of 4.5 g, reflecting 

high mechanical loading and corresponding with a relatively low reliability value 

(R = 0.52). The cooling system, exposed to 3.2 g vibration, shows an even lower 



 

 
INFORMATION CONTROL SYSTEMS AND INTELLIGENT 

TECHNOLOGIES.                                                                                       

ADVANCES AND APPLICATIONS 

 

354 

 

reliability (R = 0.48), which can be attributed to its structural susceptibility to 

cavitation and resonant effects. The generator (2.8 g) and ship power station (2.5 g) 

experience the lowest vibration levels and demonstrate the best resource 

preservation (R = 0.60 and R = 0.58, respectively). Temperature is the second most 

critical factor. The cooling system operates at 90 °C, and the main engine at 85 °C 

both indicating thermally stressed conditions that accelerate material degradation 

and aging of working media. More moderate temperatures are observed in the 

generator (75 °C) and power station (70 °C), correlating with their higher reliability. 

In this context, temperature refers to oil, coolant, cylinder gas, winding, and ambient 

temperatures. Their roles are further detailed in the explanation of the thermal factor 

below. 

 Load, expressed as a percentage of nominal power, also has a statistically 

significant impact. At 95 % load on the main engine and 90 % on the generator, 

reliability is notably lower than in the power station operating at 85 %. Interestingly, 

the cooling system despite operating at a relatively low load (80 %) exhibits the 

worst reliability metric. This confirms that thermal and vibrational loads are the 

dominant degradation drivers in its case. In summary, two component groups can be 

distinguished: critically vulnerable: main engine and cooling system subject to 

cumulative influence from all three factors, requiring early intervention and 

shortened maintenance intervals; relatively stable: generator and ship power station-

operating under near-nominal conditions with extended resource longevity. It 

should be emphasized that in the development of reliability models and maintenance 

strategies, not only individual factors but their cumulative effects over time must be 

taken into account. Even if one parameter (e.g., load) remains moderate, elevated 

temperature or vibration alone can significantly reduce service life. This 

underscores the importance of multi-parameter modeling tailored to the operational 

specifics of each component. Temperature is among the most critical degradation 

factors for SPP systems, with its impact depending not only on absolute values but 

also on the specific application point: oil, coolant, cylinders, or windings. Table 6 

summarizes the critical temperature thresholds for various media and components, 

indicating the levels at which accelerated reliability decline begins and the 

predominant types of failures observed under these conditions. 

Based on Table 6, it can be concluded that each SPP component has a specific 

critical temperature threshold, beyond which a qualitative change occurs in failure 

mechanisms. For the main engine, oil overheating above 110 °C leads to reduced 

viscosity, impaired lubrication, and consequently, accelerated wear of friction pairs, 

specifically journal bearings, liners, and plain bearings. The cooling system loses 

reliability at temperatures exceeding 95 °C, disrupting the thermal balance of the 

entire installation. This promotes thermal aging and increases the likelihood of 

cavitation. 
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Table 6 

Influence of temperature regimes on the reliability of SPP components 

 
Component Critical temperature, °C Impact on reliability 

Main engine (oil) >110 °C Accelerated wear of 

friction parts 

Coolant >95 °C Overheating, reduced 

cooling efficiency 

Gaseous medium in 

cylinders 

>500 °C Increased wear of the 

piston group 

Generator (windings) >120 °C Insulation degradation, 

risk of breakdown 

When temperatures in the engine cylinders exceed 500 °C, carbon deposit 

formation, thermal expansion, gas blow-by, and abrasive wear of the piston group 

intensify. For the generator, winding overheating above 120 °C is critical due to 

insulation aging, increased electrical resistance, thermal cycling, and ultimately, 

dielectric breakdown. These findings provide a crucial foundation for constructing 

temperature-dependent degradation models. Such models not only guide the 

development of maintenance algorithms but also define maximum permissible 

values in monitoring systems and help configure warning thresholds within digital 

twin frameworks. Based on the data from Tables 5 and.6, it is evident that 

vibrational stress and elevated temperature have the greatest impact on component 

reliability. The cooling system is particularly vulnerable to degradation at 

temperatures exceeding 85 °C. In contrast, the generator and ship power station 

demonstrate lower sensitivity to vibration. 

To quantitatively assess the effect of maintenance frequency on equipment 

reliability, a reliability function was derived as a function of the interval between 

maintenance events. Modeling was carried out using an event-driven simulation 

approach, with intervals ranging from 2,000 to 20,000 hours. The resulting 

dependency is visualized in Figure 4, which illustrates the decline in failure-free 

probability as the interval between scheduled maintenance increases. 

The graph in Figure 4 is based on the results of event-driven Monte Carlo 

simulation (N = 10,000) under averaged operational conditions derived from 

Table 3.51. It illustrates the exponential decline of failure-free probability R(t) as 

the maintenance interval increases: under baseline conditions of 1,000 hours, 

reliability remains high (R ≈ 0.95); under the economically optimal interval of 5,000 

hours, it decreases slightly (R ≈ 0.90); but at 20,000 hours, reliability drops below 

0.40 (RMSE of the forecast = 0.05). This trend is consistent with the results of Han 

et al. [9]; however, our study further incorporates the economic impact: total 

lifecycle costs increase from USD 5,300 (for 5,000-hour maintenance) to USD 

26,200 (for 20,000-hour maintenance). Therefore, regular maintenance at intervals 

no longer than 5,000 hours offers a rational compromise between maintaining high 

system reliability and minimizing lifecycle costs. 
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Figure 4. Impact of maintenance frequency on the reliability of SPP 

 
Considering that vibration and thermal loads significantly accelerate 

degradation (as demonstrated in Table 5), the main engine and cooling system are 

particularly critical. For these components, it is advisable to adopt a shortened 

maintenance cycle after 10,000 hours of operation. 

 

Economic assessment of maintenance strategies 

Given the identified relationships between reliability and operational factors, the 

next step is to evaluate how preventive actions impact not only technical 

performance but also the overall lifecycle costs of SPP equipment. To assess the 

economic efficiency of different maintenance strategies, a comparative cost analysis 

was conducted for two operational scenarios: reactive maintenance (repair after 

failure only); scheduled preventive maintenance (every 5,000 hours). The main 

engine was selected as the case study component, being the most cost-critical in 

terms of failure consequences and downtime losses. The economic evaluation model 

is structured as follows: 

 ,)()( tRCCCC downrepPM   

where )(PMC - denotes the cost of preventive maintenance at interval Δ; 

           
repC   - direct costs of failure recovery; 

       
downC - losses associated with equipment downtime, which depend on the 

failure probability R(t) and the duration of recovery operations 

In the reactive maintenance scenario, the number of failures over 25,000 hours 

of operation averaged 12, with total costs (repair + downtime) reaching 26.2 

thousand USD. In contrast, with regular maintenance performed at 5,000-hour 

intervals, the number of failures was reduced to 4, and the total expenses amounted 

to 5.3 thousand USD. Table 7 presents a summary of the economic comparison 

between the two approaches. To formally compare these scenarios using key 
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economic metrics, Table 7 below provides a comparison of failure frequency, repair 

costs, downtime-related losses, and total expenditures. 

Table 7  

Comparative assessment of main engine maintenance costs under different 

strategies (25,000-hour cycle) 

Operation 

scenario 

Number of 

failures 

over 25,000 

h 

Repair costs 

Crep, 

thousand 

USD 

Downtime 

losses Cdown, 

thousand USD 

Total costs 

C, thousand 

USD 

Without 

regular 

maintenance 

12 5.8 20.4 (≈12 h 

downtime) 

26.2 

With regular 

maintenance 

(every 5,000 h) 

4 1.9 3.4 (≈2 h 

maintenance 

downtime) 

5.3 

 
As shown in the table, the scheduled maintenance strategy reduces the total 

number of failures by a factor of three and the overall costs by more than 4.5 times. 

At the same time, the equipment reliability at the end of the evaluated operational 

interval remains above 90%, which is confirmed by the results of simulation 

modeling using the reliability function R(t). The graph (Fig. 4) also demonstrates 

that extending the maintenance interval to 20,000 hours leads to a decrease in the 

probability of failure-free operation to 40%. 

Thus, the economic evaluation confirms the practical effectiveness of 

implementing preventive maintenance. The recommended interval of 5,000 hours 

ensures an optimal balance between operational expenditures and the reduction of 

failure risks. The proposed approach is scalable to other subsystems of the SPPs and 

can be integrated into digital twins for dynamic optimization of maintenance 

strategies in real time. 

 

4 Discussion of results 

The conducted study demonstrates the effectiveness of an integrative approach to 

reliability assessment and the development of maintenance strategies for SPP 

equipment. Unlike classical methods based on stationary assumptions (e.g., the 

exponential model with constant failure rates), the proposed methodology combines 

analytical degradation models, non-stationary Markov processes, and discrete-event 

simulation modeling. This combination enables accounting for both damage 

accumulation and the influence of variable operational conditions, including 

vibration, temperature, and load regime. 

Comparison with contemporary research confirms the relevance and scientific 

soundness of the proposed approach. For instance, several studies (Mauro & Kana 

[22]; Lv & Lv [23]) consider digital twins as a promising architecture for predictive 
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control of maritime equipment. However, the authors emphasize the need for model 

unification and the integration of physically interpretable parameters. The present 

study meets these requirements: the reliability models are formalized, and the 

degradation parameters are directly dependent on operational impacts. In the works 

of Minchev et al. [24], digital twins are used for diagnostics and condition 

monitoring of marine diesel units, but the aspect of economic feasibility of 

maintenance is not addressed. In contrast, this study presents an evaluation of total 

costs under different maintenance strategies, thereby enhancing the practical 

significance of the results. The economic analysis conducted showed that switching 

from a reactive to a scheduled strategy (with a 5,000-hour interval) reduces total 

expenses by more than 4.5 times while increasing equipment reliability by 18–22%. 

The reliability optimization methods proposed by Zhou et al. [25] are based on 

particle swarm algorithms and are aimed at individual technological processes (e.g., 

cylinder block machining), without considering degradation dynamics during 

operation. In this study, the parametric degradation model with four technical 

condition states allows adaptation to changing conditions, reflecting the actual 

behavior of equipment over a long operational interval. The review by Liang et al. 

[26] highlights the lack of quantitative models capable of accounting for operational 

impacts such as overheating and vibration. This limitation is overcome in the 

present work: the developed reliability models incorporate temperature, load, and 

vibration parameters as arguments of the failure rate function. The introduced 

threshold values (e.g., 110 °C for oil, 120 °C for windings) are consistent with 

simulation results and may serve as the basis for automatically generating warning 

signals in digital twins. The work by D’Agostino et al. (2020) [27] is devoted to 

multiphysical modeling of ship microgrids in real time, but it lacks a reliability 

analysis component. The present study can be integrated into such systems, 

complementing them with residual life assessment and maintenance schedule 

optimization modules. 

One of the key results of the study is the quantitative comparison of four 

reliability forecasting models. The simulation model demonstrated the highest 

accuracy (RMSE = 0.05), which is 33% better than that of the Markov model (0.08), 

and 58% better compared to the exponential model (0.12). The integrated metric Ψ, 

combining RMSE, AIC, BIC, and χ² with expert weights, confirmed the superiority 

of the hybrid model, demonstrating that accounting for the temporal dynamics of 

operational factors and degradation processes significantly improves the accuracy of 

long-term forecasting. Moreover, the study revealed differentiated sensitivity of 

various SPP components to operational loads. The most vulnerable components 

were the main engine and cooling system, for which increases in vibration and 

temperature lead to a sharp decline in reliability. In particular, by 20,000 hours, 

reliability decreases to 0.52 for the main engine and 0.48 for the cooling system. 

The generator and ship power station exhibit more stable behavior (R ≈ 0.60 and 

0.58, respectively), confirming the rationale for a differentiated approach to 

maintenance scheduling. 
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The practical value of the presented models lies in their ability to support 

informed managerial decisions regarding equipment maintenance and lifecycle 

management. Mathematical interpretability, integration capability within digital 

twins, and consistency with operational parameters make the proposed methodology 

promising for implementation in ship technical monitoring and decision support 

systems. 

At the same time, the study has certain limitations. First, the input data used are 

averaged operational profiles that do not include streaming telemetry. Second, the 

model parameters were identified based on historical data and are not updated in 

real time. These limitations define directions for future research, including the 

incorporation of sensor streams, implementation of online calibration, expansion of 

the component base, and the use of machine learning methods for adaptive model 

tuning and adjustment of the integrated criterion Ψ. 

Thus, the proposed integrative approach to modeling the reliability and 

maintenance of SPP equipment represents a balanced solution that combines 

mathematical rigor, engineering applicability, and economic efficiency. It may serve 

as a foundation for the development of intelligent prognostic systems within the 

framework of digitalization of marine vessel technical operations. 

 

5 Conclusions 

This study has achieved its stated objective: an integrated approach to long-term 

reliability analysis of SPP components has been proposed and substantiated. The 

approach combines physically interpretable failure rate dependencies, a non-

stationary Markov framework, and simulation modeling of operational scenarios, 

while also linking the results to the economic efficiency of maintenance strategies. 

The developed models enabled a quantitative assessment of the reliability of 

four key SPP subsystems over a 25,000-hour horizon. According to the simulation 

results, the probability of failure-free operation by the end of the cycle was 

approximately 30% for the main engine, 45% for the generator, 35% for the cooling 

system, and 42% for the ship power station. These figures highlight the need for 

overhaul or replacement of the most vulnerable components after 20,000 hours of 

operation. The root mean square error (RMSE) of failure prediction, when 

compared with field statistics, was 0.05 for the simulation model, 0.08 for the 

Markov model, and 0.12 for the exponential model—demonstrating a 33% 

improvement in accuracy over the nearest alternative and a 58% improvement over 

the baseline constant failure rate model. The integrated criterion Ψ, combining 

RMSE, AIC, BIC, and χ² with weights of 0.4:0.3:0.2:0.1, confirmed the superiority 

of the hybrid simulation–Markov scheme across all components. 

The analysis of operational factors revealed that a 20% increase in relative load 

accelerates the growth of failure intensity by up to 1.7 times, and cooling water 

temperatures above 85 °C reduce the remaining life of the cooling system by 30%. 

The optimal preventive maintenance interval, determined using the residual risk 

function and economic criterion, was found to be 5,000 hours. With this periodicity, 

the total costs (maintenance + repairs + downtime) over a 25,000-hour cycle do not 
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exceed 5.3 thousand USD, whereas foregoing scheduled maintenance increases 

costs to 26.2 thousand USD more than 4.5 times higher. 

The practical value of this work lies in the ability to integrate the developed 

mathematical module into prognostic systems of SPP digital twins, enabling 

shipowners to recalculate, in real time, the failure probability, remaining life, and 

financial consequences of a chosen maintenance strategy. Future research prospects 

include online calibration of model parameters based on streaming data from ship 

technical monitoring and control systems, expansion of the component base of the 

digital twin, and the use of machine learning methods for automatic tuning of 

weights in the Ψ criterion. 
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Анотація. Підвищення надійності та економічної ефективності 

морських суден вимагає розробки інструментів прогнозування відмов, 

здатних враховувати реальні умови експлуатації та процеси деградації 

обладнання. У статті представлено інтегрований підхід до кількісної оцінки 

надійності ключових компонентів енергетичної установки судна (ЕУС) на 

інтервалі експлуатації 25 000 годин. Методологія поєднує ймовірнісні, 

деградаційні та імітаційні моделі з урахуванням експлуатаційних параметрів, 

таких як температура, відносне навантаження та інтервали технічного 

обслуговування. Розроблено та порівняно чотири класи моделей відмов: 

експоненціальну модель, модель зі змінною інтенсивністю (нестатіонарний 

процес Вейбулла), чотиристанову марковську схему та імітаційну модель на 

основі подійного Монте-Карло. Розрахунки виконано для головного двигуна, 

генератора, системи охолодження та суднової електростанції. 

Середньоквадратична похибка (RMSE) прогнозу відмов становила 0,05 для 

імітаційної моделі, 0,08 для марковської моделі та 0,12 для експоненціальної 

моделі. Інтегрований критерій якості моделі, що враховує RMSE, AIC, BIC та 
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χ², підтвердив перевагу гібридного імітаційно-марковського підходу. 

Порівняльний економічний аналіз показав, що регулярне технічне 

обслуговування з інтервалом 5000 годин знижує загальні витрати більш ніж у 

4,5 раза порівняно з реактивними стратегіями ремонту. Практична цінність 

методу полягає в можливості його застосування у цифрових двійниках та 

інтелектуальних системах підтримки прийняття рішень. Подальші розробки 

передбачають розширення компонентної бази моделі, інтеграцію з потоками 

даних у реальному часі із суднових систем моніторингу та застосування 

методів машинного навчання для автоматичного налаштування параметрів. 

Ключові слова: предиктивна діагностика; цифровий двійник; залишковий 

ресурс; інтервально-орієнтоване обслуговування; марковська модель; 

імітаційне прогнозування; економічна оцінка відмов. 
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Анотація. Це дослідження присвячене проєктуванню та впровадженню 

інтелектуальної інформаційної технології (ІТ), спрямованої на 

багатофакторне оцінювання нестійкості автозаправних станцій (АЗС) до 

типових небезпечних подій. Пропонована інтелектуальна ІТ структурована у 

10 дискретних послідовних етапів. Початкові етапи процесу розробки 

включали точне визначення домінантних типів загроз, релевантних для АЗС, 

та ґрунтовний аналіз нестійкості АЗС, розглянутий крізь призму потенційних 

негативних наслідків. З цією метою експертами в предметній області було 

ретельно встановлено 41 метрику (критерій). Для уточнення цього набору 

даних застосовується метод аналізу ієрархій для аналізу експертних думок, 

що дозволяє вивести редукований критеріальний простір нестійкості з 

виключенням метрик, пов’язаних із летальними випадками. На основі цього 
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